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This paper proposes two local multifractal measures motivated by blanket method for calculation of fractal dimension.They cover
both fractal approaches familiar in image processing. The first two measures (proposed Methods 1 and 3) support model of image
with embedded dimension three, while the other supports model of image embedded in space of dimension three (proposed
Method 2). While the classical blanket method provides only one value for an image (fractal dimension) multifractal spectrum
obtained by any of the proposedmeasures gives a whole range of dimensional values.Thismeans that proposedmultifractal blanket
model generalizes classical (monofractal) blanket method and other versions of this monofractal approach implemented locally.
Proposed measures are validated on Brodatz image database through texture classification. All proposed methods give similar
classification results, while average computation time of Method 3 is substantially longer.

1. Introduction

Fractality is often introduced through geometry [1, 2] but it
is valid whenever dimensionality is in the focus of research.
Both geometry and calculus consider dimension as a point’s
relation to its neighborhood and the trend of behavior of
the geometrical object or function in the surrounding of the
point.

After its introduction in image processing [3–5] in 1980s,
fractal model has been used in texture classification [6, 7],
image segmentation [8–10], image compression [11], and edge
detection [12]. Contrary to statistical models of the image,
where image is perceived as a union of regions with homo-
geneity of chosen statistical moment (it is usually mean value
of the region), fractalitymodels an image as a union of regions
with homogeneity of dimension or spectrum of dimensions.
As it will be described in detail in Section 2, dimension is a
nonlinear attribute of the object (region). This is of special
interest when analyzing textures since the statisticalmoments
of textural regions in an image do not describe themuniquely.

This paper proposes two local multifractal (MF)
measures based on blanket method [3] for calculation of
fractal dimension. Blanket method is based on monofractal
model of an image, where the image is modeled as a three-
dimensional surface and, hence, pixel intensity is seen

as a third spatial component. The area of this surface—
blanket—is assumed to be monofractal. Area is calculated
by thickening the blanket and then dividing its volume by
thickness of the blanket. Fractal model assumes that area of
the surface is growing this way with the power of dimension.
While blanket method treats an image as a monofractal
object, proposed measures expand blanket method to
multifractality. Each of proposed measures represents an
example of two directions in implementation of fractality in
image processing. Existing techniques developed within one
of two approaches exclude the other approach. This paper
covers mutually both approaches and employs methods for
calculation of local and global dimension from both models.

The paper is organized as follows. Section 2 deals with
dimensionality and introduces multifractality in general.
Overview of applications of multifractal method in image
processing is given in Section 3. Section 4 gives a brief survey
on blanket method which inspired multifractal measures
proposed in Section 5. Finally, results and experimental
settings are represented in Section 6. Conclusion and further
discussion on obtained results are given in Section 7. Further
explanation of box-counting method and Legendre MF
spectrum is given in theAppendix in order to cover all aspects
of multifractality.
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Figure 1: Reference model as a setting for discussion on dimen-
sionality. Intersections of objects of different dimensionality are
permitted in this model.

2. Dimensionality

2.1. ReferenceModel. Dimensionality is usually considered in
a sense (interpretation) of geometry. Classical (nonfractal)
approach considers an object’s embedded dimension, that
is, dimension of the hyperspace that embodies that object.
Furthermore, this model implies only four discrete values of
dimension: 0 for point, 1 for curve, 2 for plane, and 3 for solid
body. Determination of a dimension of an object is there-
fore heuristic. In order to become cognizant of dimension
determination task, we created simple reference model for
our further discussion as shown in Figure 1. Object given
in Figure 1 is a mixture of objects with different dimensions
and represents a multidimensional object. This object cannot
be observed as an object with only one value of dimension
(unidimensional) but rather as a multidimensional set of
points (or objects) with unidimensional subsets (Figure 2).
This is clearer when inspecting differences between points
belonging to different subsets. Thus, points from one-
dimensional subsets have only one degree of freedom in
sense of connectedness with other points from that subset.
In other words there is only one way in connecting two
distinct points within the one-dimensional object. Concept
of connectedness as far as amodel of dimensionality is closely
related to differentiability of a function (object). It also seeks
for trend of behavior [13] of a function in the neighborhood of
observed point. Local trend of a function indicates topological
dimension of a function or an object.

The first step toward dimensional analysis is to isolate
subsets with the same dimension or singularity as explained
before and then to find its dimension. The quality that
discriminates subsets with different dimensions is a measure
of each subset. It can be number of points within the subset,
length, area, or volume. Measure is so-called set function
since it maps a set of points into one point—measured value.
Hence, every subset is fully described either by a measure or
a dimension; these two qualities relate to the same property
of an object. Significance of measure andmeasuring becomes

apparent with objects with irregular shapes such as surfaces
in Figure 1. When calculating area of any of these surfaces it
must be divided into small “regular” coverings whose area
is straightforwardly (in the same manner) calculated. Total
area is then given through summing (integrating) all divided
parts.Measure—dimension dualism can be further described
as follows:

𝑀(𝐹
𝑖
) = ∑

𝐹𝑖

𝛿
𝐷𝑖 = 𝑁

𝑖 (𝛿) ⋅ 𝛿
𝐷𝑖 , (1a)

𝐷(𝐹
𝑖
) =

log (𝑀/𝑁
𝑖
)

log (𝛿)
∼
log (𝑀)

log (𝛿)
, (1b)

where 𝑀(𝐹
𝑖
) is a measure of a subset 𝐹

𝑖
, 𝑁
𝑖
is the number

of covers, and 𝐷
𝑖
is the integer-valued dimension of the

subset. We will recall scaling manner such as one in (1a)
and (1b) many times throughout this paper. Describedmodel
of dimensionality reduces measurement on one-dimensional
(unit) gauge, 𝛿; other dimension values are deduced from
the unit gauge. Thus, other order dimensions are determined
in comparison to one-dimensional reference. However, this
model assumes covering of a subset with identical coverings.
This could be excessively strict restriction in some cases.

2.1.1. Digression. In this paper terms measure and capacity
will be used interchangeably. More precisely capacity can
be seen as a measure which is not additive [14]. Since
mathematically correct explanation is beyond of the scope of
this paper and MF formalism holds for capacities, additivity
will not be examined.

2.2. Unidimensionality (Monofractality). In mid-nineteenth
century mathematicians created geometrical objects with
“strange” behavior. One example is the famous Peano curve;
it is a curve which fills the plane through infinite number of
iterations. Its embedded dimension is surely two, although its
topological dimension (dimension of the original curve) is
one.

As measure and dimension inquire function integrability
(i.e., differentiability) it is not possible to measure or calcu-
late dimension for nondifferentiable points of the function.
Indeed there are nondifferentiable functions in all points. An
example is Weierstrass function. Therefore, dimensionality
should be broadened to wider range of values. Generalization
of dimensionality assumes fractional (nonintegral) value of
dimension; this value is between integral values of topological
and embedded dimension. Objects with non-integral dimen-
sions are called fractals [1]. This generalization spreads on
fractional derivatives but it is out of scope of this paper.

Now we can imagine set 𝐹 from reference model as a
union of fractal subsets (Figure 2). In order to incorporate
fractional dimensions into existing model, Hausdorff [15]
generalized model in (1a) and (1b):

𝑀
𝐻
(𝐹
𝑖
, 𝑠) = lim

𝛿→0

inf
∞

∑

𝑗=1

𝐹𝑖


𝑈
𝑗



𝑠

, (2a)
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Figure 2: Decomposition of a reference model from Figure 1 on subsets with dimensions 0, 1, 2, and 3.

where {𝑈
𝑖
} is a 𝛿-cover of unidimensional subset, 𝐹

𝑖
, and

𝑠 can be fractional. Dimension of a subset 𝐹
𝑖
is defined

correspondingly:

𝐷
𝐻
(𝐹
𝑖
) = inf {𝑠 ≥ 0 : 𝑀

𝐻
(𝐹
𝑖
, 𝑠) = 0}

= sup {𝑠 : 𝑀
𝐻
(𝐹
𝑖
, 𝑠) = ∞} .

(2b)

This definition of dimension is stringent and it encom-
passes previous model given in (1a) and (1b) in case of
fractional dimensions. Definition in (2b) simply says that
there is only one value of 𝑠 for which measure in (2a) is
nontrivial. Also it implicitly shows that dimension is defined
with respect to measure and it is obvious now that different
measures defined on the same set will give different values of
dimension.

2.3. Multidimensionality (Multifractality). Hitherto we have
been analyzing dimensions of unidimensional subsets, 𝐹

𝑖
, of

a multidimensional set 𝐹. It is based on assumption that we
have a priori knowledge of dimensionality of each subset and
we only have to calculate its quantity, that is, dimension.This

solution is adequate only if the fractal synthesis is known in
advance. Unfortunately, there are many situations when this
assumption is lacking. Connectedness or function trend is
varying on the atomic level, namely, from point to point. It
leads to the conclusion that measure should be introduced in
different manner than in reference model. This is the main
reason for introducing local dimension or Hölder exponent of
measure 𝜇 assigned to a point rather than to a set:

𝑑
𝜇 (x) ∼ lim

𝛿→0

log 𝜇 (B
𝛿 (x))

log 𝛿
. (3)

Local dimension is therefore a modification of global or
outer dimension from (1a) and (1b) and (2a) and (2b) since
it is calculated on a ball B

𝛿
(x) centered in x, with radius 𝛿,

and assigned to a single point instead to a set of points. Local
dimension is usually in the literature denoted with 𝛼 [2].
Chosen annotation in this paper is suggestive and it points
to dependence of local dimension on selected measure.
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Determination of local dimension for all points within
multidimensional set 𝐹 categorizes points into unidimen-
sional classes, 𝐹

𝑖
, with respect to selected measure, 𝜇:

𝐹
𝑖
= {x ∈ 𝐹 : 𝑑

𝜇 (x) = 𝑑
𝑖
} . (4a)

Now it is possible to calculate dimension of each
monofractal subset using, for example, (2a) and (2b); instead
of Hausdorff measure, dimension can be calculated using
any other definition of measure. Furthermore, multifractal
spectrum (MFS) is defined as a relation between local and
outer dimension:

𝐷
𝑀
(𝑑
𝜇
) ≡ 𝐷

𝑀
(𝐹
𝑖
) . (4b)

Dimension𝐷 is defined with respect to measure𝑀while
local dimension 𝑑 is defined with respect to local measure
𝜇. In fact, outer dimension gives information on complexity
of each monofractal subset. While local dimension seeks for
local singularities and trends, outer dimension is calculated
on the whole set of points with the same value of the local
dimension. Usually, 𝐷 is Hausdorff dimension when MFS is
denoted as a fine MFS, whilst 𝑑 is calculated using arbitrary
local measure or capacity. Multifractal spectrum is usually in
the literature denoted as 𝑓(𝛼) [2].

3. Fractal Modeling in Image Processing

There are two approaches of fractality in image processing.
The first approach [3, 16–18] assumes image as a surface
with pixels represented as triplets (𝑥, 𝑦, 𝑧) where 𝑥 and 𝑦

are spatial coordinates and 𝑧 is pixel intensity. Thus, pixel
intensity is treated as two spatial coordinates. In turn this
involves embedded dimension to be 3 and treats an image
geometrically. Second approach [14] models pixels as triplets
(𝑥, 𝑦, 𝑓(𝑥, 𝑦)) where 𝑥 and 𝑦 are again spatial coordinates
while 𝑓(𝑥, 𝑦) is pixel intensity and it is modeled as a function
over spatial coordinates. An image is seen as an object
embedded in 2D space with strict distinction between spatial
and pixel intensity components. This model is closer to
traditional image processing techniques.

Both approaches addressmodel described in the previous
section: in the first approach the dimension is calculated
for the 3D object from the geometrical viewpoint via area
measuring and calculations are done in 3D space, while in
the second case the dimension is calculated for the function
𝑓(𝑥, 𝑦) that models pixel intensities in the 2D space and
𝜇
𝐻
(𝑓(𝐹
𝑖
), 𝑠) is calculated.

4. Blanket Method

Here we shall give a brief overview of blanket method
proposed for calculating dimension of a monofractal set of
points [3]. Blanket method represents an example of the first
(3D embedded space) approach from previous section. The
main idea of this approach of calculating fractal dimension
of unidimensional set of points is to employ area of the image
as a global measure. Area is computed indirectly via volume,

that is, blanket constructed around original image surface
through successive iterations of thickening of the blanket.
Upper, 𝑢

𝜀
(𝑥, 𝑦), and lower surface, 𝑏

𝜀
(𝑥, 𝑦), of the blanket in

𝜀th iteration, respectively, are given by

𝑢
𝜀
(𝑥, 𝑦) = max{𝑢

𝜀−1
(𝑥, 𝑦) + 1, max

𝑆1(𝑥,𝑦)

𝑢
𝜀−1

(𝑥, 𝑦)} , (5a)

𝑏
𝜀
(𝑥, 𝑦) = min{𝑏

𝜀−1
(𝑥, 𝑦) − 1, min

𝑆1(𝑥,𝑦)

𝑏
𝜀−1

(𝑥, 𝑦)} , (5b)

𝑢
0
(𝑥, 𝑦) = 𝑏

0
(𝑥, 𝑦) = 𝑓 (𝑥, 𝑦) . (5c)

In these equations 𝑆
1
(𝑥, 𝑦) represents 3 × 3 pixel neighbor-

hood and 𝑓(𝑥, 𝑦) denotes pixel intensity. The first term in
the brackets (addition or subtraction of 1) ensures thickening
of the blanket in every iteration. Volume of the blanket is
calculated as a sum of differences:

𝑉
𝜀
(𝐹
𝜀
) = ∑

𝐹𝜀

[𝑢
𝜀
(𝑥, 𝑦) − 𝑏

𝜀
(𝑥, 𝑦)] . (5d)

Finally, measure (area) is given by dividing volume by
minimal thickness of the blanket, 𝜀:

𝑀BLANKET (𝐹𝜀) =
𝑉
𝜀

2𝜀
. (5e)

Although the gauge in this method is of dimension 3
(blanket is three dimensional object), the final measure is
of dimension 2, since the area is calculated ultimately. If we
recall here the MF principles, then thickness of the blanket
corresponds to scale and object is regarded as a monofractal
a priori.

5. Multifractal Blanket Method

5.1. Previous Work. Blanket method is widely used in image
processing through many different approaches. In [19, 20]
image is divided in blocks (subimages) and FD is calcu-
lated for each block by direct implementation of blanket
method. Local fractal dimension (LFD) for blanket method
is proposed in [21]. Here, locality considers the gliding
window of fixed size on which the classical blanket method
is implemented for each pixel, that is, only blanket thickness
is scaling. Obtained matrices are called LFD maps. LFD
concept is generalized for volumetric textures in [22]. Further
multifractal (global fractal) analysis for LFD is not provided
in these papers.

LFD notion implies pixel-wise implementation of so-
called global fractal dimension, that is, classical blanket
method described in previous section. This concept is quasi-
multifractal approach.

Concerning multifractal approach, it is presented in the
literaturemainly through use of coarse multifractal spectrum
[23], especially Legendre MFS (see the Appendix). Calcula-
tion of fractal dimension is mainly based on box-counting
(BC) capacity and its modifications, for example, differential
box-counting (DBC) capacity. All these capacities assume an
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image embedded in 3D space. Fine MFS is used only when
image is modeled as a 2D object [9, 24]. In this section, new
local multifractal measures of both types are proposed and
are inspired by classical blanket method.

5.2. Proposed 3DMultifractal Framework (Method 1). Instead
of a pixel-wise implementation of blanket method, here is
proposed a localmeasure based on blanketmethodwhich can
be used for calculation of local dimension in a sense of fine
MF formalism described in (3).

In classical blanketmethod upper and lower surfaces (5a),
(5b), alternatively, can be rewritten as follows:

𝑢
𝜀
(𝑥, 𝑦) = max{𝑢

0
(𝑥, 𝑦) + 𝜀, max

𝑆𝜀(𝑥,𝑦)

𝑢
0
(𝑥, 𝑦)} , (6a)

𝑏
𝜀
(𝑥, 𝑦) = min{𝑢

0
(𝑥, 𝑦) − 𝜀, min

𝑆𝜀(𝑥,𝑦)

𝑢
0
(𝑥, 𝑦)} . (6b)

This equation gives a possibility of defining a local
measure inspired by blanketmethod.Hence, the local volume
is computed over an 𝜀—neighborhood (𝜀× 𝜀 pixels neighbor-
hood) of each pixel, 𝑆

𝜀
(𝑥, 𝑦), and it represents local blanket

measure:

𝜇BLANKET (B𝜀 (𝑥)) = ∑

𝑆𝜀(𝑥,𝑦)

[𝑢
𝜀
(𝑥, 𝑦) − 𝑏

𝜀
(𝑥, 𝑦)] . (6c)

It is worth saying that not only the thickness of the blanket
is scaled but also simultaneously the pixel neighborhood is
scaled according to MF formalism.

5.3. Proposed 2D Multifractal Framework (Method 2). Mea-
sure presented in (6a), (6b), and (6c) assumes an image as
a surface embedded in 3D space, since measure considers
intensities interchangeably with spatial coordinates. In order
to create a measure for model of an image where the pixel
intensities are seen as a function over spatial coordinates,
equations in (6a) and (6b) are revisited as

𝑢
𝜀
(𝑥, 𝑦) = max{𝑤

1
⋅ 𝑢
0
(𝑥, 𝑦) , max

𝑆𝜀(𝑥,𝑦)

𝑢
0
(𝑥, 𝑦)} , (7a)

𝑏
𝜀
(𝑥, 𝑦) = min{𝑤

2
⋅ 𝑢
0
(𝑥, 𝑦) , min

𝑆𝜀(𝑥,𝑦)

𝑢
0
(𝑥, 𝑦)} , (7b)

where𝑤
1
and𝑤

2
are weights which simulate the expansion of

the blanket in (6a), (6b), and (6c). Equations in (7a) and (7b)
are not depending on blanket thickness. Local dimension can
be computed using (6c) and the fine MFS as defined in (4a)
and (4b).

Further inspection of this measure indicates its correla-
tion with three well known capacities: MIN, MAX, and SUM
[9]. It is indeed superposition of these three capacities with
correction term causing monotony of the measure.

5.4. Blanket Multifractal Spectrum (Method 3). Classical
blanket method considers an image as a monofractal object.
Otherwise if multifractality is taken into consideration, there
should be used decomposition of the image on monofractal
partitions. Local measure can be chosen arbitrary. For each
of the partitions blanket measure (5a), (5b), (5c), (5d), and
(5e) and blanket dimension are then calculated. Obtained
spectrum can be seen as the blanket multifractal spectrum.
The only restriction is to use localmeasure based on approach
where pixel intensity is modelled as a third spatial coordinate.

6. Experimental Results

Mathematical model of multifractality given in (4a) and (4b)
assumes infinitesimal range of scales. There should be made
a difference between original data (infinitesimally increasing
resolution of a view of a scene) and its sampled version (digi-
tal image) [5]. Image resolution is finite and some numerical
assumptions should be considered. Therefore, windows and
box sizes (or scales) used in calculation of local and global
dimension, respectively, of the image are discussed in this
section in detail. Performed analysis is focused primarily on
discrimination potential of proposed MF spectra.

This section ends with examination of appropriateness
of proposed methods for calculation of MF spectra to
discriminate different textures. In applications dimension
and MFS are used as signatures of images and implemented
for discrimination. Fractal modelling in texture classification
is commonly implemented through calculation of fractal
dimension (FD), where each texture is described by single
value (FD value). Since two different textures can be of
the same dimensionality, one more value—lacunarity [1, 25,
26]—is usually employed. Some authors [1, 27] propose use of
succolarity for better discrimination.Multifractal spectrum is
often used as a discriminator [9, 10].

6.1. Least Squares Approximation. Calculation of dimension,
regardless of local or global dimension, is based on power law.
This is clear from (1a) and (1b), (2a) and (2b), and (3) and it
can be in general written as

measure = 𝐶 ⋅ scaledimension (8a)

or after taking logarithm on both sides as

log (measure) = log (𝐶) + dimension ⋅ log (scale) . (8b)

Calculation of dimension in this model implies determining
measure variations while varying scale. Our model from
Section 2 assumes dimension and 𝐶 to be constants. In order
to facilitate writings, substitution of variables provides

𝑦 = 𝑘 ⋅ 𝑥 + 𝑛, (8c)

where 𝑦 = log(measure), 𝑘 = dimension, 𝑥 = log(scale), and
𝑛 = log(scale). Therefore, our model in (8c) predicts values
𝑦
𝑖
while measured values (of logarithm of measure) are 𝑦

𝑖
.

Determination of value 𝑘 (i.e., dimension) in fractalmodeling
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Figure 3: BC MFS obtained using Method 1 for different window
sizes, 𝑤, for calculation of local dimension. Notation A :B implies
set of values 𝐴, 𝐴 + 1, . . . , 𝐵.
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Figure 4: BC MFS obtained using Method 2 for different windows
sizes, 𝑤, for calculation of local dimension. Notation A :B implies
set of values 𝐴, 𝐴 + 1, . . . , 𝐵.

is usually done through minimisation of least squares error
[28] defined as

𝑒 ≡

𝑁

∑

𝑖=1

{𝑦
𝑖
− 𝑦
𝑖
}
2
, (9)
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Figure 5: BC MFS obtained using Method 2 for different values of
weight 𝑤

1
.

where 𝑁 is the total number of scales. Differentiating least
squares error both for 𝑘 and 𝑛 and putting derivatives to zero
(𝜕𝑒/𝜕𝑘 = 0, 𝜕𝑒/𝜕𝑛 = 0) gives a dimension value

𝑘 =

𝑁∑
𝑁

𝑖=1
𝑥
𝑖
𝑦
𝑖
− {∑
𝑁

𝑖=1
𝑥
𝑖
} {∑
𝑁

𝑖=1
𝑦
𝑖
}

𝑁∑
𝑁

𝑖=1
𝑥
𝑖
2 − {∑

𝑁

𝑖=1
𝑥
𝑖
}
2

. (10)

6.2. Multifractal Spectrum Calculation. In this section all MF
spectra are calculated using histogram method [2, 28, 29]
and box-counting (BC) capacity (see theAppendix). Actually,
here numerical evaluation of equations given in (4a) and
(4b) is shortly described. After determining local dimension
values, 𝑑

𝑖
, using least squares approximation, there is a range

of local dimension values, 𝑑 ∈ (𝑑min, 𝑑max). According
to (4a) and (4b) regions in image with the same value of
local dimension should be exploited for calculation of global
dimension. Straightforward application of that principle is
unacceptable and some rounding must be done. The easiest
solution is to uniformly quantize local dimension range to
arbitrary resolution (number of uniformly distant levels), 𝑅.
For each region with the same local dimension value, global
fractal dimension is then calculated.

6.3. Multifractal Spectra Inspection. Local dimension con-
siders local behaviour of the points (pixels) and conse-
quently used rectangular windows are supposed to be lower.
Behaviour of the BC MF spectrum with respect to different
windows sizes in calculating local dimension is shown in
Figures 3 and 4, for Method 1 and Method 2, respectively.
Image analysed in this section is of size 640 × 640 pixels.
Parameters for calculating MFS are the same for each curve,
while only scales for local dimension calculation are varying.
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Figure 6: BC MFS obtained using Method 2 for different values of
weight 𝑤
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Figure 7: BC MFS obtained using Method 1 for different box sizes,
𝑤, for calculation of global dimension. Notation A :B :C implies set
of values 𝐴, 𝐴 + 𝐵, . . . , 𝐶.

From Figures 3 and 4 it is evident MFS shrinkage while the
form of the MFS does not change significantly.

Weights 𝑤
1
and 𝑤

2
in proposed Method 2 and their

influence on BC MFS are analyzed in Figures 5 and 6.
Parameter 𝑤

1
is always greater than 1 while parameter 𝑤

2
is

smaller than 1. The reason for this is in providing monotony
as explained in Section 5. Hence, parameter 𝑤

1
avoids upper

blanket to be lower in every successive iteration. The same
stands for parameter 𝑤

2
and lower blanket.
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Figure 8: BC MFS obtained using Method 2 for different box sizes,
𝑤, for calculation of global dimension. Notation A :B :C implies set
of values 𝐴, 𝐴 + 𝐵, . . . , 𝐶.
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Figure 9: Blanket MFS (Method 3) obtained for different blankets,
𝑒.

The influence of chosen box sizes on calculation of BCMF
spectra in Method 1 and Method 2 is shown in Figures 7 and
8. Higher ranges of window sizes produce spectra which are
not discriminative regarding wide range of local dimension
values. On the other hand small windows disregard global
behaviour of the image and accent only local singularities.

Finally, MF blanket spectrum is analyzed for different
blankets (Figure 9). After blanket of size 30, higher values of
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Figure 10: BC MFS obtained with Method 1 for three different
textures from [30].
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Figure 11: BC MFS obtained with Method 2 for three different
textures from [30].

blanket do not induce significant changes in the shape ofMFS
and there is evident rounding of MFS curve.

6.4. Texture Discrimination. Each dimension and measure
describes particular singularity and this section explores
potentials of proposed measures. As an illustration of MF
spectra diversity, spectra of three random textures from [30]
are calculated and shown in Figures 10, 11, and 12, for all
three proposed methods. When calculating MF according to
Method 1 and Method 2, BC method is used for calculation
of global dimension. Method 3 assumes local dimension
calculation fromMethod 1.
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Figure 12: Blanket MFS for three different textures from [30].
Local dimension values are calculated using local MFmeasure from
Method 1.
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Figure 13: Percentage of correctly classified pairs of textures from
the Brodatz database for Method 1. Texture order corresponds to
[31].

Proposed three methods are tested on Brodatz database
[30, 31] with 111 texture images. Each texture (640×640 pixels)
is divided into 25 images (128 × 128 pixels). Within obtained
database of totally 2775 images two different textures (25
images of one and 25 of the other texture) are classified. For
classificationK-meansmethod [32] is used. Since thismethod
highly depends on initial cluster centroid positions, classifi-
cation is repeated for 400 times. As a result of classification
the solution is used with the lowest sum of distances to every
centroid. Correctness rate is calculated as a ratio between
correctly classified images within both textures and the total
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Table 1: Comparison of proposed three methods regarding precision and computation time.

Method MFS scales MFS resolution Mean
correctness (%)

Average time per
pixel (d values)

(𝜇s/pix)

Average time per pixel
(D values) (𝜇s/pix)

1

2 : 10 : 72 20 92.2234 1.8443
20 93.7808 15.5874 1.9072

2 : 2 : 20 15 93.1751 1.4749
10 93.5119 1.0510

2

2 : 10 : 72 20 90.9808 3.2328
20 92.4177 15.2868 3.4039

2 : 2 : 20 15 92.1202 2.6124
10 91.5135 1.8256

3 7 20 88.4986 15.5874 39.0058
All experiments are performed on processor Intel Core i5, 3 GHz.
Notation in second column 𝐴 : 𝐵 : 𝐶 indicates values 𝐴,𝐴 + 𝐵,𝐴 + 2𝐵, . . . , 𝐶.
All d values were calculated using window sizes 2, 3, 4, and 5. In Method 2 parameters 𝑤1 and 𝑤2 are equal to one.
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Figure 14: Percentage of correctly classified pairs of textures from
the Brodatz database for Method 2. Texture order corresponds to
[31].

number of images (50). Results of classification for all pairs of
textures in the database are illustrated in Figures 13, 14, and 15.
Inmatrices in these figures color of each point corresponds to
the percent of correctly classified images belonging to one of
two Brodatz textures defined by abscissa and ordinate values.
Table 1 brings mean correctness rate for all three methods
with variation of some parameters in calculation of MFS.
For Methods 1 and 2 both sizes of boxes (MFS scales) and
resolution of MF spectrum vary. Average computation time
of features inMethod 3 is themain reasonwhy only one test is
done. As it is obvious from Table 1 obtained precision is even
inferior to the other twomethods. Computations are done on
Intel Core i5 3GHz processor.

Comparing results of classification between different
methods (Table 1), Methods 1 and 2 are superior regarding
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Figure 15: Percentage of correctly classified pairs of textures from
the Brodatz database for Method 3. Texture order corresponds to
[31].

both correctness rate and average computation time. Clas-
sification is performed also with classical blanket method
[3] and obtained mean correctness is 84.5281% (maximum
blanket thickness is 20). From Figures 13, 14, and 15 it is
evident thatmisclassifications occur almost for the same pairs
of textures in all three scenarios. One of the reasons for lower
classification rates is high variation between images within
the same class. If the texture pattern is large then images
obtained by division of this texture will substantially differ.

7. Conclusion

Proposed multifractal measures correspond to two models
in fractal modeling of images. To our knowledge mea-
sure introduced within Method 1 is the first local measure
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transform curve is a reflected image of original function, but it is not true in general.

assuming pixel intensity as a third spatial coordinate whose
fine MFS is calculated. Usually only Legendre MFS is cal-
culated for such measures. Rearranging this measure into
measure with pixel intensity modeled as a function over
spatial coordinates transposesMethod 1 toMethod 2 through
dimension reduction. Conducted tests suggest nearly identi-
cal results according to both precision and time consumption.
Further reduction of computation time could be done by
calculation ofMFS only for a region of a texture, since there is
a repetition of texture’s pattern within the texture. As results
show this must be done empirically for each texture because
of the ratio between sizes of the pattern and thewhole texture.

Appendix

This appendix brings simple and efficient technique for
estimating Hausdorff MFS via Legendre transform with aim
to comprehend MFS calculation context. In the literature
it is usually but mistakenly introduced as MF formalism
already described by (3) and (4a) and (4b). Legendre MFS
has its origin in statistical mechanics and terminology used
in derivation of this spectrum is taken from there.

Hausdorff measure is given by

𝑀
𝐻
(𝐹
𝑖
, 𝑠) = lim

𝛿→0

inf
∞

∑

𝑗=1

𝐹𝑖


𝑈
𝑗



𝑠

. (A.1)

Since 𝛿-covering is hardly realizable in practice, when
there is no knowledge of fractal object synthesis (creation), it
is reasonable to tile the object with covers of the same length,
𝛿:

𝑀
𝐵
(𝐹
𝑖
, 𝑠) = lim

𝛿→0

inf∑
𝐹𝑖

𝛿
𝑠
. (A.2)

𝑀
𝐵

is called box-counting capacity and dimension
resulting from it is called box-counting dimension, 𝐷

𝐵
.

Box-counting dimension is an overestimation of Hausdorff
dimension [2]:

𝐷
𝐻
(𝐹
𝑖
) ≤ 𝐷

𝐵
(𝐹
𝑖
) . (A.3)

Box-counting capacity leads to so-called coarse MFS. It is
often desirable to calculate MFS in specific points such as a
maximum of MFS function or in a point with 𝐷 = 𝑑. Shapes
of MF spectra of different objects (images) can be compared
in space of particular points. With this motivation let us
transform function 𝐷

𝐵
of variable 𝑑

𝜇
into another variable,

which represents first derivative of dimension, 𝑞 = 𝑑𝐷
𝐵
/𝑑𝑑
𝜇
.

Legendre transform provides it:

(𝐷
𝐵
(𝑑
𝜇
))
∗

= 𝐷
∗

𝐵
(𝑞) = inf

𝑑𝜇

{𝑞 ⋅ 𝑑
𝜇
− 𝐷
𝐵
(𝑑
𝜇
)} . (A.4)

Alternatively Legendre transform can be defined using supre-
mum (maximum) instead of infimum (minimum) [33].

Transformation givenwith (𝐷
𝐵
, 𝐷
∗

𝐵
) is Legendre transfor-

mation pair, hence, the name of the corresponding spectrum.
Figure 16 shows how Legendre transform centers maximum
of spectrum into zero in space of 𝑞-variable. If𝐷

𝐵
is concave,

that is, 𝜕2𝐷
𝐵
/𝜕𝑑
2

𝜇
≤ 0, then (A.4) is valid without brackets.

Legendre transform is involutive [34], that is, Legendre
transform of𝐷∗

𝐵
is𝐷
𝐵
. In other words direct and inverse Leg-

endre transforms are identical. Substitution of transformed
dimension gives the following capacity:

𝑀
𝐿
(𝐹
𝑖
, 𝐷
𝐵
) = 𝛿
−𝐷
∗

𝐵∑

𝐹𝑖

𝛿
𝑞⋅𝑑𝜇 = 𝛿

−𝐷
∗

𝐵∑

𝐹𝑖

𝜇(B
𝛿 (x))
𝑞
,

𝑀
𝐿
(𝐹
𝑖
, 𝐷
𝐵
) ≤ 𝛿
−𝐷
∗

𝐵∑

𝐹

𝜇(B
𝛿 (x))
𝑞
.

(A.5)

The term on the right side of inequality, that is, sum
of moments, stems for partition function [35], Γ(𝑞) =

∑
𝐹
𝜇(B
𝛿
(x))𝑞, from the analogy with thermodynamics. It
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depends only on 𝑞 but not on scale, 𝛿. Thus, Legendre
transform of dimension is

𝐷
∗

𝐵
(𝑞) ∼

log∑
𝐹
𝜇(B
𝛿 (x))
𝑞

− log 𝛿
. (A.6)

This variable is often labeled in literature as −𝛽(𝑞) [2] or
𝜏(𝑞) [35]. Applying chosen measure 𝜇 on blocks within
the mesh grid of resolution 𝛿 and calculating 𝑞th power
moment sums of 𝜇 gives the value of Legendre transform
for each 𝑞. Legendre transform of 𝐷∗

𝐵
(𝑞) gives MFS, 𝐷

𝐵
.

Local dimension values, needed for calculation of𝐷
𝐵
, are also

determined via𝐷∗
𝐵
by equating 𝜕𝐷

𝐵
/𝜕𝑞 = 0:

𝑑
𝜇
=
𝜕𝐷
∗

𝐵

𝜕𝑞
, (A.7)

therefore,

𝐷
𝐵
= 𝑞 ⋅

𝜕𝐷
∗

𝐵

𝜕𝑞
− 𝐷
∗

𝐵
. (A.8)

As it is obvious from the derivation of Legendre MFS, this
numerical method provides only pairs in the graph 𝐷

𝐵
(𝑑
𝜇
),

without calculating local and global dimension values for
each point of the signal (function). This method executes
faster on computer although the precision is sacrificed.

Legendre MFS can be calculated not only by box-
counting method but also by using gliding-box method [36].
This method calculates partition function on slipping box,
that is, for every pixel. Reported results are better than using
box-counting calculation.
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[10] T. Stojić, I. Reljin, and B. Reljin, “Adaptation of multifractal
analysis to segmentation of microcalcifications in digital mam-
mograms,” Physica A, vol. 367, pp. 494–508, 2006.

[11] L. Thomas and F. Deravi, “Region-based fractal image com-
pression using heuristic search,” IEEE Transactions on Image
Processing, vol. 4, no. 6, pp. 832–838, 1995.

[12] A. Turiel and N. Parga, “The multifractal structure of contrast
changes in natural images: from sharp edges to textures,”Neural
Computation, vol. 12, no. 4, pp. 763–793, 2000.

[13] Z. R. Struzik, “Wavelet methods in (financial) time-series
processing,” Physica A, vol. 296, no. 1-2, pp. 307–319, 2001.

[14] J. L. Vehel, “Fractal approaches in signal processing,” Fractals,
vol. 3, no. 4, pp. 755–775, 1995.

[15] F. Hausdorff, “Dimension and outer measure,” in Classics on
Fractals, G. A. Edgar, Ed., pp. 75–99, Westview Press, 2004.

[16] K. C. Clarke, “Computation of the fractal dimension of
topographic surfaces using the triangular prism surface area
method,” Computers and Geosciences, vol. 12, no. 5, pp. 713–722,
1986.

[17] B. Dubuc, S. W. Zucker, C. Tricot, J. F. Quiniou, and D. Wehbi,
“Evaluating the fractal dimension of surfaces,”Proceedings of the
Royal Society A, vol. 425, pp. 113–127, 1989.

[18] N. Sarkar and B. B. Chaudhuri, “Multifractal and generalized
dimensions of gray-tone digital images,” Signal Processing, vol.
42, no. 2, pp. 181–190, 1995.

[19] L. Zheng and A. K. Chan, “An artificial intelligent algorithm for
tumor detection in screeningmammogram,” IEEE Transactions
on Medical Imaging, vol. 20, no. 7, pp. 559–567, 2001.

[20] J. M. Zook and K. M. Iftekharuddin, “Statistical analysis
of fractal-based brain tumor detection algorithms,” Magnetic
Resonance Imaging, vol. 23, no. 5, pp. 671–678, 2005.

[21] S. Novianto, Y. Suzuki, and J.Maeda, “Near optimumestimation
of local fractal dimension for image segmentation,” Pattern
Recognition Letters, vol. 24, no. 1–3, pp. 365–374, 2003.

[22] R. Lopes, P. Dubois, I. Bhouri, M. H. Bedoui, S. Maouche, and
N. Betrouni, “Local fractal andmultifractal features for volumic
texture characterization,” Pattern Recognition, vol. 44, no. 8, pp.
1690–1697, 2011.

[23] Y. Xia, D. Feng, and R. Zhao, “Morphology-based multifractal
estimation for texture segmentation,” IEEE Transactions on
Image Processing, vol. 15, no. 3, pp. 614–623, 2006.

[24] Y. Xu and C. Fermüller, “Viewpoint invariant texture descrip-
tion using fractal analysis,” International Journal of Computer
Vision, vol. 83, no. 1, pp. 85–100, 2009.

[25] J. L. Vehel, “About lacunarity, some links between fractal and
integral geometry, and an application to texture segmentation,”
Research Report INRIA, 1990.

[26] K. I. Kilic and R. H. Abiyev, “Exploiting the synergy between
fractal dimension and lacunarity for improved texture recogni-
tion,” Signal Processing, vol. 91, no. 10, pp. 2332–2344, 2011.



12 The Scientific World Journal

[27] R. H. C. Melo and A. Conci, “How succolarity could be used as
another fractal measure in image analysis,” Telecommunication
Systems, vol. 52, no. 3, pp. 1643–1655, 2013.

[28] M. J. Turner, J. M. Blackledge, and P. R. Andrews, Fractal
Geometry in Digital Imaging, Academic Press, 1998.

[29] J. L. Vehel, “Numerical computation of the large deviation
multifractal spectrum,” in Proceedings of the Conference on
Future Internet Communications (CFIC ’96), Rome, Italy, 1996.

[30] P. Brodatz, Texture: A Photographic Album for Artists and
Designers, Dover, New York, NY, USA, 1966.

[31] Brodatz textures, http://www.ux.uis.no/∼tranden.
[32] G. A. F. Seber,Multivariate Observations, JohnWiley and Sons,

New York, NY, USA, 1984.
[33] H. Touchette, “Legendre-Fenchel transforms in a nutshell,”

Research Report, Rockefeller University, New York, NY, USA,
2007, http://www.maths.qmul.ac.uk/∼ht/archive/lfth2.pdf.

[34] V. I. Arnold, Mathematical Methods of Classical Mechanics,
Springer, 2nd edition, 1989.

[35] T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia, and
B. I. Shraiman, “Fractal measures and their singularities: the
characterization of strange sets,” Physical Review A, vol. 33, no.
2, pp. 1141–1151, 1986.

[36] Q. Cheng, “The gliding box method for multifractal modeling,”
Computers and Geosciences, vol. 25, no. 9, pp. 1073–1079, 1999.

http://www.ux.uis.no/~tranden
http://www.maths.qmul.ac.uk/~ht/archive/lfth2.pdf

