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Cliques (maximal complete subnets) in protein-protein interaction (PPI) network are an important resource used to analyze
protein complexes and functionalmodules. Clique-basedmethods of predicting PPI complement the data defection frombiological
experiments. However, clique-based predicting methods only depend on the topology of network. The false-positive and false-
negative interactions in a network usually interfere with prediction. Therefore, we propose a method combining clique-based
method of prediction and gene ontology (GO) annotations to overcome the shortcoming and improve the accuracy of predictions.
According to different GO correcting rules, we generate two predicted interaction sets which guarantee the quality and quantity of
predicted protein interactions.The proposedmethod is applied to the PPI network from the Database of Interacting Proteins (DIP)
and most of the predicted interactions are verified by another biological database, BioGRID.The predicted protein interactions are
appended to the original protein network, which leads to clique extension and shows the significance of biological meaning.

1. Introduction

Identifying protein-protein interaction (PPI) and construct-
ing biological networks are vital to understand the molec-
ular function and cellular organization [1]. In recent year,
protein interactions have been enriched by high-throughput
biology experimental methods [2, 3]. Furthermore, there
are a large number of computational methods to improve
these datasets and overcome the experimental limitations of
time-consuming and cost [4–6]. The categories of compu-
tational methods for predicting PPI differ among studies.
For example, in paper [5], methods of predicting PPI are
classified according to the structural, genomic, and biological
contexts of proteins. Of them, topology methods based on
PPI networks are simple to use and demand few additional
information. However, the reliability based on topology
methods usually fluctuates because of false positive and
negative interactions in PPI network. A clique within a PPI
network is an induced complete subgraph, with constituent
proteins that completely interact with each other. Cliques in
PPI networks are related to protein complexes and functional
modules tightly and have a biological significance [6]. And

components in protein complexes or functional modules are
prone to interacting with each other. Thus, protein interac-
tions can be predicted based on completing defective cliques
in a PPI network. Besides, the estimation based on gene
ontology (GO) annotations can enhance the accuracy of PPI
predictions [7].This is because PPIs from cliques usually have
common terms in GO annotations of cellular component
(CC) or molecular function (MF), due to the correlation
of cliques with complexes or functional modules. Therefore,
we design a predicting PPI method combining cliques and
GO terms to overcome the unreliability of predicting PPI
based on topology methods with the interference of noise in
datasets.

Applying different GO rules, we generate two predicted
PPI sets, that is, CORE and ALL which insure the qual-
ity and quantity of predictions, respectively. The proposed
method is applied on DIP dataset [8]. The two predicted
sets are estimated with a statistical method based on gold
standard datasets [9], and the results show the effectiveness
of our method. Furthermore, we introduce another dataset,
BioGRID [10], recording a larger number PPIs from biolog-
ical experiments to verify the correction of the predictions.
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Figure 1: Flowchart of predicting protein interactions in a PPI network.

As a result, most of predictions are identified with the various
records of biological experiments. Appending the predictions
into the PPI network, the mined cliques are close to complete
complexes.

2. Materials and Methods

A PPI network is used to describe a set of protein pairs, and
it can be modeled as a graph. We use an undirected graph
𝐺 = (𝑉, 𝐸) to represent a PPI network, where 𝑉 is the set of
all nodes (proteins) and 𝐸 is the set of all edges (interactions)
in graph 𝐺.

We propose an iterative method based on cliques and
GO annotations to predict PPI (see Figure 1). First, clique
mining is performed in a PPI network. Second, cliques
satisfied with two conditions are selected to participate in PPI
prediction. Third, the missing-one-edge method is used to
predict interactions based on the mined cliques. Then, the
predictions are corrected via gene ontology annotations.This
process is repeated until no new prediction of PPI generates.

Mining cliques in a PPI network is a NP-complete
problem according to graph computing theory [11]. However,
the existingmethods ofmining cliquesworkwell based on the
characteristic of scale-free topology [12]. Based on an original
network, the method of Gendreau et al. [13] is brought in to
obtain all cliques.Then, new interactions are predicted based
on these cliques.

2.1. Selection of Cliques Participated in PPI Prediction. Not all
cliques participate in the process of predicting PPI. We set
a minimum threshold of clique size. Only the cliques whose
sizes are more than that threshold have the qualification to
participate in PPI prediction. Furthermore, we set a clique
confidence score to avoid that the selected cliques include
many predicted PPIs.The clique confidence is determined by
sum score of all the edges in it. That is,

Cliquescore =
∑
𝑒∈𝑘-clique 𝑒score

𝑘 (𝑘 − 1) /2
,

where 𝑒score = {
1 original PPI
0 predicted PPI.

(1)

We set a threshold 𝜆 of the clique score for PPI prediction.
Obviously, cliques selected as the participants for predicting
PPI must satisfy with the two mentioned thresholds.

2.2. Prediction of PPIs with Missing-One-Edge Method. We
count the number of the nodes connected with the members
of the known cliques. Based on a known 𝑘-clique, the append-
ing of one edge extends it to (𝑘+ 1)-clique(s). Corresponding
to the direct connection, the missing edge that links the
nodes in and out of the clique to form a larger clique is a
predicted interaction. As to a given 𝑘-clique, the description
of prediction with missing-one-edge method is as below.

2.2.1. Building a Candidate Set 𝐶 to Deposit All Possible
Extending Clique Nodes. 𝐶 = 𝑁(𝑛

1
) ∪ 𝑁(𝑛

2
) ∪ ⋅ ⋅ ⋅ ∪ 𝑁(𝑛

𝑘
) −

{𝑛
1
, 𝑛
2
, . . . , 𝑛

𝑘
}, where 𝑛

𝑖
is the node in 𝑘-clique and 𝑁(𝑛

𝑖
)

represents the neighbor set of 𝑛
𝑖
.

2.2.2. Filtering Nodes in the Candidate Set 𝐶. 𝐶 ← 𝐶 − {𝑛 |
Degree(𝑛) < 𝑘 − 1, 𝑛 ∈ 𝐶}, where Degree(𝑛) represents the
number of the neighbors of node 𝑛.

2.2.3. Predicting

(1) Getting a node 𝑤 in 𝐶.
(2) Judging whether ∃𝑖 making 𝑛

𝑖
𝑤 ∉ 𝐸all and ∀𝑗, 𝑛𝑗𝑤 ∈

𝐸all, 𝑗 = 1, 2, . . . , 𝑘, 𝑗 ̸= 𝑖, where 𝐸all = 𝐸 ∪
{predictions}.

(3) If condition (2) is satisfied, 𝑛
𝑖
𝑤 is a new predicted PPI.

(4) Repeating (1) until all of the nodes in 𝐶 have been
reached.

2.3. Correction of Predicted PPIs by GO Terms. Proteins in a
complex always have same cellular components, and proteins
in a function module often perform similar biological roles.
Therefore, GO terms contribute to reducing false-positive
predictions [14] before the next round of clique mining based
on the predictions. We set two GO rules as follows.

Rule 1. Two proteins in the predicted interaction should have
a common cellular component at least.

Rule 2. Two proteins in the predicted interaction should have
a common molecular function at least.

If only Rule 1 is used to filter the predicted PPIs, a loose
PPI prediction set (ALL) is gotten. If both Rules 1 and 2
are applied to filter the predicted PPIs, a tight prediction set
(CORE) is obtained.
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Figure 2: An illustration of mining cliques based on predicted protein pairs. (a) Components of intersection 𝐼
12
between the neighbors of

node 1 and node 2 are candidates to form 3 cliques. (b) Node 3 derived from 𝐼
12
with nodes 1 and 2 forms 3 cliques. The neighbors of node

3 intersect 𝐼
12
and construct the candidate set 𝐼

123
of 4 cliques. (c) The node in the 𝐼

123
composes of nodes 1, 2, and 3 to form 4 cliques. The

neighbors of node 4 derived from 𝐼
123

intersect 𝐼
123

and construct the candidate set 𝐼
1234

for forming 5 cliques. This procedure is repeated
until the maximum clique is found based on node 1 and node 2.

2.4. Clique Generation Based on New Predicted Interactions.
After we obtain the predicted PPIs of the first round, the
new predictions are merely related with the cliques including
interactions just predicted in the previous round. Therefore,
we design an appropriate method to generate cliques only
based on the predicted interactions to minimize the com-
putational cost. Mining cliques is a recursively bottom-up
procedure, as illustrated in Figure 2. First, all 3 cliques are
found out based on the new predicted PPIs (see Figure 2(a)).
Then, all 4 cliuqes are found out based on the 3 cliques (see
Figures 2(b) and 2(c)). In turn, 𝑘-cliques are mined based on
the (𝑘 − 1)-cliques until the maximum cliques are found.

3. Results and Discussion

3.1. Performance on DIP Dataset. Our method is applied on
a dataset of PPIs in Saccharomyces cerevisiae downloaded
from the Database of Interacting Proteins (DIP, version of
2010/6/14) [8]. DIP is generally acknowledged as an excellent
data source containing experimentally determined protein-
protein interaction.This version dataset contains 26718 inter-
actions. Getting rid of proteins of self-interacting, we achieve
4997 protein nodes and 23233 protein-protein interaction
pairs from DIP database.

The maximum size of mined clique is 10. According
to this maximum size, we set the minimum size of clique
participating in predicting PPI to be 6. The threshold of
clique confidence score is set to be 0.7. Based on the PPI
network of the original DIP dataset, 442 PPI predictions
are generated. Then, according to the cliques derived from
these predictions and different GO rules, CORE and ALL are
generated, respectively. CORE includes 352 predictions and
ALL contains 874. Adding these predictions into the original
dataset, the size of the maximum clique is enlarged to 16 and
the number of small cliques is reduced, that is, consolidation
of smaller cliques into larger ones.

3.2. Estimationwith BioGRIDDataset. Weexpect predictions
in CORE and ALL to be validated by the other records of
biological experiments. Database BioGRID collects sufficient
and reliable data in Saccharomyces cerevisiae from primary
literatures. Therefore, we compare CORE and ALL with the

Table 1: Prediction steps of CORE validated with BioGRID.

Round Max.
clique

Predicted
PPIs

PPIs after
GO

In
BioGRID

Confirmed
ratio

1 10 442 149 143 0.96
2 13 421 130 114 0.88
3 15 154 64 57 0.89
4 15 29 8 8 1
5 11 6 1 1 1

Table 2: Prediction steps of ALL validated with BioGRID.

Round Max.
clique

Predicted
PPIs

PPIs after
GO

In
BioGRID

Confirmed
ratio

1 10 442 368 335 0.91
2 16 539 357 305 0.85
3 15 161 122 109 0.89
4 15 21 19 17 0.89
5 13 4 4 4 1
6 9 4 4 4 1

dataset of BioGRID (version 3.2.98) and find that the overlaps
between them are very high. Of 352 predictions in CORE, 323
are found in BioGRID and the overlapping ratio is near 92%.
Of 874 predictions in ALL, 774 are found in BioGRID and the
overlapping ratio is nearly 89%.The process of predicting and
validating PPI in each round is shown in Tables 1 and 2.

3.3. Estimation with Statistics. A statistical method based on
gold standard (GS) datasets is introduced to estimate the PPI
predictions [9], where the GS is essentially a likelihood ratio
𝐿, that is, 𝐿 = (𝑃

+
/𝐺
+
)/(𝑃
−
/𝐺
−
). 𝑃
+
is the number of repaired

edges of cliques contained in the true-positive GS set. 𝑃
−
is

the number in the true-negative GS set. 𝐺
+
is the number

of the true-positive set of GS and 𝐺
−
is the number of the

true-negative set of GS. Jansen et al. [9] have pointed out that
the PPI predictions are acceptable with 𝐿 > 600. 𝐺

+
and

𝐺
−
are constant and equal to 8250 and 2705844, respectively.

The estimation of value 𝐿 in CORE and ALL is listed in
Table 3. The 𝐿 values of two predicted PPI sets are more than
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Table 3: 𝐿 value estimated by the GS sets.

Predictions 𝑃
+

𝑃
−

𝐿

CORE 352 88 23 1255
ALL 874 134 45 977

the acceptable threshold. The predicting quality of CORE is
obviously better than ALL.

3.4. Comparison with Other Methods. Based on a network
topology to predict protein interactions, clique methods are
usually more reliable and accurate than clustering methods
in the dense region of protein interaction network.Therefore,
we select two methods based on cliques to compare with
our method. The first is DC method of Yu et al. [15], which
predicts interactions in protein interaction network by
completing defective cliques. It is similar with our method
in the first step to generate predicted PPI candidate set. DC
method predicts PPIs only once; yet, our method generates
them step by step with GO filtering. The second is the
molecular complex detection algorithm (IPC-MCE) [16],
which uses node extension approach based on the interaction
probability with the known cliques to extend cliques in dense
regions. IPC-MCE algorithm can also be viewed as a method
of predicting interactions, if we consider all proteins in a
predicted complex to interact with each other.

UsingDCmethod, the parameters of nonoverlapping size
and overlapping size of a clique are, respectively, sets 3 and 4
[15]. The lower size of non-overlapping parts and the higher
size of overlaps can achieve good performance of predictions.
Hence, in this paper, we set them 3 and 6, respectively. For
IPC-MCE algorithm, we set the probability threshold 𝑡 to
0.8. These parameters of two compared methods are set to be
stricter than applied in the original papers for getting better
results. DCmethod predicts 465 protein-protein interactions
and 407 are hit in the BioGRID dataset. Furthermore, value 𝐿
is estimated in GS datasets. There are 70 in true positives and
26 in true negatives based on gold standard datasets, and the
value 𝐿 is 883. IPC-MCE algorithm generates 496 predicted
interactions and 436 are hit in BioGRID. And 79 are in true-
positive dataset and 31 are in true-negatives based on gold
standard datasets. The value 𝐿 is 836. The results compared
between various methods are shown in Figure 3.

3.5. Intersection of CORE and ALL. There are 321 interactions
between CORE and ALL, as shown in section (2) of Figure 4.
The remaining areas of CORE and ALL are represented with
sections (1) and (3), respectively. The predictions in section
(2) are validated to be better than PPIs in CORE and ALL.
Therefore, the overlapping interactions between two sets have
high reliability and are more suitable to complement the PPI
datasets from biological experiments.

3.6. Assessment of Cliques Extended by Predicted PPIs. The
predicted PPIs using ourmethods canwell complementmiss-
ing interactions to extend potential cliques (see Figure 5).
We construct a component set of a clique mined from
original DIP database within the Origin area. The Core area
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Figure 3: ALL has the largest number of predicted pairs. The
estimation results with value 𝐿 and BioGRID are better than
the other compared methods. CORE has the largest accurate but
small number. These predictions in CORE pursue high quality by
sacrificing the predicted quantity.

is extended by the predicted PPIs from CORE based on
the Origin area. The All area is extended by the predicted
PPIs from ALL based on the Origin area. We find that
many extended cliques exhibit better quality than original
cliques under GO annotations. In Figure 5(a), a 7-clique
mined in the original network is extended to a 12-clique,
then extended to an 18-clique. The number of U4/U6 × U5
tri-snRNP complex included in clique is increased from 6
to 11, then to 16. The components of original cliques are
improved in the protein complexes. In Figure 5(b), a 9-
clique mined in the original network is extended to a 14-
clique, then extended to an 18-clique.The number of complex
components included in the clique is increased from 9 to 14,
then to 18. In Figure 5(c), a 7-clique mined in the original
network is extended to an 11-clique, then extended to a 16-
clique. The number participating in the mRNA processing
included in the clique is increased from 6 to 10, then to
15. The components of original cliques increase in the same
biological process. In Figure 5(d), a 7-clique mined in the
original network is extended to a 9-clique, then extended
to a 21-clique. The number participating in the ribosome
biogenesis process included in the clique is increased from 7
to 9, then to 19. In Figure 5(e), a 7-cliquemined in the original
network is extended to a 16-clique, then extended to a 19-
clique.The number participating in RNA binding included in
clique is increased from 6 to 15, then to 16. The components
of the original clique are extended in the molecular function.

4. Conclusions

Cliques in the PPI network are good resource and worth
to study properly. Predicting PPIs by recursively extending



The Scientific World Journal 5

32131 553

984 1267 699

70.97% 93.77% 85.53% Hit in BioGRID

Predicted PPIs

L Values

CORE

ALL

(1) (2) (3)

Figure 4: The overlap and difference between CORE and ALL are estimated with the dataset BioGRID and statistical likelihood benchmark
𝐿.

LSM5

LSM8LSM7

LSM2

PRP24

LSM3

LSM6

LSM4

SNU114

SMD3

LSM1

PRP6

PRP8

DCP2
PRP4

PRP31

SMB1

SMD2

Origin
CORE

ALL

(a)

RPN5

RPN11RPN10

PRE1

RPN12

RPN3

RPN6

RPT5

RPT2

RPN8

RPT4

RPN1

RPN13

RPN7

RPN9

Origin CORE ALL

RPT6

RPT1

RPT3

(b)

GLC7

REF2PTA1

CFT2

YSH1

DBP4

PAP1

YTH1

FIP1

CFT1

MPE1

FIP1

RNA14

SWD2

PCF11

PTI1

Origin
CORE

ALL

(c)

Origin CORE
ALL

MAK5

NOP4NOP2

CIC1

SSF1

ERB1

MAK2
HAS1

RLP7

TIF6

DBP10

NOG1NOC2

NUG1

DRS1

NOP6
NOP1

YTM1

NSA2

RPF2

NOP7

(d)

SMD2

SMB1

Origin
CORE ALL

NAM8

SNU71SNP1

CBC1

YHC1

LUC7

PRP42

SNU56

CBC2

SMX2

SMD1
PRP39

SNU11

PRP40
MUD1

SMD3

SMX3

(e)

Figure 5: Cliques extended by the predicted PPIs from CORE and ALL have high functional significance and physical meaning.

cliques results in a quantity increase of predicted PPIs.
And the quality of predictions is significantly improved
via combining GO annotations with clique-based method.
Obviously, iteratively finding cliques is a time-consuming
task. Especially, the PPI network is frequently extended by
new PPIs. Therefore, we design a special and novel method
based only on the new predictions to mine cliques. This
method is feasible and efficient in practice, which decreases
the solution searching space and obtains high performance.
Our work also partly solves the problem of missing cliques
due to the false negative interactions.The clique size increases
with continuously appending the predicted PPIs into the
original network. Most enlarged cliques show good biolog-
ical meaning with GO annotations. Besides, the predicted
PPIs can complement data defection associated with protein
complexes which are too large to detect all of its components

with biological experiments. In the future, our methods on
predicting PPIs and extending cliques will be applied to other
PPI networks, such as human protein network, to help us
associate disease relationship in the cliques.
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