
RenderToolbox3: MATLAB tools that facilitate physically based
stimulus rendering for vision research

Benjamin S. Heasly $
Department of Psychology, University of Pennsylvania,

Philadelphia, PA, USA

Nicolas P. Cottaris # $
Department of Psychology, University of Pennsylvania,

Philadelphia, PA, USA

Daniel P. Lichtman $
Department of Psychology, University of Pennsylvania,

Philadelphia, PA, USA

Bei Xiao # $
Department of Computer Science, American University,

Washington, DC, USA

David H. Brainard # $
Department of Psychology, University of Pennsylvania,

Philadelphia, PA, USA

RenderToolbox3 provides MATLAB utilities and
prescribes a workflow that should be useful to
researchers who want to employ graphics in the study of
vision and perhaps in other endeavors as well. In
particular, RenderToolbox3 facilitates rendering scene
families in which various scene attributes and renderer
behaviors are manipulated parametrically, enables
spectral specification of object reflectance and
illuminant spectra, enables the use of physically based
material specifications, helps validate renderer output,
and converts renderer output to physical units of
radiance. This paper describes the design and
functionality of the toolbox and discusses several
examples that demonstrate its use. We have designed
RenderToolbox3 to be portable across computer
hardware and operating systems and to be free and
open source (except for MATLAB itself). RenderToolbox3
is available at https://github.com/DavidBrainard/
RenderToolbox3.

Introduction

The use of physically based computer graphics is
rapidly increasing in vision science and particularly in
the study of color vision and the perception of material
properties (e.g., Yang & Maloney, 2001; Fleming,
Dror, & Adelson, 2003; Delahunt & Brainard, 2004;

Xiao, Hurst, MacIntyre, & Brainard, 2012) as well as in
the analysis of properties of the images formed from
realistic visual scenes (e.g., Ruppertsberg & Bloj, 2007;
Butler, Wulff, Stanley, & Black, 2012; Kim, Marlow, &
Anderson, 2012). Using graphics to generate stimuli
has the attractive feature that the experimenter can
specify the scene in terms of the physical properties of
shapes and light sources in the scene and then use
software to produce the appropriate images for delivery
to the subject. Doing so allows the independent
variables in an experiment to be cast in terms of the
distal stimulus. This is a critical advance for those
interested in how visual processing transforms the
retinal image into useful perceptual representations of
the world around us.

For studying vision, a desirable property of a
graphics system is physical accuracy. We would like the
images viewed by a subject to be as close as possible to
those that he or she would have experienced if viewing
the actual scene specified. The goal of physical accuracy
is, at present, met only in approximation: Models of
surface reflectance approximate the actual reflectance
of light from real objects, renderers embody simplifying
assumptions to keep calculations tractable, and display
technology limits the fidelity with which computed
images can be delivered to the eye. Nonetheless, the
quality of results that may be obtained with modern

Citation: Heasly, B. S., Cottaris, N. P., Lichtman, D. P., Xiao, B., & Brainard, D. H. (2014). RenderToolbox3: MATLAB tools that
facilitate physically based stimulus rendering for vision research. Journal of Vision, 14(2):6, 1–22, http://www.journalofvision.
org/content/14/2/6, doi:10.1167/14.2.6.

Journal of Vision (2014) 14(2):6, 1–22 1http://www.journalofvision.org/content/14/2/6

doi: 10 .1167 /14 .2 .6 ISSN 1534-7362 � 2014 ARVOReceived July 29, 2013; published February 7, 2014

mailto:benjamin.heasly@gmail.com
mailto:benjamin.heasly@gmail.com
http://dl.dropboxusercontent.com/u/6914946/NicolasCottaris/Welcome.html
http://dl.dropboxusercontent.com/u/6914946/NicolasCottaris/Welcome.html
mailto:cottaris@sas.upenn.edu
mailto:cottaris@sas.upenn.edu
mailto:danielp73@gmail.com
mailto:danielp73@gmail.com
https://sites.google.com/site/beixiao
https://sites.google.com/site/beixiao
mailto:bxiao@american.edu
mailto:bxiao@american.edu
https://github.com/DavidBrainard/RenderToolbox3
https://github.com/DavidBrainard/RenderToolbox3
mailto:brainard@psych.upenn.edu
mailto:brainard@psych.upenn.edu
https://github.com/DavidBrainard/RenderToolbox3
https://github.com/DavidBrainard/RenderToolbox3

graphics software, and hardware is impressive and
promises to keep getting better.

The basic tools to allow practicing vision scientists to
incorporate graphics into their experiments are now
widely available. Open-source (e.g., Blender, http://
blender.org) and commercial (e.g., Maya, http://
autodesk.com/products/autodesk-maya/overview) 3-D
modeling programs provide graphical interfaces that
allow users to specify the geometry of a scene, including
the positions, sizes, and shapes of light sources and
objects. Open-source (Radiance, Larson & Shake-
speare, 1998; PBRT, Pharr & Humphreys, 2010;
Mitsuba, Jakob, 2010) as well as commercial (e.g.,
Maxwell, http://maxwellrender.com; Arion, http://
randomcontrol.com/arion-2) renderers have as a design
goal good physical accuracy.

Although the basic graphics tools are available, we
have found that their use in vision science is greatly
facilitated by additional software that enables a smooth
and flexible workflow between 3-D modeler, renderer,
and experimental stimuli. Here we describe such
software, which we call RenderToolbox3 and which is
implemented as a set of MATLAB (http://mathworks.
com) utilities. RenderToolbox3 is freely available under
an open-source license (https://github.com/
DavidBrainard/RenderToolbox3). It currently sup-
ports one open-source 3-D modeler (Blender) and two
open-source renderers (PBRT and Mitsuba). Both
renderers aim for physical accuracy, support multi-
spectral rendering, and are well documented.

RenderToolbox3 is neither a 3-D modeler nor a
renderer per se. Rather, it is designed to provide the
following broad functionalities:

� Stimulus family recipes. It is often crucial in
experiments on vision to vary aspects of the stimulus
parametrically. For example, one might wish to study
how perceived color varies as a function of object
surface reflectance, object specularity, object size and
pose, or the spectrum of the illumination. To
facilitate creation of such parametrically varying
stimuli, RenderToolbox3 provides a mechanism for
producing a family of related stimuli based on one 3-
D parent scene and a list of parametric manipulations
to be applied to the scene. Together, the parent scene
and specified manipulations comprise a rendering
recipe that documents the family of stimuli and
allows the stimuli to be regenerated automatically.

� Multispectral rendering. RenderToolbox3 supports
the specification and rendering of scenes on a
multispectral (wavelength-by-wavelength) basis. For
studies of color vision, multispectral rendering is an
important component of maximizing physical accu-
racy. In general, 3-D modelers do not allow
multispectral reflectances to be assigned to materials
nor multispectral power distributions to be assigned
to illuminants. RenderToolbox3 adds this function-

ality to the rendering workflow in order to make use
of the multispectral rendering capabilities of the
supported renderers.

� Physically based materials. RenderToolbox3 supports
arbitrary material specifications. As with multispec-
tral reflectances and power distributions, 3-D mod-
elers do not generally know about the various surface
material models supported by physically based
renderers. RenderToolbox3 adds the specification of
arbitrary materials to the rendering workflow to
increase the accuracy with which materials may be
rendered.

� Renderer validation. RenderToolbox3 includes sev-
eral rendering recipes that probe the behavior of
supported renderers for conformance to known
physical principles. As vision scientists, we are
generally consumers of renderers in that we treat
them as black boxes rather than reviewing their
algorithms and source code in detail. Thus it is
important to have end-to-end tests of renderer
behavior. For example, the radiance of the image of a
surface seen under a point light source should drop
by a factor of four when the distance to the light
source is doubled. Although testing such behaviors
does not make the rendering workflow any easier,
implementing and documenting such tests is an
important part of understanding the stimuli pro-
duced by the renderers. RenderToolbox3 provides
rendering recipes that use a simple calibration parent
scene and probe renderer behavior by manipulating
the scene in ways that should produce predictable
results as derived from physical principles. These
recipes facilitate documentation and validation of
renderer behaviors. In turn, validation of renderer
behaviors allows computation of renderer-specific
constants that bring the rendering output into known
radiometric units.

� Renderer comparison. RenderToolbox3 makes it easy
to use the same rendering recipe with each of its
supported renderers. Comparisons of renderer out-
puts from the same recipe can be useful to assess the
degree to which independently implemented render-
ers agree. To the extent that multiple renderers do
agree, one may be more confident that each is
accurately simulating the flow of light through the
scene. To the extent that multiple renderers disagree,
one must assume a degree of uncertainty about the
physical accuracy of the renderings, pending more
detailed assessment of the reasons for the disagree-
ment. Such comparisons are especially useful for
complex scenes in which it is difficult to predict the
correct results with simple analytical calculations.

� Convenience. Finally, by handling or standardizing
many of the details of the rendering workflow,
RenderToolbox3 aims to make it easier for the
practicing scientist to employ graphics tools.

Journal of Vision (2014) 14(2):6, 1–22 Heasly et al. 2

http://blender.org
http://blender.org
http://autodesk.com/products/autodesk-maya/overview
http://autodesk.com/products/autodesk-maya/overview
http://maxwellrender.com
http://randomcontrol.com/arion-2
http://randomcontrol.com/arion-2
http://mathworks.com
http://mathworks.com
https://github.com/DavidBrainard/RenderToolbox3
https://github.com/DavidBrainard/RenderToolbox3

The rest of this paper is organized as follows. In the
next section, we provide an overview of the design of
RenderToolbox3 and describe a typical workflow.
Then, we review a number of examples provided with
the toolbox that illustrate its functionality. We
conclude with a broader discussion.

Toolbox design and workflow

RenderToolbox3 contains a set of MATLAB utilities
designed to facilitate the creation of graphical stimuli.
It also prescribes a workflow for stimulus creation that
incorporates existing graphics tools, including 3-D
modelers and physically based renderers.

Utilities

RenderToolbox3 is intended to be portable across
computer hardware and operating systems. Most of the
utilities are implemented as m-functions in MATLAB’s
portable scripting language. One utility is written in C
as a MATLAB mex-function, and RenderToolbox3
provides an m-function utility for building this mex-
function. Collectively, these MATLAB utilities depend
on three other software libraries:

1. MATLAB’s built-in Java-based XML parsing tools
allow RenderToolbox3 to read and manipulate
parent scenes stored in Collada XML files.

2. The OpenEXR image library allows RenderTool-
box3 to read multispectral renderer output data.

3. The Psychophysics Toolbox (http://psychtoolbox.
org; Brainard, 1997) provides many colorimetric and
image-processing functions.

Each of these libraries is itself portable across
operating systems. It should be possible to use
RenderToolbox3 on any system on which MATLAB,
OpenEXR, and the Psychophysics Toolbox are avail-
able. We have used it both with Apple’s Macintosh OS/
X and with Linux.

In addition to being portable, RenderToolbox3 and
its dependencies are almost entirely free and open
source. MATLAB is the only nonfree, commercial
component of RenderToolbox3.

Workflow

The RenderToolbox3 workflow for stimulus creation
has four steps: (a) 3-D modeling of a parent scene, (b)
batch processing of the scene with parametric manip-
ulations, (c) physically based rendering of the scene to
produce a family of multispectral renderings, and (d)

image processing of the renderings to produce stimuli
for delivery to subjects and to perform other analyses.

To illustrate a typical RenderToolbox3 workflow, we
consider these four steps in the context of a concrete
example, which we call DragonColorChecker. The
parent scene is modeled in Blender by importing an
existing model of a dragon and creating other objects
using Blender’s modeling tools. The reflectance spec-
trum of the dragon is manipulated using multispectral
colorimetric data imported from the Psychophysics
Toolbox. The scene is rendered 24 times, producing a
family of 24 multispectral renderings. Finally, the
renderings are processed and combined into a single
RGB montage that shows 24 dragons of various colors.

The fully functional DragonColorChecker example
is included with the RenderToolbox3 distribution (see
Appendix). For purposes of illustration below, we omit
details.

3-D modeling

The RenderToolbox3 workflow begins with the
Blender application. Blender is an open-source soft-
ware tool for producing 3-D graphics and animations
with a large community of open-source and commercial
users. RenderToolbox3 users can use Blender to specify
the geometry of the parent scene, including the position
and orientation of the camera and the positions and
shapes of the light sources and objects.

To create the DragonColorChecker parent scene, the
user would import a model of a Chinese dragon statue
from the Stanford 3-D Scanning Repository (http://
graphics.stanford.edu/data/3Dscanrep/) using Blend-
er’s geometry-importing functionality. The user would
then use Blender’s basic modeling tools to create a box
in which to place the dragon, light sources to illuminate
the dragon, and a camera to view the dragon. Finally,
the user would export the scene from Blender as a
Collada file. In Figure 1, see the top-left box labeled ‘‘3-
D Modeling.’’

Collada is an XML-based open standard for
exchanging 3-D models between applications like
modelers and renderers. So, although RenderToolbox3
nominates Blender as its preferred modeling tool, other
modeling tools that support Collada should be able to
produce parent scene files that are suitable for use with
RenderToolbox3.

Batch processing

The workflow continues with batch processing, in
which the user may specify a number of manipulations
to be applied to the parent scene, including changes to
scene geometry, reflectance and illuminant spectra,

Journal of Vision (2014) 14(2):6, 1–22 Heasly et al. 3

http://psychtoolbox.org
http://psychtoolbox.org
http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/

Figure 1. Overview of the DragonColorChecker workflow. Files that the user must supply are labeled with italics. These include the

Parent Scene, which may be modeled using the Blender application and must be exported as a Collada file; the Mappings File, which

maps reflectance spectra to the dragon model; the Conditions File, which lists 24 reflectance spectra measured from a ColorChecker

�

Journal of Vision (2014) 14(2):6, 1–22 Heasly et al. 4

materials, types of lighting, and renderer behaviors.
The user specifies these manipulations by writing two
text files that use RenderToolbox3-specific syntax: the
conditions file and the mappings file. In Figure 1, see the
top-right box labeled ‘‘Manipulations.’’ The user also
writes an executive script in MATLAB that binds
together the parent scene file, the conditions file, and
the mappings file, and invokes RenderToolbox3
utilities. Together, the parent scene file, conditions file,
mappings file, and executive script constitute a com-
plete set of instructions for rendering that we call a
RenderToolbox3 recipe.

RenderToolbox3 recipes are largely open-ended. The
conditions file and mappings file may be written by
hand, generated programmatically using RenderTool-
box3 utilities, or omitted entirely (in which case the
parent scene will be rendered only once). The executive
script may invoke various RenderToolbox3 utilities
and other MATLAB functions. The conditions file,
mappings file, and executive script may refer to external
resources, like multispectral reflectance and illuminant
data files and texture image files. A specific recipe may
be used to reproduce a family of renderings at any time.
The recipe also serves as documentation of the
renderings, and may be accessed during the rest of the
rendering workflow and subsequent data analysis in
order to avoid redundant data entry.

Conditions file

The conditions file uses a tabular format in which
each column represents a recipe parameter and each
row represents a condition and contains a set of
parameter values for that condition. A general de-
scription of the conditions file syntax is available in the
RenderToolbox3 online documentation (https://github.
com/DavidBrainard/RenderToolbox3/wiki/
Conditions-File-Format).

The DragonColorChecker conditions file specifies
24 conditions, one for each square on a Macbeth
Color Checker Chart (McCamy, Marcus, & Davidson,
1976). Reflectance measurements of a Color Checker
Rendition Chart are taken from the Psychophysics
Toolbox collection of colorimetric data files and
converted using a RenderToolbox3 utility to 24
multispectral reflectance data files that are compatible
with PBRT and Mitsuba. The choice of 24 Color

Checker reflectance spectra was arbitrary and made to
illustrate how to specify multiple spectral reflectance
spectra with RenderToolbox3. The conditions file
declares two recipe parameters in two columns. Each
column has a header row and 24 additional rows (see
Listing 1). The first column provides a mnemonic
name for each condition. The second column specifies
the reflectance spectrum data file to use for the dragon
color for each condition.

Mappings file

The mappings file defines points of contact between
the parent scene and the conditions file. It uses syntax
inspired by the Collada XML schema and allows the
user to map arbitrary values to elements of the parent
scene, based on names specified during 3-D modeling.
For example, the user might create a camera in Blender
and assign to it the name ‘‘camera.’’ Then in the
mappings file, the user would be able to modify
properties of the ‘‘camera’’ element, including its
position and field of view. Likewise, the user could use
the mappings file to modify named light sources,
objects, and materials. Elements that are not referred to
in the mappings file are rendered without manipulation.
A general description of the mappings file syntax is
available in the RenderToolbox3 online documentation
(https://github.com/DavidBrainard/RenderToolbox3/
wiki/Mappings-File-Format).

color rendition chart; and the Executive Script, which binds together the Parent Scene file, Mappings File, and Conditions File and

invokes RenderToolbox3 utilities. Subsequent steps are performed automatically by RenderToolbox3 utilities. Twenty-four Native

Scene Files are produced (only three are shown) that may drive one of the supported renderers, PBRT or Mitsuba, in order to produce

24 Multispectral Radiance Data files (only three are shown). All data files use a consistent MATLAB mat-file format and physical

radiance units. Multispectral data files are combined into a single sRGB montage that resembles the original ColorChecker chart.

Listing 1. Excerpt from a conditions file that has two column

headers followed by 24 rows (only three rows are shown). The

left-hand column has the header imageName and contains an

arbitrary mnemonic for each of 24 conditions. The right-hand

column has the header dragonColor and lists 24 reflectance

spectrum data file names. Columns are delimited by tab

characters, and rows are delimited by new lines. In general,

there is no limit to the number of columns or rows in a

conditions file.

Journal of Vision (2014) 14(2):6, 1–22 Heasly et al. 5

https://github.com/DavidBrainard/RenderToolbox3/wiki/Conditions-File-Format
https://github.com/DavidBrainard/RenderToolbox3/wiki/Conditions-File-Format
https://github.com/DavidBrainard/RenderToolbox3/wiki/Conditions-File-Format
https://github.com/DavidBrainard/RenderToolbox3/wiki/Mappings-File-Format
https://github.com/DavidBrainard/RenderToolbox3/wiki/Mappings-File-Format

For the DragonColorChecker example, the values
listed in the dragonColor column of the conditions file
are mapped to the surface reflectance of the dragon
model (see Listing 2). The mappings file also specifies
that the objects in the scene are matte and that the floor
and walls have spectrally flat reflectances.

The mappings file allows the user to introduce values
into the workflow that would be difficult or impossible
to specify using 3-D modeling programs like Blender or
the Collada XML standard. Blender and Collada
represent the reflectances of the dragon statue, the
floor, and the walls using three-component RGB
values. The mappings file allows the user to replace
RGB values with multispectral reflectances and to
specify the material properties of objects.

Executive script

The DragonColorChecker executive script invokes
RenderToolbox3’s batch-processing utilities, passing in
the parent scene Collada file, the conditions file, and the
mappings file, and producing a family of scene files in the
native format of one of the supported renderers (see
Listing 3). For each condition, the batch-processing
utilities read the parent scene, manipulate scene elements
usingvalues from the conditionsfile and themappingsfile,
andwrite themanipulated scene to a renderer native scene
file. Mitsuba provides its own utility for converting
Collada files to Mitsuba native scene files. RenderTool-
box3 provides a customutility for convertingCollada files
to PBRT native scene files. The result is 24 new renderer
native scene files, one for each of the reflectance spectrum
data files specified in the conditions file. InFigure 1 see the
upper-middle box labeled ‘‘Batch Processing.’’

Rendering

RenderToolbox3 currently supports two open-source,
physically based renderers: PBRT and Mitsuba. These
renderers use ray and path-tracing algorithms to realis-
tically simulate how light would flow through a scene.
They emphasize correctness with respect to physical
principles, like conservation of energy, as opposed to
aesthetic or real-time considerations. Both renderers take
advantage of modern computer hardware by dividing
rendering computations among local CPU cores. In
addition, RenderToolbox3’s batch-rendering utilities
may be configured to take advantage of computing
clusters, via the MATLAB Distributed Computing
Toolbox. The RenderToolbox3 online documentation
provides instructions for compiling PBRT andMitsuba
for multispectral rendering using arbitrary spectrum
sampling (https://github.com/DavidBrainard/
RenderToolbox3/wiki/Building-Renderers).1

For the DragonColorChecker example, the executive
script passes thenamesof 24PBRTnative scenefiles to the
RenderToolbox3 batch-rendering utilities. These utilities
invoke PBRT once per scene file, producing 24 multi-
spectral renderings stored as data files withPBRT-specific
units and formatting. RenderToolbox3 reads each PBRT
data file, converts the data to physical radiance units, and
saves the radiance data in a new MATLAB mat-file.
Although each renderer may use its own output units and
data file format, the RenderToolbox3 batch-rendering
utilities always produce multispectral output data in
physical radiance units stored in MATLAB mat-files.
Uniform output data facilitates comparisons between
renderers, swapping between renderers, image processing,

Listing 2. Excerpt from a mappings file that maps user-defined values to scene elements. Here all mappings are contained in a Generic

block, which is applied to any renderer and is delimited by curly braces { }. The Dragon-material scene element is declared to be a

material of type matte. The user-defined spectrum (dragonColor) is mapped to the diffuseReflectance property of Dragon-material.

Parentheses indicate that the value of dragonColor may change for each condition and should be taken from the ‘‘dragonColor’’

column of the conditions file. The Wall-material and Floor-material elements are also declared as materials of type matte. Constant

strings are mapped to the diffuseReflectance property of Wall-material and Floor-material. These strings specify spectrally uniform

reflectance spectra in the range 300 though 800 nm, using a syntax for specifying arbitrary sampled spectra that PBRT and Mitsuba

can parse. The reflectance of the wall is specified as 0.75, and that of the floor is 0.5.

Journal of Vision (2014) 14(2):6, 1–22 Heasly et al. 6

https://github.com/DavidBrainard/RenderToolbox3/wiki/Building-Renderers
https://github.com/DavidBrainard/RenderToolbox3/wiki/Building-Renderers

and other analyses. In Figure 1, see the lower-middle box
labeled ‘‘Rendering.’’

Image processing

The workflow ends with processing the multispectral
output data mat-files to form viewable images.
RenderToolbox3 image-processing utilities can convert
multispectral data into sRGB (http://www.w3.org/
Graphics/Color/sRGB.html) images and montages as
well sensor images, whose pixel values are computed by
applying arbitrary color-matching functions or sensor
spectral sensitivities to the multispectral data. The final
product of the workflow may be a family of sRGB
images or other sensor images, a single large sRGB
montage, or analyses performed on the multispectral
renderings themselves. Indeed, MATLAB provides
many analysis tools that may be brought to bear on
multispectral radiance data stored in the mat-files.

For the DragonColorChecker example, the executive
script invokes RenderToolbox3’s montage utility to
combine the 24 multispectral renderings into a single
sRGB image. In Figure 1, see the bottom box labeled
‘‘Image Processing.’’

Several other examples included in the RenderTool-
box3 distribution use the same parent scene as the
DragonColorChecker but perform different manipula-
tions (see Appendix). The Dragon example renders a
single matte dragon with a multispectral reflectance.

The DragonGraded example renders a family of matte
dragons with reflectances that are smoothly graded
between two multispectral reflectances. The Dragon-
Materials example renders a family of four dragons
with matte, plastic, metal, and glass materials.

Examples

The RenderToolbox3 distribution contains many
fully functional examples, currently consisting of 16
parent scenes and 31 associated executive scripts. These
examples demonstrate features of the toolbox and
variations on the RenderToolbox3 workflow and
include the dragon examples discussed in the previous
section. In this section, we discuss five additional
examples and their main themes. See the Appendix for
a summary of all the examples.

RadianceTest

The RadianceTest example uses RenderToolbox3
to verify that renderers adhere to certain physical
principles of radiometry (Wyszecki & Stiles, 1982)
and to identify radiometric unit conventions used by
the renderers. The RadianceTest recipe and resulting
renderings document renderer behaviors and allow
RenderToolbox3 to bring all renderer outputs into

Listing 3. A simplified DragonColorChecker MATLAB executive script that binds a parent scene Collada file with a conditions file and a

mappings file and invokes RenderToolbox3 utilities to form a complete RenderToolbox3 recipe. The user chooses the PBRT renderer,

using a structure of RenderToolbox3 hints. The MakeSceneFiles() utility uses the parent scene Collada file, conditions file, and

mappings file to produce a family of PBRT native scene files that PBRT can render. The BatchRender() utility lets each PBRT native

scene file drive PBRT in turn to produce a family of multispectral data files. The MakeMontage() utility condenses the family of

multispectral data files into a single RGB image stored in a portable png file.

Journal of Vision (2014) 14(2):6, 1–22 Heasly et al. 7

http://www.w3.org/Graphics/Color/sRGB.html
http://www.w3.org/Graphics/Color/sRGB.html

physical radiance units. The recipe also demonstrates

RenderToolbox3 facilities that are generally useful,

such as manipulating object positions and orienta-

tions using the conditions file, creating area lights,

and reusing the same recipe with both supported

renderers.

The RadianceTest parent scene is simple, containing

a distant point light, a flat diffuse reflecting surface

Figure 2. Summary of RadianceTest results. Each row shows results from one of the eight RadianceTest conditions. From left to right,

each row contains (a) the name of the condition; (b) a schematic drawing of the scene geometry, including the light source (yellow

circle or bar), reflector (gray bar), camera (black polygon), and manipulation (red highlight); (c) sRGB representation of the scene as

rendered by PBRT; (d) sRGB representation of the scene as rendered by Mitsuba; and (e) reflected radiance profile taken at a single

arbitrary wavelength (520 nm) at a horizontal slice through the multispectral renderings at the location of the dashed lines for PBRT

(orange) and Mitsuba (blue). Radiance profiles vary in height and width with respect to the Reference condition in a manner

consistent with physical principles and illuminant spectra that are treated in units of power per unit wavelength. A single common

scale factor was applied to all sRGB images to facilitate visual comparisons.

Journal of Vision (2014) 14(2):6, 1–22 Heasly et al. 8

(referred to as the reflector in the following), and a
camera. The point light emits unit intensity at all
wavelengths, specified at evenly spaced wavelength
intervals. The reflector is square, planar, and uses a
matte material with unit reflectance at all wavelengths.
The vector connecting the point light to the center of
the reflector is normal to the reflector’s surface. The
camera uses perspective projection and views the
reflector at an angle. The camera’s line of sight passes
through the center of the reflector and makes a 458
angle with the reflector’s surface normal.

The RadianceTest conditions file specifies eight
rendering conditions. Various parameters (e.g., distance
to the light source, orientation of the reflector) are
manipulated across the conditions. In Figure 2, see the
condition names and schematic drawings on the left.
Because the scene is simple, we can predict the
magnitude of the effect that each manipulation should
have on the camera image using basic physical principles
and compare this to the output of the renderers.

The Reference condition establishes a baseline for
comparison with its parameters defining reference
values. These are the distance from the point light to the
reflector, the orientation of the reflector relative to the
point light, the distance from the reflector to the
camera, the orientation of the reflector relative to the
camera, and the emission spectrum of the point light.

The Double Far Light condition doubles the distance
from the point light to the reflector and leaves other
parameters at the reference values. As a consequence,
the light reaching the reflector should have one-fourth
intensity as compared to the reference condition. The
light reflected toward the camera and the renderer
output magnitude should also have one fourth of their
reference values.

The Double Far Camera condition doubles the
distance from the reflector to the camera and leaves
other parameters at the reference values. The light
reaching the reflector should be unchanged, and thus
the reflector’s radiance should be constant. This, in
turn, means that the image of the reflector should have
the same intensity values as in the reference condition.
The image of the reflector, however, should be reduced
in area by a factor of four and thus contain one fourth
as many pixels as it does in the reference condition.

The Rotate Reflector condition rotates the reflector
about its center by 41.48 so that the vector connecting
the point light to the center of the reflector forms a
41.48 angle against the reflector’s surface normal. This
condition leaves other parameters at their reference
values. The light reflected toward the camera should
exhibit a cosine falloff from the reference condition,
causing the image of the reflector to have cos(41.4)
(approximately three fourths) of its reference intensity
and pixel magnitudes.

The Rotate Camera condition rotates the camera
about the reflector at constant distance so that the
camera’s line of sight makes a 108 angle with the
reflector’s surface normal. This condition leaves other
parameters at their reference values, including the
distance from the camera to the reflector. This should
not affect the intensity values of the image of the
reflector. However, because the camera views the
reflector more nearly head-on than in the reference
condition, the image of the reflector should have a
larger area and thus contain more pixels than in the
reference condition.

The Sparse Spectrum condition replaces the point
light emission spectrum with a sparse spectrum sampled
at half as many wavelengths and leaves other parameters
at their reference values. If the renderers interpret
spectra in units of power per unit wavelength, then this
manipulation should have no effect on the image. If, on
the other hand, the renderers interpret spectra in units of
power per wavelength band, this manipulation should
halve the intensity of the output values.

The Unit Area Light condition replaces the point
light with a planar, circular, diffuse area light with unit
area. The vector connecting the center of the area light
with the center of the reflector is normal to both the
area light and the reflector. This condition leaves all
other parameters at their reference values, including the
light’s emission spectrum. The total light emitted
toward the reflector should be approximately the same
as in the reference condition if the renderers use
consistent units between point lights (power) and area
lights (power per unit area).

The Half Area Light condition is like the Unit Area
Light condition in all ways except that the area light is
reduced in size to one half unit area instead of unit
area. As a consequence, the light reaching the reflector
should have one-half intensity as compared to the
reference condition. The reflector image should thus
have one half of its reference intensity and pixel
magnitudes.

For both PBRT and Mitsuba, each manipulation
affects renderer output magnitude in the manner that
would be predicted from physical principles as de-
scribed above given a camera that records units of
radiance and given that light emission spectra are
interpreted in units of power per unit wavelength. In
Figure 2, see the PBRT and Mitsuba renderings and
radiance profiles. These results inform RenderTool-
box3 utilities that convert colorimetric data from units
of power per wavelength band, including Psychophys-
ics Toolbox colorimetric data, into units of power per
unit wavelength for use with renderers. They confirm
basic agreement of the two renderers with each other
and with physical principles. They also allow Render-
Toolbox3 to treat renderer numeric outputs in terms of
useful radiometric units.2

Journal of Vision (2014) 14(2):6, 1–22 Heasly et al. 9

The renderers themselves do not specify particular
units for radiance, and their raw outputs differ from
one another by a scale factor. To make renderer
outputs directly comparable, RenderToolbox3 scales
the output from each renderer by a precomputed
radiometric unit factor.

Computing renderer radiometric unit factors relies
on the simplicity of this RadianceTest parent scene
and a derivation from physical principles of how light
should be emitted from the point light and reflected
toward the camera in order to produce an expected
source radiance. The radiometric unit factor for each
renderer is chosen such that the actual renderer output
from the reference condition times the radiometric
unit factor equals this expected radiance. Once
computed, RenderToolbox3 applies the same radio-
metric unit factor to all numeric outputs from the
same renderer.3 The RenderToolbox3 online docu-
mentation contains a detailed description and deriva-
tion of the expected radiance (https://github.com/
DavidBrainard/RenderToolbox3/wiki/
RadianceTest#radiometric-units).

The RenderToolbox3 online documentation con-
tains further details about this RadianceTest example
as well as the ScalingTest, which examines the effects of
nonradiometric manipulations on renderer outputs.
The ScalingTest shows that parameters such as
rendering strategy and image reconstruction filter size
can affect renderer output scaling. The same Render-
Toolbox3 utilities that apply renderer radiometric unit
factors could potentially apply additional scale factors
that normalize renderer outputs with respect to non-
radiometric parameters. To that end, we have included
functionality in these utilities for discovering many
nonradiometric parameter values, but we have not yet
implemented any additional scale factors.

SimpleSphere

Like the RadianceTest example, the SimpleSphere
example also validates the renderers but for a scene in

which simple analytic calculations cannot be used to
predict the desired image. The example also introduces
a feature of RenderToolbox3 mappings files that
provides low-level access to the parent scene and the
behavior of renderers.

The parent scene is again simple, containing a distant
point light, a sphere, and a camera. The point light uses
the CIE D65 (CIE, 2004) standard illuminant spec-
trum. The sphere uses a Ward model material (Ward,
1992) with orange-looking diffuse spectral reflectance
and spectrally nonselective specular spectral reflec-
tance. The camera uses orthographic projection and
views the sphere head-on with the point light behind,
above, and to the right of the camera.

The scene is rendered once each with PBRT,
Mitsuba, and with a third renderer called the Sphere-
RendererToolbox. The SphereRendererToolbox is a
simple renderer implemented entirely in MATLAB by
us and is available under an open-source license
(https://github.com/DavidBrainard/
SphereRendererToolbox/wiki). It can only render
Ward model spheres under point light sources in
orthographic projection, but for such scenes, it
provides an independent rendering implementation
based on the relevant physical principles.

The SimpleSphere mappings file chooses scene
parameters in order to match the PBRT and Mitsuba
scenes to the constraints of the SphereRendererTool-
box as closely as possible. For example, the mappings
file adjusts parameters of Mitsuba’s orthographic
camera that are not automatically set by Mitsuba’s
built-in Collada importer (see Listing 4). Because this
adjustment is unusual and renderer-specific, it must be
made using a special mapping syntax we refer to as path
syntax. This syntax dispenses with convenience but
allows arbitrary access to elements of the parent scene
and elements of the renderer-specific scene files that will
be generated during batch processing. The Render-
Toolbox3 online documentation contains more details
about this path syntax (https://github.com/
DavidBrainard/RenderToolbox3/wiki/
Scene-DOM-Paths).

Listing 4. Excerpt from a mappings file that adjusts Mitsuba camera properties using values contained in the parent scene Collada file.

All mappings are contained in a Mitsuba path block, which would apply low-level path syntax to Mitsuba, and the block is delimited

by curly braces {}. The right-hand value in square braces [] refers to the x-magnification property of the Camera scene element of the

Collada parent scene. This value is applied to the x-scale factor of the Camera element of the Mitsuba scene that will be generated

during batch processing.

Journal of Vision (2014) 14(2):6, 1–22 Heasly et al. 10

https://github.com/DavidBrainard/RenderToolbox3/wiki/RadianceTest#radiometric-units
https://github.com/DavidBrainard/RenderToolbox3/wiki/RadianceTest#radiometric-units
https://github.com/DavidBrainard/RenderToolbox3/wiki/RadianceTest#radiometric-units
https://github.com/DavidBrainard/RenderToolbox3/wiki/RadianceTest#radiometric-units
https://github.com/DavidBrainard/SphereRendererToolbox/wiki
https://github.com/DavidBrainard/SphereRendererToolbox/wiki
https://github.com/DavidBrainard/RenderToolbox3/wiki/Scene-DOM-Paths
https://github.com/DavidBrainard/RenderToolbox3/wiki/Scene-DOM-Paths
https://github.com/DavidBrainard/RenderToolbox3/wiki/Scene-DOM-Paths

Each renderer produces a multispectral rendering of
the scene. If all three renderers essentially agree on how
to render the scene, then any difference image, taken as
the element-wise subtraction of one multispectral
rendering from another, should contain only small
values. Figure 3 shows sRGB representations of three
such difference images as well as sRGB representations
of the three original renderings produced by PBRT,
Mitsuba, and the SphereRendererToolbox (‘‘Refer-
ence’’).

The three renderers generally agree on how to render
the SimpleSphere scene. The greatest differences appear
at the location of the sphere’s specular highlight (a
white circle in the top right part of each rendering) and
along the edge of the sphere. Differences at the edge
may be the result of pixel filtering: PBRT and Mitsuba
compute pixel values using filters that introduce slight
blurring and gradual edges whereas the SphereRen-

dererToolbox computes pixel values directly without
filtering.

The RenderToolbox3 online documentation con-
tains information about several examples that validate
renderers against physical principles and against one
another, including this SimpleSphere example. These
include SimpleSquare, which tests multispectral reflec-
tions; Interreflection and TableSphere, which test
reflections among objects; CoordinatesTest, which
validates coordinate system handedness and spatial
transformations; and RGBPromotion, which probes
how renderers promote RGB values to multispectral
representations.

MaterialSphereBumps

The MaterialSphereBumps scene renders a sphere
using three different surface materials. This scene
illustrates how RenderToolbox3 allows manipulation
of the material properties of objects and also how it can
be used to control the application of a bitmap texture
to add bumps to the surface of the sphere. With this
example, we also introduce RenderToolbox3’s utilities
for converting multispectral renderings to sensor
images. In this case, the sensor images are calculated
with respect to estimates of the spectral sensitivities of
the human cones. The ability to create sensor images is
useful in vision science as we often go on to take such
images and use them together with monitor calibration
data to produce images for display that have the same
effect on the cone photoreceptors as the spectra
rendered in the image plane would have had (Brainard,
Pelli, & Robson, 2002; Brainard & Stockman, 2010).

The scene contains a polygon approximation of a
sphere and a nearby point light. A perspective camera
views the sphere head-on, such that the point light is
directly above the camera.

Each rendering of the sphere shows bumpy, textured
regions that outline the oceans and continents of the
earth (see Figure 4). The MaterialSphereBumps map-
pings file declares the texture scene element, which
stores pixel data from an image of the earth down-
loaded from the Planetary Pixel Emporium (http://
planetpixelemporium.com) and used here with permis-
sion of the author. The earth’s texture is bound to the
surface material of the sphere as a bump map, which
allows the renderer to interpret bitmap pixel values as
variations in height of the surface of the sphere.

The scene’s conditions file specifies three different
surface materials for the sphere: matte material with
red-looking reflectance, a Ward model material with
green-looking diffuse reflectance and uniform specular
reflectance, and a metal material with a multispectral
index of refraction and absorption coefficient taken
from measurements of gold that are provided with the

Figure 3. Comparison of SimpleSphere renderings. PBRT and

Mitsuba rendered the SimpleSphere scene. The SphereRender-

erToolbox produced a third Reference rendering. The top and

middle rows contain sRGB representations of SimpleSphere

multispectral renderings and element-wise differences between

multispectral renderings. Top row, from left to right: PBRT,

Mitsuba minus PBRT, and Mitsuba. Middle row, from left to

right: PBRT minus Reference, Reference, and Mitsuba minus

Reference. A single common scale factor was applied to all sRGB

images to facilitate visual comparisons. The bottom row

contains reflected radiance profiles taken at a single arbitrary

wavelength (520 nm) at a vertical slice through the multispec-

tral renderings at the location of the dashed lines for PBRT

(orange), Mitsuba (blue), and the SphereRendererToolbox

Reference (gray).

Journal of Vision (2014) 14(2):6, 1–22 Heasly et al. 11

http://planetpixelemporium.com
http://planetpixelemporium.com

PBRT source code distribution. The textured bump
map produces a different visual effect with each of the
surface materials.

As with other example recipes, RenderToolbox3
makes it easy to render MaterialSphereBumps with
PBRT or Mitsuba. Comparison of the outputs reveals
that the two renderers treat bump maps differently,
resulting in images that have visibly different textures
(see Figure 4). Because the renderers disagree about
how to render bump maps, care must be used in the
physical interpretation of bump maps.

This MaterialSphereBumps recipe produces two
kinds of output. First, the three separate multispectral
renderings are combined into a single sRGB montage.
Second, the same multispectral renderings are con-
verted to sensor images, based on estimates of the
spectral sensitivities of the human cones (see Listing 5).
Sensor images produced this way could be delivered to
research subjects via calibrated displays.

The RenderToolbox3 online documentation con-
tains more information about this MaterialSphere-
Bumps example as well as a MaterialSphere example
that does not use bump maps and a MaterialSphere-
Remodeled example that modifies the Collada parent
scene on the fly in MATLAB. The documentation also
contains information about the Dice and CubanSphere-
Textured examples, which use bitmap textures to
specify object reflectances instead of bumps.

Interior

The Interior example represents a unique Render-
Toolbox3 workflow that accommodates a 3-D scene
created by an unknown author for purposes unrelated
to RenderToolbox3. Many such scenes are available on
the web and thus available for use with RenderTool-

Figure 4. Summary of MaterialSphereBumps workflow. The top

row shows key elements of the scene, from left to right: the

parent scene 3-D model created in Blender; various sphere

materials including red-looking matte, green-looking Ward

material, and gold metal; and an image of the earth used as a

bump map to alter the surface height of the sphere. The middle

rows show a sRGB montage of renderings produced by PBRT.

The bottom row shows a sRGB montage of renderings produced

by Mitsuba. Both renderers support bump maps and produce

renderings with surface height altered to resemble the earth

image. However, the bumps appear taller in the PBRT rendering

than they do in the Mitsuba rendering, indicating that the two

renderers interpret bump maps differently.

Listing 5. A simplified MaterialSphereBumps MATLAB executive script that produces sensor images based on estimates of the spectral

sensitivities of the human cones. The user chooses a Psychophysics Toolbox colorimetric data file that contains estimates of human

cone sensitivities. The cone data act as the color-matching function passed to the RenderToolbox3 MakeSensorImages() utility, which

transforms multispectral renderings into sensor images that estimate the responses of human cones to the renderings. The sensor

images are saved in MATLAB mat-file data files with file names automatically chosen based on the multispectral data file names and

the color-matching function name.

Journal of Vision (2014) 14(2):6, 1–22 Heasly et al. 12

box3. Some are provided under open-source licenses. In
other cases, the scene creator may be contacted for
permission to use the scene as was the case with this
example. Because the Interior scene was not originally
created for use with RenderToolbox3, we had to adapt
it. This example introduces modeling adjustments to
scenes in Blender to make them suitable for physically
based rendering and RenderToolbox3 utilities that
automatically help to accommodate ‘‘wild’’ scenes, that
is, scenes produced by others.

Because the Interior scene contains complicated
geometry, realistic rendering can take a long time. This
example also demonstrates use of the mappings file and
conditions file to control renderer behaviors, in this
case to explore tradeoffs between rendering quality and
rendering time.

3-D model

The original Interior parent scene was obtained from
a repository of free Blender scenes produced by
Nextwave Multimedia (http://nextwavemultimedia.
com/html/3dblendermodel.html) and is used here with
permission from Nextwave. As adapted for this
example, the parent scene models a furnished interior
room with a large number of shapes, three spotlights,
and two large area lights. A perspective camera views
the room from one corner.

The parent scene originally contained elements that
RenderToolbox3, PBRT, and Mitsuba do not support,
including unrealistic ambient lights, camera animation,
a camera movement track, and a camera-point-of-view
constraint. When exported from Blender to Collada,
the scene also contained characters that MATLAB’s
Java-based XML parsing tools cannot process. Ren-
derToolbox3 automatically filters out these unsup-
ported scene elements and characters.

Direct lighting

Nevertheless, when rendered without modifications,
the scene appears dark with only a few objects visible
(see Figure 5). The darkness results in part from
RenderToobox3’s default rendering strategy, which is
to consider direct lighting only. This strategy allows for
fast rendering and previewing of a scene but ignores
light that should have been reflected among objects in
the scene.

Figure 5. Summary of modifications to the ‘‘wild’’ Interior

scene. Each row shows the scene at a particular step of

modification and contains, from left to right, the name of the

step, a schematic plan view of the Interior scene, and a Blender

preview image or sRGB representation of the scene as rendered

by Mitsuba. The original parent scene 3-D model was created by

an unknown author for uses unrelated to RenderToolbox3. As

viewed in Blender, many objects are visible, including two rear

walls, five seats, and a hanging lamp. A perspective camera

views the scene from a corner opposite the rear walls. When

the original scene is rendered with the Direct Lighting strategy,

�

the room is dark and few objects are visible. When rendered

with the Path Tracing strategy, a few more objects become

visible, and some rendering noise artifacts appear as green and

gray spots. After the parent scene model is adjusted to contain

large Area Lights, the scene appears lighter and many more

objects are visible.

Journal of Vision (2014) 14(2):6, 1–22 Heasly et al. 13

http://nextwavemultimedia.com/html/3dblendermodel.html
http://nextwavemultimedia.com/html/3dblendermodel.html

Path tracing

To enable realistic interreflections, the Interior
scene’s mappings file specifies the path tracing rendering
strategy instead of direct lighting. This has a modest
effect and improves object visibility only slightly. In
general, the effect of rendering strategy interacts with
the scene specification, and changing to path tracing
can have a large effect for some scenes.

Area lights

The greater cause of darkness is the original scene’s
reliance on unrealistic ambient lights. Because ambient
light is not physically based, RenderToolbox3 filters
out these lights, causing the scene to become poorly
lighted. To compensate, we made modeling adjust-
ments to the Interior scene in Blender to introduce two
large rectangular area lights that resemble picture
windows. These provide additional illumination, re-
move most of the remaining shadows, and drastically
improve object visibility.

The Interior parent scene contains a large number of
objects, such as chairs, cushions, walls, and wall
hangings. Writing a mappings file to manipulate all of
these objects would be error-prone and tedious for a
user to do by hand. RenderToolbox3 provides a utility
for automatically generating a mappings file based on a
given Collada parent scene. For this Interior scene, a
mappings file was automatically generated and then
modified in order to specify the path tracing rendering
strategy, the daylight spectrum for the new area lights,
and other manipulations.

The Interior scene conditions file specifies several
conditions that probe the effects of image size and
rendering strategy on total rendering time. In this way,
the Interior recipe differs from other recipes that use
the conditions file to manipulate individual scene
elements, not the overall behavior of renderers. We
used this same recipe with PBRT and Mitsuba, yielding
some general effects on rendering time. Small images
render faster than large ones, and the direct lighting
renderings are completed more quickly than path
tracing renderings. Notably, Mitsuba seems to render
more quickly than PBRT with comparable results. This
may be the result of processor optimizations that
Mitsuba includes (http://www.mitsuba-renderer.org/
docs.html, Chapters 1 and 4.2) and PBRT does not
(Pharr & Humphreys, 2010, Chapter 18.2).

The RenderToolbox3 online documentation con-
tains further details about adapting the original
Interior scene for use with RenderToolbox3 (https://
github.com/DavidBrainard/RenderToolbox3/wiki/
Interior-Example-Scene). The documentation also
contains details about the Dice scene, which also uses
complicated geometry.

SpectralIllusion

The SpectralIllusion example represents a Render-
Toolbox3 workflow that uses multispectral rendering
analysis to produce a visual illusion. The executive
script introduces utilities from the Psychophysics
Toolbox for performing element-wise arithmetic on
spectral data. Creation of the illusion builds on a
physical principle and renderer behavior that we
validated previously with another example called
SimpleSquare. The SpectralIllusion example also in-
troduces a tutorial from the Blender user community
for modeling a soft-looking, rounded cube.

This scene produces a visual illusion similar to an
illusion developed by Lotto and Purves (1999), in which
illumination differences at different parts of a scene
cause surprising perceptions of reflective object colors.
The difference between this version and the original is
that this version represents a realistically rendered
image produced from a 3-D scene description rather
than a drawn image. Thus this version may be studied
using manipulations of the underlying scene variables
(surface and illuminant properties) rather than manip-
ulations made in the image plane.

The parent scene contains a cube with rounded edges
modeled in Blender based on a video tutorial from the
Blender user community (YouTube, accessed July 6,
2013: http://youtu.be/ssz9gcP0Ggg). Each face of the
cube has 25 facets that use a matte material and have
reflectances chosen so that no neighboring facets have
the same reflectance. One facet on the top of the cube
has a raised bump called the target pip. Two facets on
the front right face of the cube have raised bumps,
called the destination pip and the reference pip. The
cube sits on a plane that uses a matte material and
beige-looking reflectance.

Two lights illuminate the scene. A yellow ‘‘sun’’
point light is located above, behind, and to the left of
the cube and emits a CIE daylight spectrum correlated
to 4000 K. A blue ‘‘sky’’ area light occupies a large
circular plane above the entire scene and emits a CIE
daylight spectrum correlated to 10,000 K. The emission
spectra are scaled so that neither light dominates the
scene. A perspective camera views the cube at an
oblique angle so as to view three faces of the cube,
including one face that is shaded from the ‘‘sun’’ light.

The visual illusion involves the perceived colors of
the target pip on the top face of the cube and the lower
destination pip on the front right face (see Figure 6).
Although the destination pip appears brighter/pinker
than the target pip, the two pips have essentially
identical RGB values (destination: [176 49 61] vs.
target: [175 48 60]). The upper reference pip on the
front right face, on the other hand, has the same
reflectance as the target pip and appears more similar in
color to the target pip even though its RGB values

Journal of Vision (2014) 14(2):6, 1–22 Heasly et al. 14

http://www.mitsuba-renderer.org/docs.html
http://www.mitsuba-renderer.org/docs.html
https://github.com/DavidBrainard/RenderToolbox3/wiki/Interior-Example-Scene
https://github.com/DavidBrainard/RenderToolbox3/wiki/Interior-Example-Scene
https://github.com/DavidBrainard/RenderToolbox3/wiki/Interior-Example-Scene
http://youtu.be/ssz9gcP0Ggg

Figure 6. Summary and analysis of the SpectralIllusion. The SpectralIllusion was produced from two renderings. The top left image shows

a sRGB representation of the Initial Mitsuba rendering. This initial rendering allowed estimation of the illumination arriving at the

destination pip (inside the green circle). The top right image shows a sRGB representation of the Illusion Mitsuba rendering, which used

a new reflectance for the destination pip that was calculated using the estimated illumination. In the Illusion image, the target pip (inside

the blue square) and the destination pip have essentially equal RGB values even though the destination pip appears brighter/pinker

(destination: [176 49 61] vs. target: [175 48 60]). The reference pip (inside the yellow circle) appears to have a color more similar to the

target pip even though its RGB values differ substantially from the target’s (reference: [115 28 40] vs. target: [175 48 60]). The second

row plots the multispectral reflectance specified for the target pip (blue squares), the reflectance of the destination pip in the Initial

rendering (green circles), and the calculated reflectance used for the destination pip in the Illusion rendering (red stars). The third row

plots the estimated spectrum of illumination arriving at each pip. The illumination arriving at the destination pip has essentially the same

spectrum in the Initial and Illusion renderings and is generally different from the illumination arriving at the target pip. The bottom row

plots the final reflected radiance for each pip as read from multispectral renderings. The final reflected radiance of the target pip has

essentially the same spectrum as the final reflected radiance of the destination pip in the Illusion rendering.

Journal of Vision (2014) 14(2):6, 1–22 Heasly et al. 15

differ substantially (reference: [115 28 40] vs. target:
[175 48 60]).

To create the illusion rendering, the reflectance
spectrum for the destination pip was chosen to
compensate for the difference in illumination arriving
at the target and destination pips. To calculate the
reflectance of the destination pip, we relied on the
physical principle that the final reflected spectrum of a
matte reflector should equal the element-wise product
of the reflector’s own reflectance spectrum times the
spectrum of illumination arriving at the reflector
(Wandell, 1987).4

Because we wish the final reflected spectra of the
target and destination pips to be equal, it follows that
we should choose the reflectance spectrum of the
destination pip to equal the element-wise ratio of the
target pip’s final reflected spectrum, divided by the
spectrum of illumination arriving at the destination pip.

The spectrum of illumination arriving at the
destination pip is not apparent in the scene recipe,
however, nor can we estimate this spectrum until the
scene is already rendered. Therefore the SpectralIllu-
sion executive script renders the scene twice. The first
rendering uses an arbitrary reflectance spectrum for the
destination pip and allows the executive script to
estimate the spectrum of illumination arriving at that
pip as the element-wise ratio of the pip’s final reflected
spectrum divided by the pip’s reflectance spectrum. The
executive script then calculates a new reflectance for the
destination pip as described above and renders the
scene a second time to produce the visual illusion (see
Listing 6).

The RenderToolbox3 online documentation con-
tains additional details about this SpectralIllusion
example and the SimpleSquare example that we used to
validate renderer multispectral reflection behavior.

Discussion

RenderToolbox3 aims to facilitate the creation of
visual stimuli using computer graphics tools. To that
end, it prescribes a workflow with four key steps: (a) 3-
D modeling of scenes, (b) batch processing of scenes
with manipulations, (c) scene rendering with physically
based renderers, and (d) image processing of multi-
spectral renderings. The toolbox contains MATLAB
utilities that facilitate batch processing, rendering, and
image processing. RenderToolbox3 also provides ex-
ample scenes that demonstrate the functionality avail-
able at all four steps as well as that validate and
document the performance of the renderers.

In this discussion, we review the RenderToolbox3
workflow and highlight toolbox features at each step
that were introduced in the examples above. We also

suggest potential uses for RenderToolbox3 that we
have not tried, some current limitations of the toolbox,
and potential extensions to the toolbox and its
interactions with other software tools.

3-D modeling

RenderToolbox3 nominates the open-source appli-
cation Blender as its preferred 3-D modeler. Blender
facilitates the creation of simple scenes using primitive
shapes, such as the SimpleSphere and RadianceTest, as
well as complex scenes, such as the Interior, and scenes
that import arbitrary 3-D models from external
sources, such as the DragonColorChecker. Blender has
an active community of open-source and professional
users and enjoys many online tutorials for these and
other modeling tasks as well as example projects that
are free to download.

The Blender Foundation has supported the creation
of open-source animated films using Blender (http://
www.blender.org/features-gallery/movies/). Many
scenes in these films approximate complex natural
scenes and therefore may be of interest to vision
researchers. Indeed, the Blender project files for these
films are free to download and can allow researchers to
benefit from months of film design and modeling effort
(Butler et al., 2012). By incorporating Blender into its
workflow, RenderToolbox3 makes projects like these
films more accessible to researchers. As with the
Interior example, these scenes may require modeling
adjustments in Blender and other modifications in
order to produce useful stimuli. We have not yet
rendered any complete film scenes with RenderTool-
box3.

The parent scenes included with the RenderToolbox3
distribution, as well as many of the online Blender
community tutorials, are based on Blender’s graphical
user interface (GUI). That is, these scenes and tutorials
use Blender by hand. Blender also supports a program-
ming interface, allowing scenes to be modeled pro-
grammatically with the Python language (http://wiki.
blender.org/index.php/Doc:2.4/Manual/Extensions/
Python). Python is similar in many ways to MATLAB’s
scripting language: It is portable across computer
hardware and operating systems, it uses high-level
syntax with flexible variable typing, and it runs in an
interactive interpreter that performs automatic memory
management (http://www.python.org/). RenderTool-
box3 parent scenes can be modeled programmatically,
and their Python modeling scripts can be included as
part of the RenderToolbox3 recipes. These modeling
scripts document the process of 3-D modeling in greater
detail than the parent scene Collada file itself and
complement the documentation provided by the condi-
tions file, the mappings file, and the executive script. In

Journal of Vision (2014) 14(2):6, 1–22 Heasly et al. 16

http://www.blender.org/features-gallery/movies/
http://www.blender.org/features-gallery/movies/
http://wiki.blender.org/index.php/Doc:2.4/Manual/Extensions/Python
http://wiki.blender.org/index.php/Doc:2.4/Manual/Extensions/Python
http://wiki.blender.org/index.php/Doc:2.4/Manual/Extensions/Python
http://www.python.org/

addition, procedural modeling of scene geometry
enables the user to generate arbitrarily complex scene
components, such as stochastic elevation maps, which
would be difficult and perhaps impossible using
Blender’s GUI. An example of using Python to model a
scene is provided in the BlenderPython example (see
Appendix).

RenderToolbox3 reads all parent scene data using
the Collada XML schema. Collada is an open standard
for exchanging 3-D models between applications like
modelers and renderers. Blender’s built-in Collada
exporter allows users to export any Blender scene as a
Collada file. Other modeling applications, such as
Maya (http://collada.org/mediawiki/index.php/
ColladaMaya) and Google SketchUp (http://collada.
org/mediawiki/index.php/SketchUp) can also export

Collada scenes although we have not tested these with
RenderToolbox3. A downside of Collada is that text
can be an inefficient way to specify the properties of
large scenes. We view this as a cost of the portability
provided by Collada.

Batch processing

The Collada XML-schema allows RenderToolbox3
to perform flexible batch processing of scenes with the
help of MATLAB’s built-in XML-parsing utilities.
Batch processing allows the user to render the same
parent scene multiple times, under various conditions,
in order to produce a family of related renderings. For
each condition, users may manipulate elements of the

Listing 6. Excerpt from the SpectralIllusion executive script that calculates the reflectance for the destination pip. Previously, the

executive script would have performed batch processing and an initial rendering, resulting in a multispectral data file. The spectral

sampling used internally by the renderer S_renderer; the spectral sampling used to specify reflectances S_reflectance; and the initial,

arbitrary reflectance of the destination pip R_destination would have been specified previously. The executive script loads rendering

data from the initial rendering, locates pixels in the rendering that fall within the target and destination pips, and reads final reflected

spectra F_target and F_destination from those pixels. The script can then estimate the spectrum of illumination I_destination at the

destination pip and calculate a new reflectance for the destination pip R_destination. Note that the spectral samplings S_renderer

and S_reflectance are not generally equal. Before performing element-wise arithmetic on spectra, the executive script uses the

SplineRaw() utility from the Psychophysics Toolbox to resample final reflected spectra to match the sampling of the reflectance

spectra.

Journal of Vision (2014) 14(2):6, 1–22 Heasly et al. 17

http://collada.org/mediawiki/index.php/ColladaMaya
http://collada.org/mediawiki/index.php/ColladaMaya
http://collada.org/mediawiki/index.php/SketchUp
http://collada.org/mediawiki/index.php/SketchUp

parent scene, for example, by translating and rotating
objects (see RadianceTest), by introducing multispec-
tral reflectances and illuminant power distributions (see
DragonColorChecker and SpectralIllusion), and by
introducing new types of materials and light sources
(see MaterialSphereBumps and Interior). RenderTool-
box3 can import multispectral colorimetric data from
the Psychophysics Toolbox and use utilities from the
Psychophysics Toolbox to manipulate spectra. Ren-
derToolbox 3 also provides utilities for adding textures
and bump maps to the surfaces of reflective objects as
in MaterialSphereBumps.

RenderToolbox3 users must write an executive script
in MATLAB that binds together a parent scene
Collada file with manipulations that are specified in a
conditions file and a mappings file and invokes
RenderToolbox3 utilities. Executive scripts are often
short (fewer than 100 lines) and follow a typical pattern
although they may be extended arbitrarily (as for the
SpectralIllusion). Together, the parent scene Collada
file, conditions file, mappings file, and executive script
constitute a complete recipe that RenderToolbox3 may
use to reproduce a family of renderings. The recipe also
serves as documentation of the renderings, which may
be accessed during the rendering workflow and during
later data analysis.

Specifying object reflectances is an important
manipulation for physically accurate rendering. Ren-
derToolbox3 allows users to specify multispectral
object reflectances that use arbitrary spectral sam-
pling. Users may also specify spatially varying
reflectances using bitmap textures that are based on
RGB image files and wrapped around reflective
objects. Unfortunately, PBRT and Mitsuba do not
currently allow for multispectral textures. However, it
is enticing to note that RenderToolbox3, PBRT, and
Mitsuba support the OpenEXR image format, which
can represent images with arbitrary spectral channels.
In principle, and with some development effort,
multichannel OpenEXR images could be used to
specify object reflectances that are both multispectral
and spatially varying.

As of version 1.1, RenderToolbox3 provides a utility
that exposes how renderers promote RGB reflectances
to internal multispectral sampling. This utility allows
users to predict how RGB reflectances and image
textures will behave during rendering even though it
does not allow users to specify arbitrary multispectral
textures. The RenderToolbox3 distribution includes the
RGBPromotion example, which demonstrates this
utility for PBRT and Mitsuba with a variety of RGB
reflectance values.

The Collada XML schema can represent shapes
using polygon meshes of arbitrary size and detail. But
Collada files, including those exported by Blender,
typically do not contain parametric descriptions of

curved shapes like disks or spheres. In order to achieve
smooth-looking curves, it is often necessary to use
meshes that contain many vertices, which can lead to
large, unwieldy Collada files. With some development
effort, it would be possible for RenderToolbox3 to
convert large meshes to specific parametric forms that
are defined by the supported renderers. As with
multispectral reflectances and illuminant power distri-
butions and physically based materials, converting
meshes to parametric forms would allow users to
improve the physical accuracy of scenes during batch
processing.

In addition to the batch-processing utilities de-
scribed above, RenderToolbox3 defines a Remodeler
Plugin API, which allows custom functions to modify
the Collada parent scene XML document on the fly
during batch processing. Remodeler functions may
facilitate modifications to Collada parent scenes that
would be difficult to perform otherwise. For example,
a remodeler function might perform stochastic mod-
ifications or add vertices to a mesh object by
performing interpolation. Modifications like these
would be difficult to accomplish using a modeling
application like Blender or by manually editing the
Collada document.

Each remodeler plugin must comprise a remodeler
name and one to three remodeling functions:

1. BeforeAll. A plugin’s BeforeAll function may
modify the Collada XML document once at the
start of batch processing and may affect all renderer
native scene files that are produced.

2. BeforeCondition. A plugin’s BeforeCondition func-
tion may modify the Collada XML document once
for each condition just before mappings are applied
and may affect the renderer native scene file for just
one condition.

3. AfterCondition. A plugin’s AfterCondition function
may modify the Collada XML document once for
each condition just after mappings are applied and
just before the parent scene is converted to a
renderer native scene file and may affect the renderer
native scene file for just one condition.

By default, RenderToolbox3 does not use any
remodeler. An executive script may specify one
remodeler at a time, using its remodeler name. The
RenderToolbox3 online documentation describes the
MaterialSphereRemodeled example, which demon-
strates how to define and use a custom remodeler.

Rendering

As of version 1.1, RenderToolbox3 supports two
physically based renderers, PBRT and Mitsuba, and
provides MATLAB utilities that handle details of

Journal of Vision (2014) 14(2):6, 1–22 Heasly et al. 18

invoking them. These renderers have largely overlap-
ping functionality, so often the same recipe may drive
each renderer. The toolbox automatically scales the
output from either renderer into physical radiance units
and stores the data in a consistent mat-file format. This
facilitates comparison and validation of renderer
behaviors and swapping between renderers.

The same batch-processing utilities that allow users
to manipulate scene elements also allow users to
manipulate and probe renderer behaviors. Many
behaviors may be manipulated equivalently for both
renderers, such as path tracing versus direct lighting
rendering strategies.

But users are not restricted to the subset of behaviors
that are supported by both renderers. Using renderer-
specific mappings and low-level path mappings, users
may specify and manipulate arbitrary renderer behav-
iors, including behaviors that only one renderer
supports. An example of the use of renderer-specific
features is provided in the CubanSphere example, in
which different renderer-specific material types and
their renderer-specific parameters are used for Mitsuba
and PBRT (see Appendix).

RenderToolbox3 works with PBRT and Mitsuba by
way of renderer plugins. Each plugin is a set of five
MATLAB m-functions that adapt key renderer be-
haviors to make them compatible with RenderTool-
box3. Additional plugins could be written to allow
RenderToolbox3 to work with additional renderers.
The five required m-functions and associated renderer
behaviors are the following:

1. VersionInfo. A plugin’s VersionInfo function must
gather version information about the renderer to be
stored along with each rendering produced by the
renderer.

2. ApplyMappings. A plugin’s ApplyMappings func-
tion must receive data from the mappings file and
collect the data in a renderer native format.

3. ImportCollada. A plugin’s ImportCollada function
must combine a Collada parent scene file with data
that was collected by the ApplyMappings function
and produce a new renderer native scene descrip-
tion.

4. Render. A plugin’s Render function must accept a
renderer native scene description as produced by the
ImportCollada function and invoke the renderer in
order to produce a multispectral rendering.

5. DataToRadiance. A plugin’s DataToRadiance
function must accept a multispectral rendering
produced by the Render function and convert the
data to units of physical radiance.

Renderer plugin functions must conform to the
RenderToolbox3 Renderer Plugin API. That is, they
must obey specific conventions for function naming,
expected inputs, and expected outputs. But the inner

details of each plugin function are unspecified and may
be tailored to each renderer. For example, a plugin
might invoke a renderer like PBRT or Mitsuba that is
an external application separate from MATLAB.
Another plugin might invoke a renderer that is
implemented entirely within MATLAB. Yet another
plugin might invoke a renderer that is implemented as a
remote web service. These implementation choices
would be circumscribed by the respective renderer
plugins, so the overall RenderToolbox3 workflow
would be unaffected.

The Mitsuba renderer plugin almost entirely uses
built-in Mitsuba functionality. The Mitsuba Version-
Info function returns a description Mitsuba’s execut-
able file, including the file creation date. The Mitsuba
ApplyMappings function collects mapping data in an
adjustments file that has the same format as a Mitsuba
native scene file. The Mistuba ImportCollada function
invokes Mitsuba’s built-in Collada importer. The
Mitsuba Render function invokes the Mitsuba appli-
cation itself, which performs multispectral rendering
internally and produces outputs as multichannel
OpenEXR files with wavelength-by-wavelength granu-
larity. Finally, the Mitsuba DataToRadiance function
scales renderings by a precomputed constant (see
RadianceTest).

The PBRT renderer plugin supplements built-in
PBRT functionality with custom functionality. The
PBRT VersionInfo function returns a description of
PBRT’s executable file, including the file creation date.
The PBRT ApplyMappings function collects mappings
data in an adjustments file that has a custom XML
format. The PBRT ImportCollada function uses
custom m-functions to combine a Collada parent scene
file with the custom adjustments file and produce a
PBRT native scene file. The PBRT Render function
invokes a modified version of PBRT called pbrt-v2-
spectral, which adds support for multispectral outputs
with wavelength-by-wavelength granularity (https://
github.com/ydnality/pbrt-v2-spectral). Finally, the
PBRT DataToRadiance function scales renderings by a
precomputed constant that is valid for a particular set
of rendering strategies (see RadianceTest and Sca-
lingTest in Appendix). The RenderToolbox3 online
documentation provides instructions for obtaining
pbrt-v2-spectral and compiling it to use arbitrary
spectral sampling.

The Renderer Plugin API also allows users to extend
RenderToolbox3 by developing custom plugins that are
not part of the official RenderToolbox3 distribution.
For example, a user might develop a modified Mitsuba
or PBRT plugin for performing monochrome rendering
or RGB rendering rather than multispectral rendering.
Or a user might develop a plugin for an entirely new
renderer. These users would not have to wait for
RenderToolbox3 to officially support the same modi-

Journal of Vision (2014) 14(2):6, 1–22 Heasly et al. 19

https://github.com/ydnality/pbrt-v2-spectral
https://github.com/ydnality/pbrt-v2-spectral

fications or renderers. Another potential use of the
Renderer Plugin API might be to incorporate a binary
mesh specification during the conversion of Collada to
a renderer native format for a renderer that supported
use of binary meshes. If such a mesh were substituted
for a text mesh placeholder produced by the modeler,
this could increase efficiency for handling very large
meshes, albeit at a cost in portability.

A previous version of the RenderToolbox (version 2)
supported Radiance, another open-source, physically
based renderer. In principle, a RenderToolbox3 ren-
derer plugin could be written for Radiance, but doing
so would require some development effort. Because
Radiance does not perform multispectral rendering
internally, the Radiance Render function would have to
invoke Radiance multiple times, once for each wave-
length. This approach would incur a performance
penalty because it would require Radiance to repeat
time-consuming geometric calculations at each wave-
length. A Radiance ApplyMappings function would
need to be developed to collect RenderToolbox3
mappings data in a Radiance native format. A
Radiance ImportCollada function would need to be
developed to combine a Collada parent scene file with
mappings data and produce a Radiance native scene
file. Finally, a Radiance DataToRadiance function
would need to be developed to scale renderings to units
of physical radiance. It would require some investiga-
tion to determine the correct radiometric unit factor for
Radiance and to determine which nonradiometric
rendering parameters affect the scaling of Radiance
outputs.

Renderer plugins might also be written for some
commercially available renderers. Arion (http://www.
randomcontrol.com/
documentation?section¼what-is-light) and Maxwell
(http://support.nextlimit.com/display/maxwelldocs/
IntroductionþtoþMaxwell) are two commercial ren-
derers that aim for physical accuracy and perform
multispectral rendering internally. We have not inves-
tigated these renderers in detail, including whether or
not they have built-in Collada importers, whether they
can produce multispectral outputs with wavelength-by-
wavelength granularity, or which nonradiometric ren-
dering parameters might affect their output scaling.

Blender itself supports two renderers, which are
integrated with Blender’s 3-D modeling environment.
We have used these renderers to produce quick previews
of scenes during modeling. We have not investigated the
feasibility of a RenderToolbox3 renderer plugin for the
Blender renderers. For example, we have not investi-
gated whether the Blender renderers aim for physical
accuracy, whether they can import Collada inputs from
an external application like RenderToolbox3, whether
they can perform multispectral rendering, or whether

they can produce multispectral outputs with wave-
length-by-wavelength granularity.

Image processing

The Rendering step produces multispectral data files,
which are rich in information but difficult to visualize.
RenderToolbox3 provides utilities to convert multi-
spectral data to sRGB images and montages and sensor
images based on arbitrary color-matching functions.
These representations are better suited for review and
delivery to subjects.

RenderToolbox3 also facilitates analysis of multi-
spectral renderings themselves. The toolbox produces
renderings in a consistent mat-file format, using
physical radiance units. Multispectral data in this form
are available for analysis with any of the various
MATLAB analysis tools.

The toolbox includes specific examples of multispec-
tral analyses that validate renderers with respect to
physical principles and to each other. Such analyses can
use parameters that were specified as part of the original
rendering recipe. For example, analyses performed for
the SimpleSquare, RadianceTest, and SpectralIllusion
examples make use of the ParseConditions() utility,
which reads RenderToolbox3 conditions files into
MATLAB. A similar ParseMappings() utility reads
mappings files into MATLAB. Providing direct access
to recipe parameters facilitates detailed analysis and
reduces the need for redundant data entry and the
potential for data entry errors. Analyses like these allow
users to build on assumptions about correct rendering
behavior to create stimuli like the Interior and the
SpectralIllusion that are both intricate and accurate.

Summary

In summary, RenderToolbox3 provides utilities and
prescribes a workflow that should be useful to
researchers who want to employ graphics in the study
of vision and perhaps in other endeavors as well. This
paper describes the design and functionality of the
toolbox and discusses several examples that demon-
strate rendering utilities and a workflow involving 3-D
modeling, batch processing of a 3-D parent scene,
rendering to produce a family of related renderings,
and image processing to produce viewable images and
do other analyses. We have designed RenderToolbox3
to be portable across computer hardware and operating
systems and to be free and open source (except
MATLAB). Using open-source software has allowed us
to extend the toolbox, for example, by incorporating a
modified version of the renderer PBRT, and invites
further extensions.

Journal of Vision (2014) 14(2):6, 1–22 Heasly et al. 20

http://www.randomcontrol.com/documentation?section=what-is-light
http://www.randomcontrol.com/documentation?section=what-is-light
http://www.randomcontrol.com/documentation?section=what-is-light
http://www.randomcontrol.com/documentation?section=what-is-light
http://support.nextlimit.com/display/maxwelldocs/Introduction+to+Maxwell
http://support.nextlimit.com/display/maxwelldocs/Introduction+to+Maxwell
http://support.nextlimit.com/display/maxwelldocs/Introduction+to+Maxwell
http://support.nextlimit.com/display/maxwelldocs/Introduction+to+Maxwell

This paper describes version 1.1 of RenderToolbox3.
For future versions, we would welcome contributions
that improve or extend RenderToolbox3 and its
documentation or that enhance its interactions with
other software tools. Interested users, please visit the
RenderToolbox3 site. In particular, please see our list
of known issues and features in progress (https://
github.com/DavidBrainard/RenderToolbox3/issues)
and consider joining the RenderToolbox3 team
(https://github.com/DavidBrainard/RenderToolbox3/
wiki/Join-Us).

Keywords: vision science, stimuli, graphics rendering,
color, material perception

Acknowledgments

We thank Paul Kanyuk and Ana Radonjić for
testing and suggestions. Andy Lai Lin and Brian
Wandell developed and shared the spectral version of
PBRT that we use. Supported by NIH R01 EY10016.

Commercial relationships: none.
Corresponding author: David H. Brainard.
Email: brainard@psych.upenn.edu.
Address: Department of Psychology, University of
Pennsylvania, Philadelphia, PA, USA.

Footnotes

1The internal spectral sampling used by the renderers
is determined when they are compiled. Spectra specified
at other samplings are converted by the renderers to
their internal sampling. RGB values are promoted to
the same internal sampling. We compile renderers to
sample the spectrum using 31 evenly spaced bins, each
10 mn wide, spanning the range 395 nm through 705
nm. This choice of spectral sampling is arbitrary and
represents a tradeoff between spectral precision and
rendering time.

2The results of the RadianceTest example do not
distinguish whether renderer output is in units of reflector
radiance, in units of irradiance at the camera sensor, or in
units representing the linear response of camera sensor
elements as these quantities are linearly related to each
other for fixed camera aperture, exposure duration, and
sensor properties. A second set of tests implemented in
the ScalingTest example provided with RenderToolbox3
(see Appendix), however, suggests that the renderers are
providing images whose intensive quantity is best
thought of as source radiance.

3During the RadianceTest itself, the radiometric unit
factor for each renderer is set to unity.

4The SimpleSquare example provided with Render-
Toolbox3 verifies this principle for both PBRT and
Mitsuba with a variety of reflectances (see Appendix).

References

Brainard, D. H. (1997). The Psychophysics Toolbox.
Spatial Vision, 10(4), 433–436.

Brainard, D. H., Pelli, D. G., & Robson, T. (2002).
Display characterization. In Encyclopedia of Imag-
ing science and technology (pp. 72–188). New York:
Wiley.

Brainard, D. H., & Stockman, A. (2010). Colorimetry.
In M. Bass, C. DeCusatis, J. Enoch, V. Lakshmi-
narayanan, G. Li, C. Macdonald, V. Mahajan, &
E. van Stryland (Eds.), The Optical Society of
America handbook of optics, 3rd edition, Volume III:
Vision and vision optics (pp. 10.11–10.56). New
York: McGraw Hill.

Butler, D. J., Wulff, J., Stanley, G. B., & Black, M. J.
(2012). A naturalistic open source movie for optical
flow evaluation. (pp. 611–625). Paper presented at
European Conference on Computer Vision, Flor-
ence, Italy, October 2012.

CIE. (2004). Colorimetry, third edition (No. 15.2004).
Vienna: Bureau Central de la CIE.

Delahunt, P. B., & Brainard, D. H. (2004). Does
human color constancy incorporate the statistical
regularity of natural daylight? Journal of Vision,
4(2):1, 57–81, http://www.journalofvision.org/
content/4/2/1/, doi:10.1167/4.2.1. [PubMed]
[Article]

Fleming, R. W., Dror, R. O., & Adelson, E. H. (2003).
Real-world illumination and the perception of
surface reflectance properties. Journal of Vision,
3(5):3, 347–368, http://www.journalofvision.org/
content/3/5/3, doi:10.1167/3.5.3. [PubMed]
[Article]

Jakob, W. (2010). Mitsuba renderer. http://www.
mitsuba-renderer.org.

Kim, J., Marlow, P. J., & Anderson, B. L. (2012). The
dark side of gloss. Nature Neuroscience, 15, 1590–
1595.

Larson, G. W., & Shakespeare, R. (1998). Rendering
with radiance: The art and science of lighting
visualization. San Francisco: Morgan Kaufman
Publishers.

Lotto, R. B., & Purves, D. (1999). The effects of color
on brightness. Nature Neuroscience, 2(11), 1010–
1014.

McCamy, C. S., Marcus, H., & Davidson, J. G. (1976).

Journal of Vision (2014) 14(2):6, 1–22 Heasly et al. 21

https://github.com/DavidBrainard/RenderToolbox3/issues
https://github.com/DavidBrainard/RenderToolbox3/issues
https://github.com/DavidBrainard/RenderToolbox3/wiki/Join-Us
https://github.com/DavidBrainard/RenderToolbox3/wiki/Join-Us
http://www.journalofvision.org/content/4/2/1/
http://www.journalofvision.org/content/4/2/1/
http://www.ncbi.nlm.nih.gov/pubmed/15005648
http://www.journalofvision.org/content/4/2/1.long
http://www.journalofvision.org/content/3/5/3
http://www.journalofvision.org/content/3/5/3
http://www.ncbi.nlm.nih.gov/pubmed/12875632
http://www.journalofvision.org/content/3/5/3.long
http://www.mitsuba-renderer.org
http://www.mitsuba-renderer.org

A color-rendition chart. Journal of Applied Photo-
graphic Engineering, 2(3), 95–99.

Pharr, M., & Humphreys, G. (2010). Physically based
rendering: From theory to implementation (2nd ed.).
San Francisco: Morgan Kaufmann Publishers.

Ruppertsberg, A. I., & Bloj, M. (2007). Reflecting on a
room of one reflectance. Journal of Vision, 7(13):12,
1–13, http://www.journalofvision.org/content/7/13/
12, doi:10.1167/7.13.12. [PubMed] [Article]

Wandell, B. A. (1987). The synthesis and analysis of
color images. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 9, 2–13.

Ward, G. J. (1992, July). Measuring and modeling
anisotropic reflection. ACM SIGGRAPH Computer
Graphics, 26(2), 265–272.

Wyszecki, G., & Stiles, W. S. (1982). Color science –
Concepts and methods, quantitative data and for-
mulae (2nd ed.). New York: John Wiley & Sons.

Xiao, B., Hurst, B., MacIntyre, L., & Brainard, D. H.
(2012). The color constancy of three-dimensional
objects. Journal of Vision, 12(4):6, 1–15, http://

www.journalofvision.org/content/12/4/6, doi:10.
1167/12.4.6. [PubMed] [Article]

Yang, J. N., & Maloney, L. T. (2001). Illuminant cues
in surface color perception: Tests of three candidate
cues. Vision Research, 41, 2581–2600.

Appendix

The RenderToolbox3 source code distribution con-
tains many fully functional examples, which demon-
strate toolbox features and workflows. As of version
1.1, these include 16 parent scenes and 31 executive
scripts. This appendix lists the name of each example
scene, the name or names of executive scripts that may
be executed in MATLAB to generate a family of
related renderings, and a short description of the parent
scene and any manipulations. Online documentation
about each example may be found at https://github.
com/DavidBrainard/RenderToolbox3/wiki.

Parent scene name Executive script name(s) Scene description

BlenderPython MakeCheckerShadowScene Modeled procedurally using Blender’s Python API

Checkerboard MakeCheckerboard Binocular checkerboard test pattern

CoordinatesTest MakeCoordinatesTest Test pattern for coordinate systems and geometric

transformations

CubanSphere MakeCubanSphere, MakeCubanSphereTextured Camera motion about a cube and a sphere with variant

that uses a textured sphere

Dice MakeDice textured dice depicted in mid-roll

Dragon MakeDragon, MakeDragonColorChecker,

MakeDragonMaterials, MakeDragonGraded

Stanford dragon model with variants that use Color

Checker reflectances, various materials, and graded

reflectances

Interior MakeInterior, MakeInteriorDragon Furnished room from NextWave multimedia with Stanford

dragon variant

Interreflection MakeInterreflection, MakeInterreflectionFigure Test of reflections between objects with results summary

figure

MaterialSphere MakeMaterialSphere, MakeMaterialSphereBumps,

MakeMaterialSpherePortable,

MakeMaterialSphereRemodeled

Sphere rendered in various materials with portable and

bump map variants

RadianceTest MakeRadianceTest, MakeRadianceTestFigure Test of radiometric principles with results summary figure

RGBPromotion MakeRGBPromotionFigure Exposition of renderer promotion of RGB to internal

multispectral sampling

ScalingTest MakeScalingTest, MakeScalingTestFigure Test of nonradiometric renderer output scaling with results

summary figure

SimpleSphere MakeSimpleSphere, MakeMatlabSimpleSphere,

MakeSimpleSphereFigure

Test of rendering Ward model sphere under point light

and orthogonal projection with results summary figure

SimpleSquare MakeSimpleSquare, MakeSimpleSquareFigure Test of multispectral reflectance principle with results

summary figure

SpectralIllusion MakeSpectralIllusion Visual illusion by iterative rendering and analysis

TableSphere MakeTableSphere, MakeTableSphereFigure Test of illuminants and reflections between objects with

results summary figure

Table A1.

Journal of Vision (2014) 14(2):6, 1–22 Heasly et al. 22

http://www.journalofvision.org/content/7/13/12
http://www.journalofvision.org/content/7/13/12
http://www.ncbi.nlm.nih.gov/pubmed/17997640
http://www.journalofvision.org/content/7/13/12.long
http://www.journalofvision.org/content/12/4/6
http://www.journalofvision.org/content/12/4/6
http://www.ncbi.nlm.nih.gov/pubmed/22508953
http://www.journalofvision.org/content/12/4/6.long
https://github.com/DavidBrainard/RenderToolbox3/wiki
https://github.com/DavidBrainard/RenderToolbox3/wiki

	Introduction
	Toolbox design and workflow
	f01
	Examples
	f02
	f03
	f04
	f05
	f06
	Discussion
	n1
	n2
	n3
	n4
	Brainard1
	Brainard2
	Brainard3
	Butler1
	CIE1
	Delahunt1
	Fleming1
	Jakob1
	Kim1
	Larson1
	Lotto1
	McCamy1
	Pharr1
	Ruppertsberg1
	Wandell1
	Ward1
	Wyszecki1
	Xiao1
	Yang1
	Appendix
	t01

