
Alternative Thresholding Methods for FMRI Data Optimized for
Surgical Planning

William L. Grossa,1 and Jeffrey R. Bindera

aMedical College of Wisconsin, 8701 W. Watertown Plank Rd., Milwaukee, WI 53226

Abstract
Current methods for thresholding functional magnetic resonance imaging (fMRI) maps are based
on the well-known hypothesis-test framework, optimal for addressing novel theoretical claims.
However, these methods as typically practiced have a strong bias toward protecting the null
hypothesis, and thus may not provide an optimal balance between specificity and sensitivity in
forming activation maps for surgical planning. Maps based on hypothesis-test thresholds are also
highly sensitive to sample size and signal-to-noise ratio, whereas many clinical applications
require methods that are robust to these effects. We propose a new thresholding method,
optimized for surgical planning, based on normalized amplitude thresholding. We show that this
method produces activation maps that are more reproducible and more predictive of postoperative
cognitive outcome than maps produced with current standard thresholding methods.
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1. Introduction
Despite extensive research exploring potential clinical applications of fMRI, many clinicians
remain skeptical of brain mapping as a clinical tool. Clinicians frequently fault current fMRI
methods for their perceived variability and questionable accuracy. Although studies using
large groups of subjects generally produce consistent results (Frost et al., 1999; Thirion et
al., 2007), similar stability is not always obtained in individual subject maps with the
variable data quality found under common clinical conditions (Detre, 2006; Machielsen,
Rombouts, Barkhof, Scheltens, & Witter, 2000). In applications where reliable results are
required for individual subjects under conditions of variable data quality (e.g., presurgical
mapping), the measurement variability in current imaging methods may lead to hesitancy in
adopting these methods.

The validity of the fMRI signal and its coupling to neural activity (by way of blood oxygen-
level dependent, or BOLD, contrast) are now well established (Logothetis & Pfeuffer,
2004). However, many factors can influence the location and magnitude of the underlying
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neural activity, some of which are difficult to adequately control (e.g., cognitive strategy,
level of effort, and noise sources like degree of head motion). Variation in these factors
often leads to a high degree of variability observed within and across individual subject
maps, even when noise from hardware and vascular systems are held constant. Because
fMRI is a relatively new modality and the data produced are complex, analytical techniques
to handle these data are still maturing (Logan, Geliazkova, & Rowe, 2008; Turner,
Howseman, Rees, Josephs, & Friston, 1998). While some de facto standards of data analysis
exist, there is no strong consensus on the most valid and powerful statistical thresholding
methods. This ambivalence within the field contributes to a lack of confidence in fMRI
results. Here we propose a new method of thresholding data for surgical planning based on
statistical theory, combined with a consideration of the specific goals of presurgical
functional mapping. We then compare this method with two other approaches, using
reproducibility and clinical predictive value as metrics for comparison.

1.1. Current thresholding methods
Current methods of statistical thresholding for functional images are based on a direct
analogue from traditional hypothesis-testing, applying a fixed p-value cutoff to each voxel
(Friston, Frith, Liddle, & Frackowiak, 1991). Because this test is applied repeatedly to
thousands of voxels, it must be adjusted for multiple comparisons using family-wise error
correction. Several correction methods exist, each having trade-offs in sensitivity and
specificity. The Bonferroni correction, which treats each statistical test as independent, is the
most strict and straightforward method (Locascio, Jennings, Moore, & Corkin, 1997).
However, threshold values derived from this method are overly conservative for most
imaging applications because the information contained in adjacent voxels is not
independent (Petersson, Nichols, Poline, & Holmes, 1999). While there are a large number
of comparisons performed (proportional to the number of voxels), the actual information
content of the image is relatively much smaller.

The most common method currently used in fMRI research combines the traditional p-value
threshold with a required minimum number of contiguous voxels (commonly referred to as a
“cluster size threshold”). This latter requirement is based on the assumption, borne out by
many observations, that functional imaging data are spatially correlated, and true positive
activation tends to occur in clusters of contiguous voxels (Forman et al., 1995). Several
methods can be used to derive threshold cluster sizes, including Monte Carlo procedures or
Gaussian random field theory (Petersson et al., 1999), to produce maps with an acceptable
global alpha level.

1.2. Limitations of the hypothesis-testing framework in clinical fMRI
Traditional hypothesis-testing is based on a test statistic, such as the t- or F-value, that
depends not only on the size of the effect but also on the variance associated with its
measurement (i.e., degree of random noise) and the number of measurements. Consequently,
even relatively large effects can fail to reach significance when noise levels are high. Noise
in fMRI is the result primarily of head motion and non-neural physiological (cardiac and
respiratory) activity. Averaging of data both within and across subjects is used to suppress
the effect of these random signals, but the success of this approach is highly dependent on
sample size (Voyvodic, Petrella, & Friedman, 2009; Voyvodic, 2006). In the case of
research studies involving averaging a group of subjects, there is usually an opportunity to
increase statistical power by adding more subjects. In single-subject clinical applications, the
stability of activations – particularly the activation border – is critical (Voyvodic, 2006), yet
increasing the sample size (i.e., number of images averaged) is limited by many practical
factors, such as patient comfort. These differences in application require a different
approach when creating maps for presurgical applications.
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The hypothesis-testing framework is also problematic for clinical fMRI because of its
inherently conservative nature (Daniel, 1998; Shaver, 1993). A test against the null
hypothesis tacitly assumes that no effect is present unless there is overwhelming evidence
proving that there is. This logic works well for directing progress in basic research, where
the null hypothesis is a conservative, safe choice (i.e., not believing anything until it has
been thoroughly tested). In the context of surgical planning, however, “null” may not be a
safe default. Declaring a region of the brain to be inactive may support the decision of a
surgeon to resect it. On the other hand, declaring a region active may lead to the
preservation of potentially disease-causing tissue (e.g., cancer or epileptogenic tissue). In
this context, bias in either direction is problematic. Rather than a conservative test that
assumes a null hypothesis, a direct measure of the response magnitude may be the most
useful information in this situation.

Finally, it is important to note a common fallacy of interpretation in hypothesis-testing, i.e.,
that significance implies importance (Keppel & Zedeck, 1989). Because of the relationship
between sample size, variability, and significance levels, even trivially small effects can
become extremely “significant”, given a sufficiently large number of samples or sufficiently
low variability (Chow, 1988; Daniel, 1998). While such effects are “significant” according
to a standard hypothesis-test, they may be so small that they are not practically relevant. To
avoid such misinterpretation, statisticians recommend always reporting effect size
measurements along with p-values (Levin, 1993; McLean & Ernest, 1998), allowing the
reader to subjectively judge the importance of an effect. On the other hand, as noted above,
even large effects can be declared “non-significant” because of an insufficient sample size
relative to measurement variability (i.e., a Type II error due to lack of power).

1.3. Alternative thresholding methods
Many authors have discussed alternative methods for thresholding brain activation maps
within the traditional hypothesis-testing framework, usually with a focus on maximizing
detection power while controlling family-wise error (Fadili & Bullmore, 2004; Friston &
Penny, 2003; Hartvig & Jensen, 2000). Only one method has been discussed as an
alternative to the traditional framework (Voyvodic et al., 2009; Voyvodic, 2006, 2012). This
approach, named “activation mapping as a percentage of local excitation” (AMPLE),
normalizes t-value maps by the peak t-value in a specified region of interest (ROI). This
normalization produces unit-less ratios, which are then thresholded at a predetermined level.
Voyvodic and colleagues found that applying this technique to motor cortex activation maps
produced stable maps across different scan durations, whereas traditional p-value
thresholding created maps that were strongly scan-time (i.e., sample size) dependent
(Voyvodic et al., 2009). Voyvodic (2012) also applied this analysis to a language-mapping
paradigm, showing that several metrics derived from AMPLE-thresholded maps – including
laterality index (LI), spatial extent, and location of activation clusters – were more consistent
than those derived from t-value thresholded maps.

While the AMPLE approach is promising, several potential problems need to be considered.
A significant limitation of the previously mentioned studies is that the thresholds used were
chosen arbitrarily and were not equated on levels of strictness. As discussed in the Methods
below, differences in strictness can induce large differences in reliability, confounding the
conclusions of these studies that AMPLE is more reliable. Additionally, a ratio of t-values is
an unfamiliar statistic, with no obvious meaning or commonly known distribution. A t-value
is a combination of amplitude (x), sample standard deviation (s), and sample size (n). If all
voxels of interest have similar standard deviations, the ratio of their t-values will effectively
be a measure of percent signal (see Equation 1). When the standard deviations are unequal
(e.g., the standard deviation of an individual voxel is much greater than the peak voxel
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standard deviation), the final value will be weighted by their ratio (see Equation 2). When
the peak voxel has a relatively low standard deviation, this has the effect of minimizing
activation from voxels with a large standard deviation. Although the AMPLE method allows
blending of these two statistics, if percent signal and standard deviation are the metrics of
interest, using them directly might be more informative and adaptable.

An additional problem with the AMPLE method is that normalizing by the peak t-value
from the ROI confounds the normalization procedure with the activation observed. For
example, if a region of activation maintains a similar spatial extent, but doubles in
magnitude, the activation would appear identical before and after this change (and
surrounding activations will actually decrease). The AMPLE method is correctly insensitive
to changes in signal noise and sample size, but is also insensitive to overall magnitude
changes.

1.4. Amplitude-based thresholding
Hypothesis-test statistics indicate the size of a measurement relative to the measurement
error, thus they capture the degree of confidence in the measurement (Keppel & Zedeck,
1989). In contrast, parameter estimates of the sample (e.g., mean amplitude) are defined as
the most likely value for a given parameter (Keppel & Zedeck, 1989), and are independent
of sample size and measurement variability. To illustrate this difference, consider that
quadrupling the number of measurements in a sample will double its t-value, while the mean
value will be similar (assuming the original estimate was relatively accurate). While noise
and sample size have strong effects on the confidence in the data, they do not change the
estimate of the data.

We propose that, within certain limits, the estimate of fMRI response amplitude is more
relevant for neurosurgical applications than is the degree of confidence that the response is
present. Mean response amplitude is roughly proportional to neural activation (Logothetis,
2003; Rees, Friston, & Koch, 2000), thus maps representing mean response amplitude
provide a more direct representation of the degree of involvement of a brain region in an
activity than a map of p-values. This should come as no surprise, as mean amplitude is the
primary metric used for visual presentation of data in all fields of study. When creating bar
graphs, for example, the value typically graphed is the mean, not the t-statistic. Other
statistics are annotated on the graph (e.g., with error bars and asterisks), but the primary
visual representation of the data is the mean value, rather than the statistic. Values that fail
to reach significance are not displayed as “zero,” rather they are displayed at their best-
estimated value, along with appropriate qualifiers. In contrast, graphing t-values would
provide a representation of the confidence that the mean values in question are reliable, but
no information about the actual magnitude of the means.

Based on these considerations, we hypothesized that an amplitude-based thresholding
method will provide more informative maps for surgical applications. We compared
amplitude-based thresholding, standard p-value thresholding, and the AMPLE method on
two clinically relevant measures: test-retest reliability and prediction of clinical outcome.
Optimally, under conditions where the underlying neural activity is stable, a thresholding
method should produce values with minimal additional variability. For the reliability metric,
we used Dice’s coefficient of similarity (Dice, 1945) to measure the similarity between two
independently thresholded fMRI maps obtained from the same individual. For outcome
prediction, we compared maps produced using these methods on their ability to predict
postsurgical cognitive outcome, using previously collected patient data. These data
previously revealed significant correlations between activation-based metrics and patient
outcomes in epilepsy surgery (Binder et al., 2008; Sabsevitz et al., 2003). We re-analyzed
these data using all three thresholding methods. The strongest correlation was achieved
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using amplitude-based thresholding, supporting the hypothesis that this method more
reliably identifies activation that is functionally relevant, which is the principal goal of
presurgical mapping.

2. Methods
2.1. Subjects

Data from a series of 71 healthy control subjects who underwent fMRI language mapping
using a semantic decision task (Binder et al., 1997) were used to test the reliability of each
thresholding method. The sample included 30 men and 41 women. Their average age was
35.6 years. All were right-handed and spoke English as a first language.

Data for the outcome analysis were taken from a previous study by Binder et al. (2008). In
this study, 60 epilepsy patients were studied with the same semantic decision fMRI protocol
prior to left temporal lobe resection, and underwent pre- and postoperative
neuropsychological testing to assess change in cognitive abilities. Of these, 51 had
sufficiently complete data to be entered into a multivariate prediction analysis and were
included in the present study. This sample included 23 men and 28 women. Their average
age was 37.3 years. Of these patients, 39 were right-handed, 11 left-handed, and one was
ambidextrous.

2.2. FMRI methods
The fMRI methods employed here were described in detail previously (Binder et al., 1997;
Binder et al., 2008; Frost et al., 1999). In brief, the task protocol consisted of alternating 24-
sec blocks of a semantic decision task and a tone decision task. In the semantic decision
task, individuals listened to animal names and were instructed to press a button if the animal
was both found in the United States and used by humans. In the tone decision task,
individuals listened to brief sequences of high (750 Hz) and low (500 Hz) tones and were
instructed to press a button if they heard a sequence containing two high tones. The contrast
of the semantic decision task with the tone decision task isolates speech perception and
semantic language processes while controlling for attention, working memory, auditory, and
motor processes. This contrast produces left-lateralized language activation in frontal,
temporal, and parietal areas in healthy right-handed controls (Binder et al., 1997; Binder et
al., 2008; Frost et al., 1999).

As described elsewhere (Binder et al., 1997; Frost et al., 1999), imaging was conducted on
commercial 1.5T and 3T GE MRI scanners. High-resolution, T1-weighted anatomic
reference images were obtained using a three-dimensional spoiled-gradient-echo sequence.
Functional imaging used a gradient-echo T2*-weighted echoplanar sequence. Echoplanar
image volumes were acquired as contiguous sagittal or axial slices covering the whole brain.
Scanning parameters, including in-plane voxel size and slice thickness, varied slightly across
both samples. Slice number varied from 36 to 47 slices (average: 39.2, SD: 2.6). This
variability further tested the robustness of the thresholding methods.

Image processing and statistical analyses were performed using AFNI software (Cox, 1996).
All analyses were performed at the individual subject level. Volumetric image registration
was used to reduce the effects of head movement. Task-related changes in MRI signal were
identified using a multivariable general linear regression model. The predicted task effect
was modeled by convolving a gamma function with a time series of impulses representing
each task trial. Movement vectors (computed during image registration) and a second-order
linear trend were included as covariates of no interest. The results of the regression analysis
include a map of amplitude values (beta coefficients), which represent the estimated mean
difference in BOLD signal amplitude between the semantic decision and tone decision tasks
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at each voxel, and a map of t-values, which represent the statistical reliability of this task
effect at each voxel.

2.3. Thresholding procedures
Example activation maps from individual subjects, thresholded using each of the following
three methods, are shown in Figures 1 and 2 to demonstrate representative patterns.
Although particular regions may have more or less activation in certain thresholding
methods, the thresholds were set such that the total number of voxels declared active in each
method, averaged across subjects, was equal.

2.3.1. Amplitude thresholding—The maps of mean difference in BOLD signal
amplitude between task conditions were used for amplitude-based thresholding. Because
MRI signal values use an arbitrary scale that can vary due to many factors (including
temperature and hardware gain), raw amplitude values were converted to a percentage of the
average signal within a whole brain mask, on a per-subject basis. Commonly used percent
signal methods use the local voxel-wise baseline signal value, however these methods are
subject to large artifacts from misalignment and heterogeneity in baseline values. This is
particularly seen along the edges of structures where small amounts of motion can shift
voxels from one baseline value to another and dramatically change their percent value. We
theorized that using a baseline signal average across the whole brain would result in more
stable values. Because this is not the standard method of computing percent signal, we refer
to this method as normalized signal (n-signal). The method used to select a threshold for n-
signal is described below in the section “Threshold calibration”.

2.3.2. Hypothesis-test thresholding—Maps of t-values calculated from the task
contrast were used for this analysis. A t-value threshold was calculated based on the p-value
target of p < 0.001.

2.3.3. AMPLE—The AMPLE method was applied to the t-value maps using a slight
modification of the published methods (Voyvodic, 2006). Instead of normalizing the t-
values to the single peak t-value in a hand-drawn ROI as in the original method, the t-value
maps were divided by the 98th percentile value in each individual map, within a whole brain
mask. The 98th percentile was chosen over the peak value to be more robust to outliers.
These t-value ratio maps were then thresholded at the calculated value described in the next
section.

2.4. Threshold calibration
To avoid artifactual differences in the comparison metrics due to differences in threshold
strictness, threshold levels were set to produce a similar spatial extent of activation (i.e.,
similar number of voxels surviving the threshold) for each method. The similarity of
activated areas across maps is related to the threshold level used and follows a roughly
parabolic function. At very lenient thresholds (e.g., p < 1.0), nearly all voxels will be
selected, thus all maps will be highly consistent. Conversely, at very strict thresholds (e.g., p
= 0.0), no voxels will be selected, again resulting in artificially high levels of consistency.
Because of this relationship, a procedure to equate the three thresholding methods on their
absolute strictness is required. To accomplish this, threshold strictness was quantified as the
average, across all subjects, of the percentage of a whole brain mask that was declared
activated. For example, a fairly strict threshold level may correspond to an average of 5% of
the brain being declared as active, whereas a lenient threshold may correspond to 30% of the
brain declared active. Because this is not a commonly used metric, Figure 3 shows examples
of different threshold levels in terms of percent of brain active.
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For the following tests, thresholds resulting in 5.79% active voxels were used. This is the
mean percentage of the brain volume activated across the sample of control subjects after
thresholding each subject’s t-value map at a p-value of 0.001, a threshold often used in
functional imaging studies. A simple non-linear optimization method was then used to find
the closest threshold for the n-signal and AMPLE methods that corresponded to 5.79% brain
activity. Thresholds were repetitively chosen and then applied to the data in each subject.
The mean percent brain activity across the entire sample was then measured, the threshold
was updated, and the process continued until the mean percent brain activity was within
0.01% of 5.79% (i.e., an absolute difference of < 0.000579%). The final derived threshold
for the AMPLE method was 0.425 (corresponding to 42.5% of the per-subject 98th
percentile t-value). For the n-signal threshold, the final value used was 0.92% (i.e., a signal
change equal to 0.92% of the per-subject average intraparenchymal raw signal value).

2.5. Split-half reliability assessment
The first metric used to compare the thresholding methods assesses intra-subject variability
in fMRI maps. Data from individual subjects were randomly split into two data sets and
analyzed separately. These results were then compared using Dice’s coefficient of similarity
(Dice, 1945), which measures the amount of consistency between two sets of items.
Coefficients can range from 0.0 to 1.0, with 1.0 indicating identical sets. Thresholding
methods that produce consistent results should produce high values for this metric.

To split the data into two halves with the least amount of bias, a single raw fMRI time series
was divided randomly, volume-by-volume, in a temporally noncontiguous fashion. This was
done using the censor feature of the AFNI program “3dDeconvolve” to remove individual
data points, while preserving global timing information. Each pair of results for a given
subject was created by first randomly selecting 50% of the data points from the subject’s
time series, analyzing them, and then analyzing their complement independently. The same
threshold was applied to both resultant maps, and a Dice coefficient was calculated
(Equation 3) to quantify their degree of overlap. These values were then averaged across
subjects to yield a mean coefficient for each threshold value. This procedure was repeated
for 50 iterations, selecting a new random sample of data points on each subject and
threshold method, to create a distribution of reliability coefficients for each thresholding
method.

2.6. Correlation with patient outcome
The second metric used to compare the thresholding methods assessed their ability to predict
verbal memory outcome after left anterior temporal lobectomy. As in the original study by
Binder et al. (2008), voxels that passed the threshold were counted in right and left
homologous ROIs, then a language LI was computed for each patient using the normalized
ratio shown in Equation 4 (Binder et al., 1996). The method that was found previously to be
most predictive used an ROI that encompassed the majority of the lateral cortex of the
frontal, temporal, and parietal lobes (Binder et al., 2008). LIs in the original study were
derived by applying an uncorrected p-value threshold of p < 0.001. For the present study,
LIs were recalculated for the 51 subjects using the original p-value method, and then
calculated again using the n-signal and AMPLE thresholds.

Verbal memory was measured before and 6 months after surgery using two measures from
the Selective Reminding Test (Buschke & Fuld, 1974): consistent long term recall (CLTR)
and long term storage (LTS). A change score on each measure was computed for each
patient by subtracting the preoperative from the postoperative score. Prediction was done
using a step-wise linear regression model. The first step always entered age of onset of
epilepsy and preoperative memory score, because these values are easily obtainable and
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were previously shown to predict outcome (Binder et al., 2008). FMRI LI values derived
from each threshold method were then added to the regression model, and the change in R2

was measured and tested for significance.

3. Results
3.1. Split-half reliability

Results of the split-half reliability assessments are shown in Table 1. The mean Dice
coefficient was significantly different between the thresholding methods (F(2,225) = 6.447,
p < 0.002), being driven primarily by the simple effects of n-signal being more reliable than
p-value thresholds (coefficient difference = 0.054; t(225) = 2.643, p < 0.009) and AMPLE
(coefficient difference = 0.070; t(225) = 3.426, p < 0.001) thresholding. The standard p-
value threshold was not significantly more reliable than AMPLE (coefficient difference =
0.016; t(225) = 0.783, p = 0.435).

Simple correlations between LIs derived from each thresholding method and outcome
variables (Table 2) revealed stronger correlations using n-signal and AMPLE thresholding
than using p-value thresholding. This finding was confirmed in the multivariate regression
model, where each thresholding method produced results that could predict outcome
significantly more accurately than the baseline model (age of onset and preoperative score),
with the exception of p-value thresholding for the LTS score (see Table 3). Across both
CLTR and LTS outcome measures, n-signal thresholding produced the most predictive
model. In addition, LIs derived from p-value thresholds did not significantly improve the n-
signal based models, nor did they improve the AMPLE models, whereas adding n-signal LIs
significantly improved prediction accuracy relative to a model that already included standard
p-value LIs. The increase in R2 of each thresholding model over baseline is depicted in
Figure 4.

4. Discussion
Using both the reliability of maps as well as prediction of clinical data, n-signal thresholded
data yielded superior results relative to the traditional p-value and the proposed AMPLE
method. Although this approach is distinctly different from the hypothesis-testing approach
that emphasizes a conservative evaluation of novel hypotheses, it is well motivated by the
theoretical and pragmatic arguments presented above. Several significant challenges could
arise from the proposed methodology, which will need to be addressed in order to apply this
method routinely. However, the current data suggest that results of this method, if properly
implemented, would be superior relative to current methodology for the purposes of
presurgical mapping.

Considering the classic interpretation of each of these statistical values, it is understandable
that thresholding based on n-signal would yield the best results for identifying functionally
relevant brain activity. The statistical mean is defined as the most likely estimate of a value,
thus it is the logical choice to quantify a change in magnitude of activity associated with a
task. Other statistics can complement this estimate by showing how confident one should be
in the estimate (in the form of a p-value, for example). However, we propose that in the
context of creating surgical maps, it is more important to know how large an effect is, rather
than how confident we are in it. Selecting voxels based solely on a high degree of
confidence produces a map that is strongly biased toward missing large-amplitude responses
when the data happen to contain a large amount of noise.

Traditional p-value thresholding and the AMPLE method produced similar results in the
reliability analysis. This is consistent with the theoretical argument above, because AMPLE
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removes variability due to sample size (which was held constant) but maintains sensitivity to
noise. The insensitivity of AMPLE to sample size limitations was seen in the outcome
analysis, where the models using AMPLE were slightly more predictive than those using p-
value thresholding.

When evaluating these metrics based on their reliability, it is important to recognize the
underlying variability of the neural activity that is being measured. Variability in a
measurement reflecting neural activity does not imply poor reliability if the underlying
neural activity itself is not stable. The reliability analyses here assume that the neural
activity was optimally stabilized using strong experimental methodology (e.g., designing
tasks that minimize off-task processing and matching attentional and perceptual demands of
tasks) and random sampling from within the same scanning session. Within this context,
differences in reliability among different analyses can be construed as variation resulting
from the analysis. Residual variability common to all of the analyses may be attributed to
other noise sources, for example the measurement, or signal itself.

While the p-value is not the best estimate of amplitude, it provides a complementary
measure of confidence in the measurement. Confidence measures are necessary for quality
assurance and are useful for determining when data are grossly unreliable. However, after
reaching a degree of confidence, relying on the p-value to filter data can lead to biased
results. The data used in the present analyses were tacitly assumed to have sufficient signal-
to-noise quality and sample size to provide good estimates of response amplitude. In future
applications of amplitude-based thresholding, those requirements for data quality will need
to be formalized. One possible method of assuring data integrity without biasing the results
is to create a complementary confidence map, which would display areas with unreliable
data estimates. This is analogous to the error bars and annotations added to a bar graph to
inform the reader of more or less reliable values. However, in contrast to current
methodology, the criterion for data quality would be relatively liberal, and voxels with
marginal p-values would not be labeled as “inactive” if they also passed the response
amplitude threshold.

One significant limitation to the n-signal method is the lack of a standard threshold value.
The values used here were chosen to match the standard p-value in strictness and were
applied uniformly across the brain and across subjects. However, it is possible that the
function relating neural activation to BOLD signal change or the underlying reactivity of the
vascular supply varies across the brain (Bandettini & Wong, 1997; Rostrup et al., 2000) and
across subjects. To appropriately categorize an area as “activated” or “not activated” one
would need a priori knowledge of the distribution of n-signal changes within this region (the
prior distribution, using Bayesian terminology). Future work could create an atlas of prior
distributions by region that could then be used to derive region-specific thresholds.
Alternatively, thresholds could be derived on a per-experiment or per-subject basis using
standardized or physiologic stimuli (e.g., breath-holding).

Another limitation of the current study is the lack of an assessment of reliability across
multiple scanning sessions. The reliability metrics above demonstrated the relative reliability
of the different methods within a single scanning session. Comparing scans between
different scanning sessions, potentially on different scanner hardware, would introduce more
variability and further test the robustness of each method. Future studies on this topic may
integrate multiple scanning sessions into their designs to test these paradigms.

In summary, the results demonstrated here are consistent with theoretical predictions that
amplitude-based thresholding methods can provide more reliable and predictive functional
imaging results than standard thresholding methods. In clinical applications such as
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presurgical mapping, where reliability is required across varying conditions of noise and
sample size, thresholding based mainly on response amplitude may provide an optimal
approach.
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Figure 1.
Example from a single subject of the three thresholding methods compared in this paper: A)
p-value B) AMPLE and C) n-signal.
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Figure 2.
Second example from another representative single subject of the three thresholding
methods compared in this paper: A) p-value B) AMPLE and C) n-signal.
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Figure 3.
Examples of average percent brain activation. This figure is not meant to represent any
particular thresholding method, but to orient the reader to the novel metric of percent brain
activation.
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Figure 4.
Increase in R2 after adding LIs derived from each thresholding method to multiple
regression model for each memory test
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Equation 1.
AMPLE method, assuming equal variance among voxels. The left side of the equation
simplifies to percent signal of peak voxel
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Equation 2.
AMPLE method, not assuming equal variance among voxels. The equation simplifies to
percent signal, weighted by the ratio of standard deviation differences among the peak and
current voxels.
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Equation 3.
Dice coefficient for quantifying the overlap in two data sets, X and Y. |X| refers to the
number of activated voxels in the first split-half dataset, |Y| refers to the activated voxels in
the second split-half dataset. |X ∩ Y| refers to the number of voxels that are activated in the
same location in both split-half datasets.
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Equation 4.
Laterality index (LI) used to predict memory outcomes based on distribution of fMRI
activation. L refers to the number of voxels above threshold in the left-sided ROI and R
refers to the number of voxels on the right.
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Table 1

Split-half reliability results. Dice coefficients quantifying the similarity of randomly split data sets for each
thresholding method.

Threshold Method Average Dice Coefficient

p-Value 0.335

AMPLE 0.321

n-Signal 0.391
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Table 2

Simple correlations of laterality indices (LIs) derived using each thresholding method with outcome variables.

Threshold Method

p-value AMPLE n-signal

CLTR 0.294 0.330 * 0.405 *

LTS 0.332 * 0.446 ** 0.461 **

*
p < 0.05

**
p < 0.01
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Table 3

Results of multiple regression prediction model. Baseline R2 was calculated using age of onset and
preoperative score. Subsequent models were derived in a step-wise manner, adding LIs derived from each
thresholding method, calculating the new R2, and testing if the increase in R2 was significant.

CLTR LTS

R2 p R2 p

Age of Onset & Preoperative Score 0.542 0.000 0.345 0.000

0.599 0.031 0.402 0.072

0.659 0.018 0.509 0.009

0.617 0.203 0.486 0.023

0.658 0.001 0.502 0.002

0.659 0.829 0.509 0.503

0.666 0.385 0.502 0.893

0.617 0.012 0.470 0.006

0.617 0.966 0.486 0.304

0.666 0.030 0.502 0.138
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