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Abstract
In this report, we describe a series of 4-substituted piperidine and piperazine compounds based on
tetrahydroquinoline 1, a compound that shows balanced, low nanomolar binding affinity for the
mu opioid receptor (MOR) and the delta opioid receptor (DOR). We have shown that by changing
the length and flexibility profile of the side chain in this position, binding affinity is improved at
both receptors by a significant degree. Furthermore, several of the compounds described herein
display good efficacy at MOR, while simultaneously displaying DOR antagonism. The MOR
agonist/DOR antagonist has shown promise in the reduction of negative side effects displayed by
selective MOR agonists, namely the development of dependence and tolerance.

Although opioid analgesics represent the gold standard for the treatment of acute and
chronic pain, their usage is often accompanied by undesirable side effects such as the
development of dependence and tolerance. A considerable amount of research has thus been
done to find a potent analgesic that does not display these negative attributes. In general,
clinically used opioid analgesics such as morphine evoke both the desired and undesired
effects through activation of the mu opioid receptor (MOR). Numerous reports have
indicated that the undesired MOR-related side effects may be ameliorated by concomitant
ligand interaction with the delta opioid receptor (DOR). It has been shown that the co-
administration of DOR-selective agonists1 or antagonists2 with a MOR agonist can attenuate
the dependence and tolerance typically associated with the latter.

A ligand displaying good binding affinity for both MOR and DOR represents a significant
advantage over the co-administration of multiple drugs, due to both increased
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pharmacokinetic simplicity as well as improved patient compliance. For these reasons, the
development of small molecule MOR/DOR bifunctional opioid ligands has attracted much
attention. MOR agonist/DOR antagonist compounds have been shown to be effective
analgesics with a diminished tolerance and dependence profile3,4 and have found use in
other areas, such as for the treatment of irritable bowel syndrome.5 Recently, we showed
that a MOR agonist/DOR antagonist compound was an effective analgesic after
interperitoneal administration, with a duration of action comparable to morphine.6

In an effort to further develop drug-like MOR/DOR bifunctional ligands, we turned our
attention to compound 1 (Figure 1) a compound previously synthesized by our lab that
displays equal binding affinity for both MOR and DOR, as well as for the kappa opioid
receptor (KOR) (Ki = 25.8 nM (MOR); 33.0 nM (DOR); 36.5 nM (KOR), unpublished
observations). Given the relative simplicity of the compound and its nonselective binding
profile, we reasoned it would be a good starting point for derivatization. Computational
modeling suggested that position 4 would be the optimal point for diversification, as an
aromatic moiety at this position would be ideally situated to interact with Asn125, Thr218,
and Lys303 in the MOR active site, and the resulting compound would thus function as a
MOR agonist.7.

1 was initially substituted with a benzyl group at the 4 position (2, Table 1). The synthesis of
2 began by subjecting ketone 13 to a Wittig reaction to yield alkene 14, which was
subsequently hydrogenated and deprotected to give amine 15, to which was coupled Boc-
protected L-2,6-dimethyltyrosine (Boc-L-Dmt) and deprotected (Scheme 1). Binding
affinity (Ki) was obtained by competitive displacement of radiolabeled [3H]diprenorphine in
C6 cells stably expressing MOR or DOR or CHO cells stably expressing KOR. Efficacy was
assessed by agonist-stimulated [35S] GTPγS binding in the same cells.6,8,9

Compared to 1, the resulting compound 2 displayed no significant change in binding affinity
for MOR and DOR, but showed decreased affinity for KOR (Table 1). Unfortunately, 2 also
displayed no notable efficacy at MOR as determined by the [35S] GTPγS assay. Because the
synthesis of 2 proved somewhat laborious, and the resulting diastereomers could not be
resolved by RP-HPLC, we reasoned that synthesis of further analogues could be simplified
by the replacement of the tetrahydroquinoline (THQ) core of 2 with a piperidine, effectively
eliminating a stereocenter. The resulting compound 3 displayed roughly a tenfold increase in
binding affinity for MOR and DOR, but still lacked any efficacy at MOR. The remainder of
our SAR campaign was focused on changing the length and flexibility profile of the side
chain in an attempt to not only retain strong binding affinity for both MOR and DOR, but to
increase efficacy at MOR. For purposes of synthetic utility as well as increased solubility,
the piperidine core was also replaced with a piperazine for most of the analogues, the results
of which are summarized in Table 1.

Compounds 3–5, and 9 were synthesized by coupling a commercially available piperidine or
piperazine derivative with Boc-L-Dmt, followed by TFA-mediated deptrotection and HPLC
purification to yield the final compounds. In the case of 8 and 12, a commercially available
primary alcohol was first mesylated and refluxed with excess piperazine to give
intermediates 16 and 17, which were then coupled with Boc-L-Dmt and deprotected under
similar conditions (Scheme 2). The remainder of the compounds were synthesized as shown
in Scheme 3. The appropriate commercially available aldehyde was subjected to a Horner-
Wadsworth-Emmons type olefination to give alkenes 18, 19 and 27, which were then
reduced to the corresponding alcohols using either DIBAL (for the formation of allylic
alchols) or LAH (for the formation of saturated alcohols). Before reduction, alkene 19 was
first hydrogenated to give saturated ester 24. All intermediates were then carried forward in
a similar manner as in Scheme 2 to give finished products.
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The synthesized analogues in Table 1 display a broad range of binding affinities for MOR
(29 nM to 0.29 nM), and to a lesser extent, DOR (150 nM to 6.6 nM). Extension of the side
chain of 3 from 1 to 3 methylene units did little to change binding at MOR or DOR, but
encouragingly, the resulting compound (4) behaved as a weak partial agonist at MOR.
Replacement of the piperidine core of 4 with a piperazine (5) proved inconsequential, and
the continued balanced MOR/DOR binding profile of this analogue led us to pursue other
aromatic moieties separated by three methylene units from the piperazine core. Analogue 6
in particular showed an improved balanced MOR/DOR binding profile, and also displayed a
partial agonist profile at MOR. Interestingly, compound 7, in which the 1-naphthyl side
chain of 6 is constrained with an additional double bond, showed no efficacy in the
[35S]GTPγS assay at all three receptors, with an additional loss of binding affinity for KOR.
The insertion of an extra aromatic moiety as in the case of the diphenylmethyl analogue 8
did little to increase binding affinity for either MOR or DOR. Further extension of the
distance between the aromatic side chain and the piperazine core (9) resulted in a boost in
MOR binding, without drastically affecting DOR. Although these 4 carbon analogues (9–11)
suffered a slight loss of MOR/DOR affinity balance, all displayed good efficacy at MOR,
particularly the unsaturated analogues 10 and 11 (20 and 41 nM, respectively). Side chain
extension to 5 methylene units (12) did little to improve upon the profile of 10 or 11.

Structurally, these analogues exhibit some similarities to the class of trans-3,4-dimethyl- 4-
(3-hydroxyphenyl)piperidine opioid antagonists originally described by Zimmerman10 and
explored by others.11 In our series, the 3-hydroxyphenyl moiety is replaced by 2,6-L-
dimethyltyrosine, and the piperidine (or piperazine) core is left unsubstituted. In both series,
receptor selectivity is modulated by the nature of the lipophilic side chain attached para to
the phenolic component of the molecule. The 11 piperidine and piperazine analogues of
tetrahydroquinoline 1 described here display a favorable balance between binding affinity at
MOR and DOR, and several (4–6, 9–12) display improved potency at MOR as compared to
morphine (Ki (MOR) = 6.3 nM, (DOR) = 171 nM; EC50 (MOR) = 194 nM).12,13 These
analogues are therefore promising leads for further derivatization and in vivo studies.
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Figure 1.
Compound 1
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Scheme 1. Synthesis of compound 2a
a. Reagents and conditions: (a) triphenylphosphinebenzyl bromide, n-BuLi, THF, reflux; (b)
H2, 10% Pd/C, MeOH, 50 psi; (c) TFA, DCM; (d) Boc-L-Dmt, HATU, HOBt-Cl, DIEA,
DMF, 4Å molecular sieves, 40°C; (e) TFA, DCM.
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Scheme 2. Synthesis of analogues 3–5, 8, 9, 12a
a. Reagents and conditions: (a) Boc-L-Dmt, PyBOP or HATU, HOBt-Cl, DIEA, DMF; (b)
TFA, DCM; (c) MsCl, Et3N, DCM, 0°C; (d) piperazine, THF, reflux.
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Scheme 3. Synthesis of analogues 6, 7, 10, 11a
a. Reagents and conditions: (a) O=P(CH3CH2O)2CH2CO2CH3, NaH, THF, 0°C; (b)
O=P(CF3CH2O)2CH2CO2CH3, NaH, THF, 0°C; (c) DIBAL, DCM, −78°C; (d) H2, 10% Pd/
C, MeOH, 15 psi; (e) LAH, THF, 0°C; (f) MsCl, Et3N, DCM, 0°C; (g) piperazine, THF,
reflux.
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