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Abstract
The International Cancer Genome Consortium (ICGC) aims to catalog genomic abnormalities in
tumors from 50 different cancer types. Genome sequencing reveals hundreds to thousands of
somatic mutations in each tumor, but only a minority drive tumor progression. We present the
result of discussions within the ICGC on how to address the challenge of identifying mutations
that contribute to oncogenesis, tumor maintenance or response to therapy, and recommend
computational techniques to annotate somatic variants and predict their impact on cancer
phenotype.

Introduction
Large-scale sequencing of cancer genomes often reveals many thousands of somatic
missense (amino-acid changing) mutations in proteins. However, not all cancer mutations
provide a selective (“driving”) advantage to cancer cells1,2. Many mutations are so-called
“passengers” because their impact on protein function is either insignificant or the affected
protein is not important for tumor progression. The important practical problem is to
determine which mutations are likely drivers. Although the carcinogenicity of a particular
mutation depends on concurrent genomic alterations in the cell, one can significantly reduce
the number of potential driver candidates by determining the functional impact of each
mutation. Thus, a key challenge is to distinguish between functional and non-functional
mutations, and by extension between those that contribute to tumorigenesis (drivers) and
those that do not (passengers) (see Box 1 for definitions).

Box 1

Definitions

We define a functional variant as a genomic variant that affects the molecular function of
a protein (as a gain, loss or switch of function). A non-functional variant does not
significantly affect the molecular function of a protein. A driver variant confers a
selective advantage to a particular tumor cell, while a passenger variant does not. It is
important to distinguish between functional versus non-functional and driver versus
passenger as they describe different concepts. For example, a mutation might
dramatically affect the function of a protein without providing any selective advantage to
the tumor (it is a functional passenger variant). Non-synonymous mutations are those that
alter the amino acid sequence of a protein.

Cancer has been likened to an evolutionary process by which tumor cells gain a fitness
advantage over their neighboring cells2. The process creates cells with altered abilities such
as the circumvention of apoptosis and senescence, deregulated cell division, and failed
responses to external cues such as contact-contact inhibition and ligand-mediated cell
signaling3,4. Normal cells are reprogrammed by changes in the genome that are
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subsequently selected and clonally expanded. In a similar manner to the way germline
mutations can leave behind patterns indicative of negative or positive selection over millions
of years, somatic mutations that engender increases in tumor fitness also can leave telltale
signs in the protein sequence. The analysis of a given protein can thus reveal a pattern of
alterations that recurrently result in its loss of function, as in classic tumor suppressors, like
TP53, RB1 or PTEN5.

Mutation events collected across several patient samples can also reveal signs of clustering
in the peptide sequence or the three-dimensional protein structure that indicates a critical
domain has been modulated. In the extreme case, the presence of the same amino acid
change in the same position in different individuals can be a strong indicator of such gain of
function or oncogenomic events, as is the case with the KRAS6 or BRAF7 oncogenes. Such
patterns can be leveraged by informatics tools to predict if a particular mutational event
induces a selectable phenotype.

We review the computational analyses that are commonly carried out after the detection of
somatic mutations across a cohort of cancer samples to identify likely functional and likely
driver mutations (Fig. 1). Our focus will be on single nucleotide variants (SNVs) and small
indels (operationally defined here as variants shorter than 50 bp) that change the amino acid
sequence or affect regulatory regions. The output of these analyses consists of prioritized
lists of mutations, genes and pathways that may undergo follow-up experiments to
demonstrate their actual role in cancer.

We divide the process of identifying functional and driver variants into three independent,
but related, approaches (Fig. 1). The first consists of mapping mutations to annotated
functional genomic features, identifying their consequences and determining if they have
been previously reported. The second uses computational methods to predict the nature and
magnitude of the functional impact of mutation in particular elements (e.g., proteins or
regulatory regions). The third employs statistical methods to find signs of positive selection
across the cohort. Figure 1 lists a subset of the computational tools employed in each of the
approaches. In the sections that follow, we review the rationale and tools of each approach
and conclude by presenting some of the unsolved challenges and future perspectives in the
field.

Approach 1: Mutation mapping, annotation and comparison to known
variants

The first step in determining the possible functional consequences of somatic mutations is to
identify annotated genomic features that may be affected by them. Features that are more
likely to encode genomic functions include protein-coding and non-coding transcripts,
transcription factor binding sites and other potential regulatory regions. Less well-
characterized features, such as highly conserved regions or regions of open chromatin, may
also be of interest. There are a variety of software tools that infer the consequences of
mutations, but frequently these use different terms and different definitions for the effect
itself8–10 (Supplementary Table 1).

A large project such as the ICGC requires a common set of terms describing mutation
consequences to facilitate the comparison of results among different groups. We have
developed a standard set of ‘consequence terms’ drawn from the Sequence Ontology11 (see
Supplementary Table 2). This list will be extended and updated as the project unfolds.
Along with the Sequence Ontology term used to describe the effect of a mutation, we also
identify a minimal set of ancillary information that annotation tools should provide for each
relevant consequence term, such as coding DNA sequence (CDS), protein relative
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coordinates, and predicted amino acid substitutions. Several of these annotations will depend
on the specific transcript the mutation falls within, and so we recommend that a transcript
identifier always be included. Note that this caveat means that a single mutation can, and
frequently will, be assigned multiple consequences on multiple transcripts.

We recommend using tools that can output mutation descriptions in the format defined by
Human Genome Variation Society (HGVS) at all relevant levels (e.g. DNA-level for all
mutations, and RNA and protein level descriptions where applicable). HGVS nomenclature
provides a succinct and feature-centric format for variant descriptions, and some of the tools
in Supplementary Table 1 (e.g. the Ensembl VEP) have options to produce output in this
format. We propose a common ranking scheme for the term set that summarizes the effects
of a mutation that falls in multiple genomic features, such as multiple transcripts (see
Supplementary Table 2). In addition, the ranking may be used for prioritizing mutations for
follow-up analysis.

When assigning consequence terms to variants, the source of all underlying annotations,
such as gene models and regulatory elements, must be noted to clearly document the event.
In the context of ICGC, we recommend using the GENCODE12 comprehensive set of gene
models for all gene-associated annotations and identifying the specific release that was used.
We advocate the use of GENCODE because of the detailed and frequently updated
annotation of splice variants, pseudogenes and non-coding RNA loci, and the ready
accessibility of all data for automated annotation via Ensembl and UCSC. Using the same
gene models as the ENCODE project13 will also allow further integration of somatic
mutation data and the wider set of ENCODE annotations.

Comparing the list of mutations to catalogues of known variants
An obvious step in determining the implication of detected variants is to identify those that
have been observed previously in other cancers, that are involved in other diseases, or that
exist as germline polymorphisms. The growing collection of somatic variants detected
within the different ICGC projects is a useful source of information, as are databases such as
dbSNP14, 1000 Genomes15, Catalogue of Somatic Mutations in Cancer (COSMIC)16 and
databases of variants associated with hereditary diseases17,18. Several of the tools listed in
Table 1 automatically report if the variant is already known. Since none of these sources are
definitive, the ICGC recommends that, at a minimum, projects report matches to variants
known in dbSNP, OMIM, 1000 Genomes and COSMIC along with the version number of
the database. Although dbSNP has sometimes been used to filter for somatic mutations,
historically it contained primarily germline variants. However, in newer releases, many
somatic mutations including mutational hotspots are also present, for example in JAK2,
KRAS and BRAF. Thus, although we recommend reporting matches in dbSNP we do not
recommend using it to filter out somatic mutations.

Approach 2: Assessing the functional impact of mutations
For many variants, no further assessment can be made about their potential impact on cell
operation. Nevertheless, for the specific subset of mutations that affect either protein coding
sequences or known regulatory sites, one can make computational predictions about their
potential effects. In this section we describe computational analyses that may shed light on
the possible functions of these variants.

Mutations affecting protein coding sequence
A number of computational methods have been developed to differentiate “functional” or
“disease-associated” non-synonymous mutations from “non-functional” or polymorphic
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variants19–24 (Supplementary Table 3). Some of these are specifically designed for cancer
variants25–28. As a general rule, these approaches use evolutionary information (multiple
sequence alignments), secondary and tertiary structure features, physico-chemical properties
of amino acids, as well as information about the role of amino acid side chains in the 3D
structure of proteins, such as protein surface placement in interaction sites.

Methods aimed at assessing the functional effect of non-synonymous mutations can be
classified as “machine learning” and “direct”. Machine learning methods use relevant
properties of the original and mutant residues (e.g., size, polarity), structural information
(e.g., surface accessibility, hydrogen bonding), and/or evolutionary conservation and other
features. These methods are then trained to distinguish between positive sets of disease-
associated variants and negative control sets of presumably non-functional or passenger
variants. In contrast, direct methods assess the effect of a mutation through a computed
phenomenological score based on a particular theoretical model that does not require
training sets.

Most of these computational approaches have been benchmarked on variants with
pronounced phenotypic effects29 (e.g., functionally deleterious and Mendelian disease-
associated variants) and appropriate negative control sets, reporting accuracies close to
~80%. Although not originally designed for this purpose, some of them have been widely
employed to rank cancer somatic mutations for their likelihood to be drivers, without
previously benchmarking their performance on this problem.

One of the main challenges to produce such benchmarking is the difficulty of collecting
well-curated sets of driver and passenger mutations. A recent effort to circumvent this
problem employed various datasets of likely driver and likely passenger mutations25. Under
the assumption that each proxy dataset is incomplete in non-overlapping ways, this study
compared the performance of three well-known methods and their impact scores
transformed to account for the baseline tolerance across several datasets rather than on
individual datasets25. In the future, when many more cancer genomes have been sequenced
and we understand better the implication of genetic variants on cancer phenotype, it may be
possible to collect gold standard datasets to perform more accurate validation.

Given the high-throughput nature of cancer genome projects, one important aspect to
consider for tool selection is their computational efficiency when thousands of variants are
analyzed. Precomputation of functional impact scores for all possible mutations in the
human proteome is a useful remedy (as done by some tools presented in Supplementary
Table 3). There is also at least one database (dbNSFP30) devoted to collecting and
integrating such precomputed functional impact scores from different tools. In some cases it
may be useful to visualize the location of mutations in protein 3D structure, if available, to
further assess their potential role with respect to protein stability and/or function, for
instance using MuPIT Interactive31 or the MutationAssessor web server22.

The output of any computational method should be interpreted as a ranked list of candidate
driver variants based on the user-submitted mutations, with the vast majority not likely to be
true positives. The purpose of this ranking is to prioritize mutations for further experimental
testing. Using a combination of methods based on different theoretical principles (and hence
independent error models) may help mitigate false positive and negative rates suffered by
any one method alone, thus resulting in a cleaner list of candidates for experimental
validation.
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Mutations affecting regulatory sites
Only very recently has it become feasible to identify and characterize somatic noncoding
mutations that affect putative regulatory sites. Predicting the functional effects of regulatory
variants typically starts either by purely statistical approaches, such as the application of
machine learning methods to learn motif models from the regulatory sequences, or by
modeling the transcription factor (TF) to DNA binding biophysics aided by experimental
data such as those obtained from micro-fluidics or protein binding experiments32,33. Both
approaches result in predictions of binding sites for different TFs within regulatory
sequences. There are several tools for making such predictions, such as The Meme Suite34,
and the ENCODE project catalogues a number of relevant experimental data sets13.
Furthermore, RegulomeDB provides an integrated approach to analyze regulatory
variants35. It uses datasets from ENCODE13 and other sources and also uses motif models
(eg. from JASPAR36).

When a somatic mutation falls within a TF binding site, it is possible to score its effect in
multiple ways. Perhaps the simplest is to take the relevant binding site motif model36 and
evaluate the score difference that the variant causes in that binding site’s match to the
model. This is close in spirit to scores that are derived from multiple alignments, such as
PFAM log E value37. However, the interpretation of this particular score is not
straightforward because the actual binding probability of TF to DNA depends strongly on
the factor concentration within the cell and the presence of other protein binding factors and
may thus vary across cell types. Furthermore, it is not clear in general whether stronger or
weaker predicted binding is better or worse for TF function, and clarifying this will require
studying the particular promoter and gene in more detail.

Pleasance et al. (ref. 38) used a specific tool39 to address the functionality of mutations
within promoters in a lung cancer cell line. Although somatic mutations did not differ
significantly from the null expectation as a set, individual variants were predicted to have
significant disruptive effects on potential binding motifs. More recently, systematic analyses
integrating TF binding, histone marks, and other epigenomic data were used to identify
pathways disrupted by Genome Wide Association Study (GWAS) at the regulatory level40.

In addition to promoters and enhancers, it is also important to consider possible effects of
mutations in splicing, especially now that the connection between splicing and cancer is
becoming increasingly clear (e.g., ref 41). Consequences of mutations in splicing regulatory
elements are still difficult to predict but including additional experimental data, such as
RNA-Seq, may lead to improvements in this area.

Given that the majority of somatic mutations reside in non-coding sequence, the need to
computationally prioritize them for follow-up functional validation is clear. The recent
discovery of melanoma driver mutations in the promoter sequence of telomerase reverse
transcriptase (TERT) gene highlights the potential of regulatory variation to drive
tumorigenesis43,44. As cancer genome projects are moving toward sequencing whole
genomes, more non-coding driving mutations will likely be discovered. To facilitate such
discoveries more computational method development to score regulatory variants is needed.

Approach 3: Finding signs of positive selection across a cohort
Independent of whether or not a functional consequence can be predicted for a given
mutation, one can assess to what extent a given mutation has been observed at a higher
frequency than expected. The rationale for assessing mutation frequency is that driver
mutations provide an adaptive advantage to cancer cells (Box 1, e.g., BRAF V600E mutation
found in melanoma7) and should thus be positively selected during the clonal evolution of
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tumors. Provided that similar selective pressures act on different patient tumors and that the
same mutation is positively selected, one should be able to trace driver mutations by noting
their higher frequency, a common trace of positive selection.

In principle, exploiting this fact to find driver genes is straightforward: it is simply a
statistical comparison between the mutation rate observed in a gene versus what is expected
under a neutral model. However, in practice this approach involves difficult choices with
respect to the selection of appropriate models for neutral evolution. For example, germline
variation should not be used to calibrate a null model for somatic mutation analysis26

because this reflects evolutionary pressures and mutation processes during species evolution
rather than during the development of cancer. In addition, many cancers have defects in
DNA repair processes that change the neutral mutation rate, which have different regional
impacts38,45,46, and local mutation rate is variable depending on other factors such as
replication timing47.

To accurately identify significantly mutated genes, gene-specific mutation rates should thus
be computed. This can be done using synonymous mutations48 and/or mutations in introns
and UTR sequences (eg. InVex)49; however, these approaches can only be effectively used
in tumors with very high mutation rates. In other cases gene-specific mutation rates must be
estimated taking into account factors known to affect mutation rate such as mutation
context, replication timing and expression levels (eg. MuSiC50 and MutSig51).

Given the difficulties that are intrinsic to recurrence-based methods, new methods have been
developed that try to infer signs of positive selection using alternative means. One such
approach, OncodriveFM52, consists of detecting genes that exhibit a significant bias towards
the accumulation of somatic mutations with high functional impact. This method employs
well-known metrics of the functional impact of individual mutations (those in
Supplementary Table 3) to detect genes and pathways with this functional impact bias52.
Another novel approach, ActiveDriver53, involves the discovery of genes significantly
enriched for somatic mutations that alter ‘active sites’ in proteins, such as signaling sites,
regulatory domains or linear motifs, assuming that such active mutations are more likely to
have a wide-spread downstream effect and lead to a phenotypic advantage for tumor cells53.

Supplementary Table 4 lists several statistical approaches recently developed to identify
candidate driver genes with signs of positive selection in a cohort of tumors46,48–50,52–54. As
some of these methods are based on different theoretical principles, we recommend applying
multiple complementary methods and comparing their results.

Despite these recent advances, future methods will need to capture the high degree of inter-
tumor heterogeneity, as different tumors may acquire the same hallmark of cancer by
different means (known as analogous mutations55). This heterogeneity is clearly
underestimated in the current driver/passenger model.

Challenges and future perspectives
Cancer genome sequencing is a rapidly expanding field, and consequently computational
methods used to interpret these data are evolving. We have presented a review of classes of
practical tools currently available for analysis of a subset of genetic variation data. Because
of the rapid evolution of the field, we have purposely avoided recommending particular
tools or methods. Instead we present general guidelines to assist in making educated choices
of methods that can address particular research problems. A number of pipelines facilitate
the user-friendly application of various tools presented here. For instance, CRAVAT56 maps
mutations to their consequences on protein coding genes and it predicts their implication in
cancer and disease using CHASM26 and VEST57. IntOGen-mutations58 provides a way to
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apply tools of the three approaches, including mapping mutations using Ensembl VEP8,
reporting their functional impact on proteins (using MutationAssessor22, SIFT20,
PolyPhen259 and TransFIC25) and identifying genes with signs of positive selection across a
cohort using OncodriveFM52.

It is important to emphasize the limited capacity of these approaches to directly identify the
causative mutations of tumor development. Rather, they are intended to prioritize candidates
for follow-up experiments that may demonstrate their actual implication in the cancer
phenotype. Reporting back the results of these rounds of validation experiments to the
method’s authors could in principle help them improve their approaches. The current
relative scarcity of established spaces for this information exchange should be specifically
addressed as part of the development of this field. Furthermore, these validation experiments
will contribute to expand the catalogs of well characterized driver and passenger mutations,
thus creating appropriate datasets for the development of computational prediction tools.

There are three key challenges in the field of cancer mutation analysis (Box 2). The first is
to improve the accuracy of prediction of the functional impact of a mutation. Because
mutations do not occur in isolation, but coexist with other somatic alterations that work
together to alter cellular processes, separate gene-by-gene analyses are error-prone. A
promising direction is the integration of multiple sources of biological information60, and
the use of pathway and network analyses in the interpretation of cancer genomes22,61,62.

Box 2

Current Challenges

1. Assess the functional impact of sets of mutations

Most current methods cannot accurately predict changes in protein and cellular function
because changes in tumor phenotype typically result from multiple genetic alterations.

2. Complement the identification of functional and driver mutations by the
prediction of how mutations affect protein and cellular function

There is a need for methods that not only identify functional or driver mutations but also
predict the likely cellular outcome resulting from mutations such as gain, loss or switch
of function, and how mutations might affect cellular networks.

3. Apply predictive tools to biologically relevant questions such as drug resistance

The ideal method should not only predict the effect of multiple mutations in an
integrative manner and how they affect protein and cellular outcome, but also tackle
translational clinical challenges such as drug resistance.

The second challenge is to develop reliable computational methods for the classification of
mutations by functional impact type: loss of function, gain of function or switch of
function22,61,62. The computational classification of mutations by type as well as strength of
impact will contribute to the more complete elucidation of functional alterations in a cancer
genome. The rich information encoded in the 3D structure of proteins, which is not yet well
utilized by current approaches, can be particularly useful for deducing both the functional
type and cellular consequences of mutations.

Lastly, there is the practical challenge of identifying mutations that confer resistance or
sensitivity to a particular form of therapy (see for example63,64). We look forward to the day
when functional prediction methods support personalized therapeutics, in which the patient’s
therapy is informed by analysis of the specific genetic alteration profile in an individual
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tumor. The development of better approaches for analysis of functional and driver mutations
will help to facilitate this process and in so doing will support the future development of
personalized cancer medicine.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Scheme depicting the three main approaches routinely employed in the analysis of cancer
somatic mutations, as reviewed in this perspective. Although there are important
relationships of precedence between elements from different approaches, they do not
necessarily correspond to sequential steps. Tools employed in each of the approaches are
shown in the middle. Integrative pipelines refer to tools that facilitate the use of methods
across all approaches (e.g., IntOGen-mutations pipeline).
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