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Abstract
Butyrylcholinesterase (BChE) has been an important protein used for development of anti-cocaine
medication. Through computational design, BChE mutants with ~2000-fold improved catalytic
efficiency against cocaine have been discovered in our lab. To study drug-enzyme interaction it is
important to build mathematical model to predict molecular inhibitory activity against BChE. This
report presents a neural network (NN) QSAR study, compared with multi-linear regression (MLR)
and molecular docking, on a set of 93 small molecules that act as inhibitors of BChE by use of the
inhibitory activities (pIC50 values) of the molecules as target values. The statistical results for the
linear model built from docking generated energy descriptors were: r2 = 0.67, rmsd = 0.87, q2 =
0.65 and loormsd = 0.90; The statistical results for the ligand-based MLR model were: r2 = 0.89,
rmsd = 0.51, q2 = 0.85 and loormsd = 0.58; the statistical results for the ligand-based NN model
were the best: r2 = 0.95, rmsd = 0.33, q2 = 0.90 and loormsd = 0.48, demonstrating that the NN is
powerful in analysis of a set of complicated data. As BChE is also an established drug target to
develop new treatment for Alzheimer’s disease (AD). The developped QSAR models provide
tools for rationalizing identification of potential BChE inhibitors or selection of compounds for
synthesis in the discovery of novel effective inhibitors of BChE in the future.

1. Introduction
Cholinesterases are classified as either acetylcholinesterase or butyrylcholinesterase (BChE)
based on their substrate and inhibitor specificity. BChE appears in serum, liver, heart and
CNS. Although its physiologic function is not yet completely revealed,
butyrylcholinesterase plays a role in the body's ability to metabolize cocaine.1–4 Wild-type
BChE has a low catalytic efficiency against naturally occurring (-)-cocaine. In our
laboratory, by use of a novel, systematic computational design approach based on transition-
state simulations and activation free energy calculations, BChE mutants with an ~2000-fold
improved catalytic efficiency were designed and discovered, which were shown to be
sufficient for use as an exogenous enzyme in rodents and primates to prevent (-)-cocaine
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reaching central nervous system (CNS).5−15 Studies in rats have shown that these mutants
prevented rodents from convulsions and death when administered cocaine overdoses.7,12–13

One of these mutants is currently in clinical trials by Teva Pharmaceutical industries LTD
for the treatment of cocaine abuse.14–15

The effect of BChE and its mutants on cocaine metabolism could possibly be reversed by
some BChE inhibitor. Therefore, it is interesting to know the inhibitory activity of various
small molecules that are either naturally existing in human or exogenously administered,
against BChE. For the purpose, theoretical models were generated in this study using
molecular docking, multi-linear regression, and neural network approaches to reduce
experimental workload and financial expenditure in the future. The artificial neural network
technique simulating brain function has been demonstrated to be an effective tool for data
mining and used in many QSAR studies.16–25 The impressive feature of the system includes
its ability to model a wide set of functions, including linear and non-linear functions,
without knowing the analytic forms in advance. Therefore, neural network approach is able
to outperform linear modeling approach where non-linear feature is not negligible or
dominant in a dataset. Compared to the models built from the other two approaches based on
the inhibitory activities of ninety-three molecules as butyrylcholinesterase (BChE)
inhibitors, the developed neural network model in the study is the most predictive, showing
that the dataset of inhibition values of diverse small molecules is one of these examples and
the superior ability of neural network in analysis of complicated data. The generated model
is expected to be used for identifying potential inhibitors of BChE that exist in vitro or in
vivo in our future study. As BChE is also an important drug target to develop a new
medication for Alzheimer’s disease.26–27 The developed models could also be valuable for
rational design of novel BChE inhibitors in the treatment of Alzheimer's disease.

2. Results and Discussion
2.1 Selection of descriptors for building the ligand-based MLR and NN models

The experimental pIC50 values, vary from 3.30 to 8.85, for ninety-three molecules are
provided in Table 1. A set of 1500 descriptors, including structural, topological, octanol-
water partition coefficient, molar refractivity, and 3D whim descriptors etc., were calculated
for these molecules. Pre-filtering for constant and pair-wise correlation (R>0.80) descriptors
was performed and followed by a stepwise regression procedure to select variables from the
remaining 238 descriptors.

To select a set of most related descriptors, the forward-selection and backward-elimination
stepwise regression procedure was used to select descriptors from the reduced set of 238
descriptors. Our tests revealed that although the linear models can be generated by utilizing
initially different descriptors, the number of descriptors used to build the same quality MLR
models does not change significantly. Thus for the model described, the descriptor selection
was first initiated from a descriptor which is most correlated to the target values to start a
MLR model. More descriptors are selected to get better training r2 and validation q2. Single
descriptors were gradually added to build a MLR model by monitoring the relationship of
the number of descriptors involved in a generated model vs the value of the correlation
coefficient r2 corresponding to the model. Twenty-five descriptors were chosen to be used to
further build neural network model. Figure 1 shows the plots of training r2, training root
mean square derivation rmsd, predictive q2 and leave-one-out root mean square derivation
loormsd vs the number of descriptors used in a MLR model. As seen from Figure 1, while r2

and q2 gradually increase, the variations of the other two quantities gradually decrease as
increasing the number of descriptors in the MLR model. Figure 2 shows the relationship of
the number of descriptors involved in a generated model versus the difference (Δr2) between
the values of the correlation coefficients r2 corresponding to the two consecutive models in
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Figure 1. Clearly, the value of Δr2 is small and does not change much after the number of
the descriptors in the generated model is more than ten. A MLR model with more than ten
descriptors in this case most likely was over-trained. The statistical results for the MLR
model built from the 1st 10 of the 25 descriptors were: r2 = 0.90, rmsd = 0.51, q2 = 0.86 and
loormsd = 0.58.

2.2 Neural network analysis
The artificial neural network technique is a complex and sophisticated tool for data mining,
which has been used for extracting potentially useful information or knowledge from
various data sets in experimental sciences. The extracted knowledge is exhibited in a
readable form and then can be used to solve diagnosis, classification or forecasting
problems. In cheminformatics, it has been used in QSAR studies, to predict the activities of
compounds from their structures and properties.16–25 As an advanced data mining tool,
neural network approach is particularly suitable for the cases where other techniques may
not produce satisfactory predictive models.

To the best of our knowledge for the previously published literatures about QSAR model
development using BChE inhibitory activities as target values, the largest dataset of BChE
inhibition values employed for QSAR model generation includes only sixty-one
molecules.45–51 This is because BChE has a large active site gorge (~200 Å3) and its
inhibitors possess diversity of size/structures, which results in the difficulty to build a
reasonable QSAR model with satisfied quality. With the previous twenty-five descriptors
selected by the stepwise regression procedure for building the MLR model, in this study the
back propagation neural network model with architecture NN10-h-1 (h=1 to 3) was trained
and leave-one/n-out validated, in which 10 is the number of input neurons corresponding to
the ten descriptors, and h represents the number of hidden neurons. The neural network
models have one output neuron corresponding to the pIC50 value. During the training
process, the neural network architecture was first fixed to a configuration (e.g. NN10-2-1).
The first ten descriptors in Figure 1 were fed into the network. Then each of the ten
descriptors was removed from the model to identify the one having the least importance.
The identified descriptor was replaced by the eleventh to twenty-fifth descriptor in Figure 1
one by one. The descriptor that led to the least training rmsd and loormsd to the NN10-h-1
was kept. The procedure was recursive until the training rmsd could not be improved
anymore.

The final ten descriptors selected from the twenty-five descriptors are listed in Table 2. Brief
definitions of the descriptors used in the neural network model are provided in Table 2,
where RDF010m is among the RDF descriptors, C-028 is among the atom-centred
fragments; Mor30u and Mor15u are among the 3D MoRSE descriptors; HATS5m and R4v+
are among the GETAWAY descriptors; GATS6e and MATS1p are among the 2D
autocorrelations descriptors; E2s is topological descriptors. More detailed explanation about
these descriptors can be found in Refs. 28–30. The Pearson correlation coefficient R between
the ten descriptors is listed in Table 3. All the non-diagonal elements were less than 0.70,
indicating that the co-linear situation between different descriptors and redundant
information included in the set of descriptors are low.

The selected 10 descriptors were used as inputs to train NN10-h-1 models. Figure 3 shows
the training and leave-one-out errors (rmsd and loormsd) as functions of the number of
training cycles for the NN10-1-1, NN10-2-1 and NN10-3-1 models. As shown in Figure 3,
The training errors and loormsd are lower for the neural network configuration with more
hidden nodes such as NN10-3-1 and NN10-2-1 compared with the results from NN10-1-1.
For model NN10-2-1, the training and validation errors almost kept to be a constant after the
training cycles were over 150000, while the training errors decreased and validation errors
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increased after the training cycles over 30000 for model NN10-3-1. To avoid overtraining
the model, the model NN10-2-1 was regarded as the best.

The statistical results for the NN10-2-1 model with errors converged versus training cycles
are as follows: r2 = 0.95, rmsd = 0.33, q2 = 0.90 and loormsd = 0.48. pIC50 values calculated
by the NN10-2-1 model, as well as its leave-one-out validation results for the ninety-among
the WHIM descriptors; IC1 is among the three BChE inhibitors, are listed in Table 1. Figure
4 shows the relationships of the trained and LOO-predicted pIC50 values versus the
experimental pIC50 values for the NN10-2-1 model.

2.3 Evaluation of the generated neural network model by leave-n-out validation
Leave-n-out cross-validation was also performed for the NN10-2-1 model to test its ability
of prediction on external compound set. For the ninety-three BChE inhibitors studied, the 93
observed pIC50 values were ranked in ascending order. Three subsets were constructed by
collecting the 1st, 4th, 7th, etc., data points into the first subset; the 2nd, 5th, 8th, etc., data
points into the second subset; and the 3rd, 6th, 9th, etc., data points into the third subset.
Three training sets were prepared as combinations of any two subsets. The remaining subset
was used as a test set. Thus, every time 62 molecules (67%) out of the 93 data set of
molecules were used to train the model, a subset of 31 molecules (33%) out of the 93
molecules was used to test the model. For each training set, a neural network with
architecture NN10-2-1 was trained with the same ten descriptors listed in Table 2. Three
neural networks (10-2-1 architecture) with ten descriptors (listed in Table 2) as inputs were
trained based on each of the three newly generated training sets, and the prediction was
made for their corresponding test set. The quality of the QSAR models was demonstrated by
the statistical results listed in Table 4. The same approach was applied to the model
validation by leaving-18/19-out of the 93 data set. In the case, five subsets were constructed
accordingly. Five training sets were prepared as combinations of any four subsets. The
remaining subset was used as a test set. Thus, every time 74 or 75 molecules (~80%) out of
the 93 data set of molecules were used to train the model, a subset of 18/19 molecules
(~20%) out of the 93 molecules was used to test the model. The statistical results for the
leave-18/19-out validation were listed in Table 4. The average results from the two times of
leave-n-out validation (i.e. correlation coefficients of the training r2 and root-mean square
derivation rmsd, leave-n-out predictive r2

test and root-mean square derivation testrmsd) are
0.95, 0.33, 0.89 and 0.50, respectively, which is very close to the statistical results (0.95,
0.33, 0.90, and 0.48, respectively) obtained from training and LOO validation of the
NN10-2-1 model. These results indicate that the predictive power of the neural network
model is stable within the experimental data set.

As noted in Table 4, entry 3 in leave-31-out and entry 4 in leave-18/19-out validation have
better training r2 (0.96/0.96) with a smaller root-mean square derivation (0.32/0.30) but
worse r2

test (0.82/0.79) with a larger root-mean square derivation (0.66/0.68) comparing to
the others. Concerning the reason, data analysis reveals that some molecules with
exceptional large training and LOO validation errors in Figure 4 (the points out of the dash
line boundaries) are allocated to the test set of entry 3 or 4. The similar phenomenon was
also observed for the leave-n-out validation of the MLR model by use of the same ten
descriptors as shown in Table 6.

2.4 Comparison of NN10-2-1 model with MLR model generated from the same ten
descriptors

The MLR model using the ten descriptors listed in Table 2 was built using the multiple
linear regression analysis. The generated MLR model is described by Equation 1:
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(1)

The statistical analysis for the MLR model indicated that the correlation coefficient r2 and
rmsd between the observed and the fitted pIC50 values was 0.89 and 0.51, respectively
(Table 5); the leave-one-out validation q2 was 0.85, and the loormsd was 0.58 (Table 5); the
Fischer statistic F was 65.59. Figure 5 shows the relationships of the trained and LOO-
predicted pIC50 values versus the experimental pIC50 values for the MLR model. The
calculated pIC50 values for the ninety-three molecules from the MLR model (Equation 1), as
well as the LOO validation results, are provided in Table 1. Comparing the statistical results
(r2, rmsd, q2 and loormsd are 0.89, 0.51, 0.85 and 0.58, respectively) for the MLR model
with those (0.95, 0.33, 0.90, and 0.48, respectively) obtained for the NN10-2-1, the non-
linear neural network is much better than the MLR model produced with the same
descriptors (Table 5).

Leave-n-out cross-validation was also performed for the MLR model to test its ability to
predict an external compound set. Three/five subsets were constructed from the dataset of
ninety-three BChE inhibitors in the same way as these created for the leave-n-out validation
of the NN10-2-1 model. Similarly, three/five training sets were generated as combinations
of any two/four subsets. The remaining one was used as a test set. Three/five MLR model
with ten descriptors (listed in Table 2) as variables were generated based on each of the
three/five newly generated training sets, and the prediction was made for their corresponding
test set. The results are listed in Table 6. As seen from Table 6, the average of the statistical
results, i.e. the training r2, rmsd, leave-n-out predictive r2

test and test root-mean square
derivation (testrmsd), from the two times of leave-n-out cross-validation are 0.89, 0.51, 0.87
and 0.58 respectively, which is similar to the statistical average obtained from leave-one-out
validation of the MLR model (0.89, 0.51, 0.85 and 0.58, respectively), but worse than the
statistical results (0.95, 0.33, 0.90, and 0.48, respectively) obtained from the training and
LOO validation of the NN10-2-1 model with the 93 molecules as well as the result, 0.95,
0.33, 0.89 and 0.50, from the NN10-2-1 neural network leave-n-out test. These results
indicate that the NN10-2-1 model is better and has a higher predictive power for the set of
ninety-three compounds.

With MLR approach, it has been difficult to build a model having statistical results close to
these of NN10-2-1 without overtraining. As seen in Figures 1 and 2, for the chosen set of 25
descriptors, 15 out of 25 have trivial contribution for improving model quality and will be
the major reason to cause model instability. Moreover, artificial neural network, as an
information processing paradigm inspired from biological nervous system, demonstrate to
have remarkable ability to derive meaning from complicated data.

2.5 Descriptor contribution analysis
The ten descriptors used in the generated the neural network model NN10-2-1 and the MLR
model (Equation 1) can be classified as follows: (i) 1D descriptor: C-028. (ii) 2D
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descriptors: GATS6e, MATS1p, and IC1. (iii) 3D descriptors: RDF010m, Mor30u,
HATS5m, E2s, Mor15u, R4v+. Based on a previously described procedure,17 the relative
contributions of each descriptor in the MLR model (Equation 1) and the NN10-2-1 model
were calculated, and are listed in Table 7. The significance of the descriptors involved in the
MLR model decreases in the following order: C-028 > MATS1p > HATS5m > E2s >
RDF010m > GATS6e > Mor15u > Mor30u > R4v+ > IC1. The significance of the
descriptors involved in the NN10-2-1 model decreases in the order: IC1 > GATS6e > C-028
> Mor15u > MATS1p > R4v+ > E2s > HATS5m > RDF010m > Mor30u. The order of
significant descriptors in the MLR model and NN10-2-1 model are not identical. Although
the order of the relative contribution from the ten descriptors is different from each other in
the two models, the individual contribution from all of these descriptors is very close (i.e.
from 9.45 to 10.89 for the MLR model and from 9.06 to 12.14 for the NN10-2-1 model).
Thus, the contribution from these descriptors to both models can be regarded as similar.

Among the ten descriptors, three descriptors (RDF010m, Mor30u, and MATS1p) correlated
relatively high with the target experimental pIC50 values by themselves (Pearson correlation
R=0.83, 0.64, and 0.54, respectively). RDF010m is among RDF descriptors obtained by
radial basis functions centered on different interatomic distances (from 0.5 Å to 15.5 Å).
Mor30u is the Morse signal 30 from the 3D-MoRSE-selected descriptors. The descriptor
represents a restricted 3D space which captures relevant molecular information, regarding
molecular size and shape, which is related to the modeled BChE inhibition activity.29

MATS1p is the Moran autocorrelation of topological structure with path length (lag) 2 in the
graph weighted by atomic polarizabilities, i.e. lag 1/weighted by atomic polarizabilities.30

The positive Pearson correlation coefficients for them indicate that the compounds with
larger values for these descriptors would have larger pIC50 values, and the negative Pearson
correlation coefficients indicate that the compounds with smaller values would have larger
pIC50 values. Thus, the three descriptors, particularly RDF010m, could be an indicator for
compounds that have a large pIC50 value.

As shown in Table 7, the difference in descriptor contribution between any two descriptors
used in the models is not significant, indicating that all descriptors are indispensable in
generating the predictive models. The neural network model NN10-2-1 generated with the
ten descriptors well reflected the linear and nonlinear features in the pattern from the dataset
of 93 molecules.

2.6 Comparison of NN10-2-1 model with the energy-based linear model from molecular
docking

Ninety-three molecules in Table 1 were docked into the active site of BChE using AutoDock
software, which led to six independent energy-based variables: i) Estimated free energy of
binding (EFreeBind); ii) Final Intermolecular Energy (EInterMol) iii) Van der Waals+Hydrogen
Bond+Desolvation Energy (EVHD); iv) Electrostatic Energy (EElec); v) Final Total Internal
Energy (EFTot); vi) Torsional Free Energy (ETor). These energy variables reflect the protein-
ligand interactions, whereas descriptors used in the aforementioned correlation analyses
reflect the characteristics of the ligands themselves. It is interesting to compare their
performances. The six energy variables were used for a linear model generation with
experimental pIC50 values of the ninety-three molecules as the target values. By use of the
same approach described previously for the generation of the ligand-based MLR QSAR
model, the best model generated from the six energy variables is:

(2)
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The values of Pearson correlation coefficient R for the correlation of the experimental pIC50
values with EFreeBind and ETor are 0.68 and 0.81, respectively, for the ninety-three
molecules. R = 0.73 for the inter-correlation between EFreeBind and EInterMol. The statistical
analysis for the linear model indicates that the energy-based linear model is also predictive:
the correlation coefficient r2 and rmsd between the observed and the fitted pIC50 values
were 0.67 and 0.87, respectively; the leave-one-out validation q2 was 0.65 and the loormsd
was 0.90; the Fischer statistic F was 92.57. The calculated pIC50 values for the ninety-three
molecules from the linear model (Equation 2), as well as the LOO validation results, are
listed in Table 1. The relationships of the trained and LOO-predicted pIC50 values versus the
experimental pIC50 values for the NN10-2-1 model are shown in Figure 6. Comparing with
the statistical results (r2, rmsd, q2 and loormsd are 0.67, 0.87, 0.65, and 0.90, respectively)
for the energy-based linear model (Equation 2) and the statistical results (0.89, 0.51, 0.85,
and 0.58, respectively) for the ligand-based MLR model (Equation 1), the non-linear neural
network model (NN10-2-1) with a statistical results (0.95, 0.33, 0.90, and 0.48,
respectively), is the best and most predictive.

3. Conclusion
In the current study, molecular docking, multi-linear regression and artificial neural network
approaches have been used to build QSAR models to predict pIC50 values of ninety-three
BChE inhibitors which could be a factor mediating BChE activity of hydrolysis of cocaine.
The statistical results for the linear model built from molecular docking-generated
descriptors are: r2 = 0.67, rmsd = 0.87, q2 = 0.65 and loormsd = 0.90; the statistical results
for the developed ligand-based MLR model are: r2 = 0.89, rmsd = 0.51, q2 = 0.85 and
loormsd = 0.58; the statistical results for the trained neural network model are: r2 = 0.95,
rmsd = 0.33, q2 = 0.90 and loormsd = 0.48. While the experimental pIC50 values correlated
well with the predicted values generated by all of the three models, the neural network
model is clearly the best, demonstrating its remarkable ability to derive patterns from
complicated data. These models developed in the present study will be used as tools in
future rational design and discovery of new, more potent inhibitors of BChE for treatment of
Alzheimer’s disease. These models could also be used in identifying potential inhibitors of
our high-activity BChE mutants for cocaine hydrolysis, as the high-activity BChE mutants
were designed to stabilize the transition-state structures (and thus decrease the energy
barriers) without significantly affecting the affinities of BChE binding with the substrates
and potential inhibitors.

4. Methods
4.1 Generation of the molecular database

Ninety-three molecules listed in Table 1 constituted a database for the structure-activity
correlation analysis.31–37 Molecular modeling was carried out with the aid of the Sybyl
discovery software package.38a This software was used to construct the initial molecular
structures used in the geometry optimization (energy minimization) for all molecules
involved in this study. In construction of the initial molecular structures, a formal charge of
+1 was assigned to each positively charged nitrogen atom in the structures of these
compounds. The geometry optimization was first performed using the molecular mechanics
(MM) method with the Tripos force field and the default convergence criterion, which was
then followed by a semi-empirical molecular orbital (MO) energy calculation at the PM3
level. The optimized geometries were used to perform single-point ab initio calculations at
the HF/6–31G* level in order to determine the electrostatic potential (ESP)-fitted atomic
charges, i.e. the ESP charges, that fit to the electrostatic potential at points selected
according to the Merz-Singh-Kollman scheme.38b In addition, the single-point energy

Zheng et al. Page 7

Bioorg Med Chem. Author manuscript; available in PMC 2015 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



calculations were also carried out by using the surface and volume polarization for
electrostatics (SVPE)39–43 calculations at the HF/6–31G* level, which accounts for solvent
effects on such molecular descriptors as the dipole moment and HOMO/LUMO energies.

4.2 Generation of molecular descriptors
The optimized three-dimensional conformations were used for generation of molecular
descriptors. A total number of 1500 descriptors consisting of zero-dimensional
(constitutional), one-dimensional (functional groups, atom-centred fragments, empirical
descriptors, properties), two-dimensional (topological descriptors, molecular walk counts,
BCUT descriptors, Galvez topological charge indices, and 2D autocorrelations), as well as
three-dimensional descriptors (charge descriptors, aromaticity indices, Randic molecular
profiles, geometrical descriptors, RDF descriptors, 3D-MoRSE descriptors, WHIM
descriptors, and GETAWAY descriptors) were created by the DRAGON program and the
aforementioned electronic structure calculations for each compound.28–30 Most of the
descriptors from the Dragon program have been reviewed in the textbook by Todeschini and
Conson.30 A reduced set of 238 descriptors were obtained after the constant/near constant
descriptors and the highly inter-correlated descriptors (Pearson correlation coefficient R >
0.80) were discarded.

4.3 Stepwise descriptor selection by multiple linear regressions
The descriptor selection and the MLR analyses were performed using the Sybyl discovery
software package38a and an in-house Fortran 77 program.17–20 Starting from the entire set of
descriptors, variable selection by a forward and reverse stepwise regression procedure was
performed, in which forward selection was followed by backward elimination of variables,
resulting in an equation in which only variables that significantly increased the predictability
of the dependent variable were included.

4.4 Neural network QSAR modeling
Feed-forward, back-propagation-of-error networks were developed using a in-house neural
network C program17–20,23,25 Network weights (Wji(s)) for a neuron “j” receiving output
from neuron “i” in the layer “s” were initially assigned random values between −0.5 and
+0.5. The sigmoidal function was chosen as the transfer function that generates the output of
a neuron from the weighted sum of inputs from the preceding layer of units. Consecutive
layers were fully interconnected; there were no connections within a layer or between the
input and the output. A bias unit with a constant activation of unity was connected to each
unit in the hidden and output layers.

The input vector was the set of descriptors for each molecule in the series, as generated by
the previous steps. All descriptors and targets were normalized to the [0,1] interval utilizing
Equation 3:

(3)

where Xij and Xij’ represents the original value and the normalized value of the j-th (j=1,…
k) descriptor for compound i (i=1,…n), and Xmin and Xmax represent the minimum and
maximum values for the j-th descriptor. The network was configured with one or more
hidden layers. During the neural network learning process, each compound in the training
set was iteratively presented to the network. That is, the input vector of the chosen
descriptors in normalized form for each compound was fed to the input units, and the
network’s output was compared with the experimental “target” value. During one “epoch”,
all compounds in the training set were presented, and weights in the network were then
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adjusted on the basis of the discrepancy between network outputs and observed pIC50 values
by back-propagation using the generalized delta rule.

4.5 QSAR modeling with energy-based descriptors from molecular docking study
AutoDock (v.4.2) with AutoDockTools (ADT) 1.5.4 graphical interface was used to
calculate the energy-based descriptors.44 Before molecular docking, ligand and protein
preparation was followed by grid map calculations. For the protein, our previously modeled
BChE structure in Ref 6–9, which started from the X-ray crystal structure deposited in the
Protein Data Bank (pdb code: 1P0P), was used. For the ligands, ligand files from mol2 were
converted to pdbqt files via AutoDockTools. Previously calculated ESP charges were
applied to ligands. Root and rotatable torsion bonds that define the bond flexibility were set.
During grid construction, atom types of the ligand in the calculation of grid maps were
identified. In all cases of the grids calculation, the following parameters had been used:
number of points in x, y and z-dimensions = 120; spacing = 0.375 Å, i.e. the grids were
computed in a cube with volume 45 × 45 × 45 Å3 centered on the active site of BChE. The
docking calculations using the Lamarckian genetic algorithm with default parameters were
performed for conformational searches.

Six types of energy variables corresponding to the lowest binding energy for each inhibitor
were collected from the docking study. Based on the six variables, an energy based-linear
model with the experimental pIC50 values as target values was generated using stepwise
descriptor selection procedure described in section 4.3.

4.6 Target properties
All BChE inhibitors examined in the present study were synthesized, measured, and
reported by Decker et al.31–37 The pIC 50 values (corresponding to IC50 in M) were used as
the target property to derive the QSARs.

4.7 Model validation
Models were cross-validated using the “leave-one-out (LOO)” and “leave-n-out
(n=18/19,31)” approaches.

4.8 Evaluation of the QSAR models
The overall quality of the models is indicated by the Pearson correlation coefficient r2, the
root-mean squared deviation (rmsd), the Fischer statistic (F), predictive q2 or r2

test, and the
leave-one out/leave n-out root-mean squared deviation loormsd/testrmsd. The predictive q2

or r2
test are defined in Equation 2 below:

(4)

where SD is the sum of squared deviations of all measured pIC50 value from their mean, and
PRESS is the predictive sum of squared differences between the actual and predicted values.
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Figure 1.
The training r2, training root mean square derivation rmsd, predictive q2 and leave-one-out
root mean square derivation loormsd vs. the number of descriptors selected through building
MLR model.
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Figure 2.
Relationship of the difference (Δr2) between the values of the correlation coefficients r2

corresponding to the two consecutive models in Figure 1 vs. the number of descriptors
involved in a generated model versus .
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Figure 3.
The training and leave-one-out errors (rmsd and loormsd) as functions of the number of
training cycles of the NN10-1-1, NN10-2-1 and NN10-3-1 models
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Figure 4.
The calculated versus experimental activity data for the trained (shown in diamonds), leave-
one-out cross-validation (shown in triangles) for the best NN10-2-1 QSAR model. The solid
line represents a perfect correlation.
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Figure 5.
The calculated versus the experimentally determined pIC50 values listed in Table 1 for the
trained (shown in blue diamonds) and leave-one-out cross-validation (shown in red
triangles) for the MLR QSAR model. The solid line represents a perfect correlation.
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Figure 6.
The calculated versus experimental activity data for the trained (shown in diamonds), leave-
one-out cross-validation (shown in triangles) for the linear model generated from energy-
based descriptors obtained by molecular docking. The solid line represents a perfect
correlation.
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Table 2

Brief definitions of the ten descriptors selected for neural network modeling

No. Descriptor Definition

1 RDF010m Radial Distribution Function-1.0 /
weighted by atomic masses.

2 C-028 R—CR—X.

3 Mor30u 3D–MoRSE-signal 30 / unweighted.

4 HATS5m Leverage-weighted autocorrelation of lag
5 / weighted by atomic masses.

5 GATS6e Geary autocorrelation – lag 6 / weighted
by atomic Sanderson electronegativities.

6 MATS1p Moran autocorrelation – lag 1 / weighted
by atomic polarizabilities.

7 E2s 2nd component accessibility directional
WHIM index / weighted by atomic
electrotopological states.

8 Mor15u 3D–MoRSE – signal 15 / unweighted.

9 R4v+ R maximal autocorrelation of lag 4 /
weighted by atomic van der Waals
volumes.

10 IC1 Information content index (neighborhood
symmetry of 1-order).
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Table 4

Leave-n-out cross-validation of the NN10-2-1 model with training cycles 150000

Set r2 Rmsd r2
test testrmsd

1(62,31) 0.950 0.342 0.909 0.460

2(62,31) 0.954 0.324 0.926 0.423

3(62,31) 0.955 0.323 0.817 0.662

Average 0.953 0.330 0.883 0.515

1(74,19) 0.956 0.317 0.900 0.500

2(74,19) 0.950 0.337 0.945 0.370

3(74,19) 0.944 0.355 0.953 0.344

4(75,18) 0.961 0.301 0.793 0.679

5(75,18) 0.955 0.325 0.901 0.511

Average 0.953 0.327 0.898 0.481

Total Avg. 0.953 0.329 0.891 0.498
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Table 5

Statistical results for MLR and NN10-2-1 models generated with the same descriptors and validated by leave-
one–out validation

Set r2 Rmsd q2
test loormsd

MLR 0.89 0.51 0.85 0.58

NN10-2-1 0.95 0.33 0.90 0.48
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Table 6

Leave-n-out cross-validation of the MLR model built from the 10 descriptors used in NN10-2-1 model

Set r2 rmsd r2
test testrmsd

1(62,31) 0.894 0.496 0.848 0.595

2(62,31) 0.911 0.454 0.800 0.681

3(62,31) 0.891 0.500 0.868 0.583

Average 0.898 0.483 0.839 0.620

1(74,19) 0.902 0.472 0.826 0.678

2(74,19) 0.888 0.506 0.893 0.547

3(74,19) 0.897 0.483 0.847 0.630

4(75,18) 0.901 0.484 0.829 0.647

5(75,18) 0.878 0.537 0.928 0.392

Average 0.893 0.496 0.865 0.579

Total Avg. 0.896 0.490 0.852 0.599
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Table 7

Relative contributions of the ten descriptors to the structure -activity relationship in the MLR model and the
NN11-1-1 model

Descriptor RDF010m C-028 Mor30u HATS5m

R 0.832 0.248 0.640 −0.330

MLR Ci(%) 10.18 10.89 9.61 10.23

NN Ci (%) 9.41 10.58 9.06 9.51

Descriptor GATS6e MATS1p E2s Mor15u

R −0.229 0.543 −0.059 −0.430

MLR Ci(%) 9.74 10.56 10.22 9.62

NN Ci (%) 10.85 9.62 9.52 9.73

Descriptor R4v+ IC1

R −0.642 0.276

MLR Ci(%) 9.49 9.45

NN Ci (%) 9.58 12.14
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