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ABSTRACT

MicroRNAs (miRNAs) are small non-coding RNA
molecules that regulate gene expression at a post-
transcriptional level. An miRNA may target many
messenger RNA (mRNA) transcripts, and each tran-
script may be targeted by multiple miRNAs. Our
understanding of miRNA regulation is evolving to
consider modules of miRNAs that regulate groups
of functionally related mRNAs. Here we expand the
model of miRNA functional modules and use it to
guide the integration of miRNA and mRNA expres-
sion and target prediction data. We present
evidence of cooperativity between miRNA classes
within this integrated miRNA–mRNA association
matrix. We then apply bicluster analysis to uncover
miRNA functional modules within this integrated
data set and develop a novel application to visualize
and query these results. We show that this wholly
unsupervised approach can discover a network of
miRNA–mRNA modules that are enriched for both
biological processes and miRNA classes. We apply
this method to investigate the interplay of miRNAs
and mRNAs in integrated data sets derived
from neuroblastoma and human immune cells.
This study is the first to apply the technique of
biclustering to model functional modules within
an integrated miRNA–mRNA association matrix.
Results provide evidence of an extensive modular
miRNA functional network and enable characteriza-
tion of miRNA function and dysregulation in disease.

INTRODUCTION

MicroRNAs (miRNAs) are small non-coding RNA mol-
ecules, �18–25nt in length when mature, that regulate mes-
senger RNA (mRNA) expression at a post-transcriptional
level. This occurs chiefly through the binding of the seed
region (nucleotides 2–8) of an miRNA, as part of the
RNA-induced silencing complex, to complementary se-
quences in the 30 UTR of a target mRNA followed by sub-
sequent degradation and/or translational inhibition of the
mRNA transcript. miRNA post-transcriptional regulation
was first described in the context of an unusual non-coding
RNA, lin-4, that regulated larval development in C. elegans
(1). Gradually it became apparent that this mode of regula-
tion was widespread, occurring across diverse cellular func-
tions and species (2–5). miRNAs have now been implicated
in a wide range of biological processes including develop-
ment, cell growth and cell division (6). Sixty percent of
human coding genes possess conserved target sites for
miRNAs (7,8). Given the systemic importance of miRNAs,
it is unsurprising that their dysregulation has been shown to
be a factor in disease (9–11). It is now feasible to perform
reliable high-throughput expression analysis of all known
miRNA, currently 1426 in human (miRBase v17), across
many experimental samples (12,13). As miRNA-mediated
regulation is guided by sequence complementarity, several
miRNA target prediction algorithms have been developed
and used to generate miRNA target databases (8,14,15).
Also, given that miRNA-directed binding of RNA-induced
silencing complex may result in the degradation of the target
mRNA, it is also possible to determine miRNA targets by
examining significant inverse correlations between miRNA
and mRNA expression data (16–18).
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Several computational methods have been proposed
that aim to integrate, to varying extents, sequence and
expression information provided by the above sources to
improve overall accuracy of miRNA target prediction.
Ideally, correlations should be calculated between
miRNA and mRNA expression data derived from the
same sample (matched), but one may also measure correl-
ations over sample classes in different data sets. Joung
et al. applied a co-evolutionary learning approach to
discover sets of co-expressed miRNA that had a
maximal mean-predicted binding score to a set of co-
expressed mRNA (19). However, the fitness function did
not use any direct input from miRNA–mRNA expression
correlations. Results were limited to the retrieval of
two miRNA functional modules marginally enriched for
three Gene Ontology (GO) categories. Liu et al. modelled
miRNA–mRNA interactions as a directed bipartite graph
and learned optimal Bayesian network structures con-
strained by miRNA target predictions (20). They used
this approach to identify inversely expressed miRNA
and mRNA across normal and cancer sample classes
and identified miRNA functional modules comprising
6 miRNAs and 127 mRNAs that were related to the
disease mechanism. Later, the same group developed an
alternative probabilistic approach to model miRNA–
mRNA interactions within expression data across a
panel of mouse models (21). However, information on
putative target prediction was not integrated with the
expression data during the learning phase and was only
used to evaluate discovered miRNA–mRNA modules.
The rationale for this approach was to avoid bias from
predicted targets; however, this need not be an all or
nothing decision. While predicted target information
may contain false positives and negatives (22), which
may under- or over-constrain integrated methods, respect-
ively, this information should not be wholly withheld from
the learning phase. Rather, a more balanced approach
should be pursued in which this information is included
either with a reduced weight or at a later stage in the
integration to aid fine-tuning of miRNA modules.
A pipeline for the integration of miRNA and mRNA

data to model miRNA functional modules was developed
by Sales et al. (23). This method facilitates the integration
of both matched, via a correlation metric (Spearman’s
rank, Pearson, mutual information), and unmatched
miRNA and mRNA samples, using Chi-squared (or
Pearson correlation K > 2), with predicted target informa-
tion from several sources. Sales et al. incorporate the
GenMiR++ Bayesian model, developed earlier (24,25),
within a web-based analysis and visualization platform.
GenMiR++scores each miRNA according to how much
it contributes to explaining the downregulation of an in-
dividual mRNA target, in the context of all other
miRNAs that also target this mRNA. However, the
approach does not model the interactions of miRNAs
with multiple mRNA targets and as such fails to capture
any modular structure within the miRNA–mRNA
networks.
Huang et al. recently introduced the MirConnX tool for

querying miRNA–mRNA interactions (26). MirConnX
integrates a directed network of miRNA, mRNA and

transcription factors, derived from predicted interactions,
with an associative network derived from matched
miRNA and mRNA expression data. The user then
selects two thresholds, the ‘prior weight’ and the ‘regula-
tion strength’, before being presented with a potentially
large network of miRNA-mRNA and transcription
factors (TFs) and a list of predicted interactions.
Analysis of a glioblastoma case study resulted in a
network containing 56 miRNAs, 29 TFs and 1180
mRNAs with 1851 predicted interactions. Although
MirConnX integrates and orders the data in terms of the
strength of predicted interactions, which makes it useful
for low-level querying of individual miRNA–mRNA
interactions, the output is still somewhat overwhelming
and there is no attempt to further organize these inter-
actions’ functional modules.

Earlier, work by Peng et al. looked at discovery of
complete bipartite graphs within a binary association
matrix of miRNA–mRNA derived from the integration
of expression and target prediction data (27). Although
promising, implementation and the scale of the miRNA
modules discovered was limited, with most modules con-
taining only 1, and at most 3, miRNA. Perhaps the use of
a third-party maximal biclique algorithm (28), originally
proposed for unipartite graphs and unadapted for the
current problem domain, constrained results.

Our current understanding of miRNA regulation is
expanding to consider networks of co-regulated miRNA,
miRNA modules, which affect multiple functionally
related mRNAs (29). Such a network would provide
both a level of redundancy for robust output and a mech-
anism to fine-tune the expression of functionally
overlapping groups of genes. Identifying subsets of
miRNAs that interact with groups of related mRNAs
may also provide an improved method of miRNA target
prediction and miRNA functional annotation, as each
putative interaction would be supported by several neigh-
bouring connections and possibly a level of mRNA func-
tional enrichment.

This miRNA–mRNA network may be depicted as a
bipartite graph in which edges have both a direction
and a weight. Previous studies have only focused on a
narrow definition of such networks in which the miRNA
influences the mRNA in a direct negative manner. We
propose to extend this network model to also include
indirect interactions.

Once we have defined a model, the next problem is how
to detect the subsets of miRNAs and mRNAs that best
fit this model. If we represent the interaction between all
miRNAs and all mRNAs as a global bipartite graph, the
problem then becomes one of detecting the sub-graph that
best fits this model. To achieve this, we must define both a
suitable scoring function, which captures the important
aspects of our model, and develop an efficient method of
retrieving these miRNA–mRNA sub-graphs. This
problem is conceptually similar to that of bicluster
analysis, which has been applied separately to both
miRNA expression (30,31) and mRNA expression
data (32). However, the question of how to visualize and
interpret bicluster results, in a manner similar to the
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dendrogramatic representation of conventional cluster
analysis, is still open.

In this work, we aim to first extend the current model
of miRNA–mRNA interaction networks beyond those
developed in previous studies, second to use bicluster
analysis to improve on the methods of recovering such
modular networks from integrated data sets and finally
to develop and implement a method for both the visual-
ization and querying of such networks.

MATERIALS AND METHODS

Expanding the model of the miRNA functional module

There are several lines of evidence that support a higher
level organization of miRNAs into functional modules:

(1) Individual miRNAs target many mRNAs. miRNAs
have, on average, 277 conserved predicted targets in
human (8).

(2) The 3’ UTR of an individual mRNA generally has
many predicted miRNAs target sites. Human
mRNAs are predicted to be targeted by an average
of 10.6 miRNAs (8).

(3) miRNAs are often located together on the genome,
and neighbouring miRNAs are frequently co-
expressed (33). Fifty-seven genomic clusters
(miRNAs within 10 kb or the same host gene) are
present in the human genome (34).

(4) Approximately 50% of miRNAs are located in
genomic clusters that are transcribed as a
polycistronic pre-cursor that is then cleaved into
individual pre-miRNA (35).

(5) miRNAs are organized into families based on
sequence similarity, see downloads at (16), some of
which are also co-expressed and/or members of the
same genomic cluster.

(6) Interacting proteins tend to share more miRNA
target-site types than random pairs (36).

(7) Co-expressed miRNAs can regulate functionally
related mRNAs (37).

(8) Certain miRNA pairs may act in a cooperative
manner to regulate gene functional modules (38,39).

Typically, analysis of miRNA functional modules
is confined to the assessment of post-transcriptional
downregulation, as evidenced experimentally, by inversely
correlated expression profiles, and computationally, by
the presence of predicted 3’ UTR binding sites. Using
these data, a directed weighted bipartite graph, G, that
represents the set of miRNAs, M, and the set of
mRNAs N and their predicted interactions, E, may be
constructed. It may also be informative to assess add-
itional indirect interactions, particularly those of
upregulated mRNAs that might better reflect the resultant
phenotype and aid in the functional annotation of the
miRNA module. These downstream interactions may
also form an accompanying complete sub-graph, edges
Ei in Figure 1a. In this way, we can attempt to model
the direct input and the downstream output of a set
of miRNAs and assign a functional annotation of the
miRNA module. Although this may provide an

incomplete mechanistic model, akin to piecing together
the corners and edges of a jigsaw puzzle, it may be used
as a starting point from which to build a more complete
understanding of the particular miRNA functional
module.
In this study, we build our model on typical direct

downregulating miRNA–mRNA interactions and indirect
upregulating miRNA–mRNA interactions. This model is
based on only two assumptions that miRNA–mRNA
interactions depend on sequence-specific binding and
that binding results in an inverse correlation of expression.
Incorporation of further assumptions would provide add-
itional constraints but also create conflicts and introduce
errors that might ultimately hinder the unsupervised
search for these complete sub-graphs or biclusters.

Scoring and discovery of miRNA functional modules

The overall analysis pipeline for discovering miRNA–
mRNA functional modules is presented in Figure 2.
miRNA module definition and data integration are
described in the following sub-section on ‘Data and
Metrics’. Our case-specific extensions to the miRNA–
mRNA discovery algorithm, based on bicluster analysis,
are described in the subsection ‘miRNA module search
algorithm’.

Data and metrics
First, we integrated miRNA and mRNA expression data
sets and compiled a 2D correlation matrix for all possible
combinations of miRNA and mRNA expression. In the
idealized case, depicted in Figure 1b, the matrix may
contain values +1, �1 and 0, representing positive,
negative and zero correlations, respectively. In this case,
a co-expressed miRNA module that downregulates a set

(a) (b)

Figure 1. (a) A directed weighted graph bipartite G, with nodes repre-
senting a set of miRNAs, M, and set of mRNAs, N, and edges repre-
senting the set of interactions, E. Red arrows represent direct inversely
correlated interactions, and green arrows represent indirect positively
correlated interactions. The shaded area highlights the complete sub-
graph or biclique, with edges Et, representing a group of miRNAs that
post-transcriptionally downregulate a group of mRNAs. The dashed
complete sub-graph, with green edges Ei, represents a group of indir-
ectly upregulated mRNAs (and positively correlated) to every miRNA
in the direct biclique. (b) An idealized matrix of all miRNA-mRNA
expression correlations across a matched set of samples. The values+1,
�1 and 0 represent positive, negative and 0 correlations, respectively.
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of mRNA would be represented by a sub-matrix contain-
ing �1 at each element. Similarly, a downstream
upregulated set of mRNAs would be represented by a
sub-matrix containing+1 at each element.
Using this definition, a good solution within a correl-

ation matrix derived from real miRNA and mRNA ex-
pression data would be represented by subset of miRNA
(rows), n, and subset of mRNA (columns), m, with a low
mean correlation, ��. This solution may vary in both size
(n�m) and quality ( ��), and given that we have some in-
formation to guide an approximation of the size of a
typical miRNA module, i.e. average numbers of predicted
targets per miRNA and vice versa, we may fix the area and
minimize the correlation. We propose the following ob-
jective function to score selected sub-matrices C(IJ) within
the expression correlation matrix C(MN):

F1ðIJÞ ¼ min

 
1

jIjjJj
�
X
i2I,j2J

cij

!
ð1Þ

where I is the subset of rows and J is the subset of columns
in the sub-matrix and cij is the entry at row i and column j.
We also have further interaction information, in the form
of computationally predicted miRNA targets, that we can
incorporate. For example, we may filter the correlation
matrix to remove associations that are in conflict with
predicted target site information. We suggest the following
rules for filtering miRNA–mRNA (MN) expression cor-
relations (C) based on direction of correlation (negative or
positive) and presence or absence of predicted target site
(T) to produce an integrated association matrix (C�) as
follows:

. if (cmn � 0 AND tmn=TRUE) then c�mn  cmn

. if (cmn � 0 AND tmn=FALSE) then c�mn 0

. if (cmn > 0 AND tmn=FALSE) then c�mn  cmn

. if (cmn > 0 AND tmn=TRUE) then c�mn  0

This method of data integration acts to neutralize conflict-
ing information from the two data types producing a
cleaner data set before cluster analysis, or in this case, a
smoother search space for the ensuing bicluster search
algorithm. By assigning a value of 0 where a conflict
exists, we neutralize its impact on the objective function
described above. Now that we can assess the quality of a
potential miRNA functional module within the integrated
association matrix, we now require a suitable method of
searching the solution space in a thorough and efficient
manner.

miRNA module search algorithm
The procedure of locating an optimal subset of rows
and columns within a data matrix that satisfies a
selected criterion is akin to simultaneous two-way cluster-
ing or ‘biclustering’ of rows and columns. The number of
possible solutions increases exponentially with the size of
the data matrix and quickly becomes unsolvable by
exhaustive means. Various metrics and optimization
algorithms have been proposed to bicluster large gene ex-
pression data sets to model gene functional modules
(32,40,41). The BUBBLE biclustering algorithm uses
simulated annealing (SA) search method, which allows it
to by-pass local minima, to locate highly correlated
bicluster ‘seeds’ within a gene expression data matrix.
These are then expanded in a deterministic manner by
addition of the correlated rows and columns (42).

In the current context, we can apply a similar approach
incorporating the objective function in Equation 1, to
locate the high-scoring ‘seeds’ within an integrated
miRNA–mRNA association matrix. The objective
function is first applied to locate seeds composed of a
set of miRNAs that are directly inversely correlated to a
set of mRNAs, i.e. sub-matrices within the integrated
miRNA–mRNA association matrix composed of a
maximum number of negative values (see the shaded
‘biclique’ and sub-matrix in Figure 1). We may then
deterministically expand these seeds by the sequential
addition of columns (miRNA) and rows (mRNA), with
maximum mean inverse correlation relative to the seed.
We selected a column threshold of 10 and a row threshold
of 250; these values approximate the mean number of
miRNAs predicted to target each mRNA and the mean
number of mRNA predicted to be targeted by each
miRNA, see ‘Expanding the model of the miRNA func-
tional module’ section. In the case of rows (mRNA), we
may also add those that have a maximum mean positive
correlation to reflect mRNAs that are coordinately
upregulated downstream and which may aid characteriza-
tion of the resultant phenotype of the miRNA functional
module. For further details see (41,42) and Supplementary
Methods.

miRNA–mRNA MODULE VISUALIZATION

In this section, we present our novel bicluster visualiza-
tion method, as applied to miRNA–mRNA functional

Figure 2. Overview of the analysis pipeline for miRNA functional
module discovery consisting of data integration, bicluster analysis and
miRNA module visualization.
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modules. We then describe the implementation of this
method within a practical visualization and analysis
software application.

Bicluster visualization

Standard cluster analysis may be visualized in several
ways, with perhaps the most common being a hierarchical
dendrogram. However, the problem of bicluster visualiza-
tion is far from straight forward. The issues of calculating
object and cluster similarity over differing, even exclusive,
feature subsets and the prospect of objects belonging to
more than one bicluster complicate visualization efforts.
Santamarı́a et al. attempt to visualize gene expression
biclusters as a force-directed graph where bicluster
similarity is based on the degree of gene and condition
overlap (43). We find that attempting to directly depict
each shared object (mRNA or miRNA in our context)
produces a rather cumbersome bicluster visualization,
defeating the objective somewhat.

We have developed a visualization method that renders
a set of biclusters as a 2D bubble plot. In this context, the
X-axis represents bicluster similarity based on the extent
of miRNA overlap, and the Y-axis represents bicluster
similarity based on mRNA overlap. Both cases involve
calculating the similarity of two lists of labels, i.e.
miRNA or mRNA labels. We use the following metric
for measuring the similarity between two lists L1 and L2:

overlapðL1L2Þ ¼
L1 \ L2j j

maxð L1j j, L2j jÞ,
ð2Þ

This overlap metric avoids biases due to bicluster size
(that would be incurred if one were to simply use jL1 [ L2j

as the denominator) and also obeys the ‘triangle inequal-
ity’ rule, i.e. dðA,BÞ � dðA,CÞ+dðB,CÞ, allowing the simi-
larity of a set of biclusters to be more accurately projected
relative to one another onto one or more plotting
dimensions.

Using this overlap metric, two similarity matrices
[range (0,1)], one representing miRNA similarity and the
other mRNA similarity, may be calculated between all
biclusters. Classic multidimensional scaling (MDS) [see
(44)] is then used to project the miRNA and mRNA simi-
larity matrices onto the X- and Y-axes, respectively.

The size of a point or ‘bubble’ in the plot representing
an miRNA–mRNA functional module is proportional
to the size of the most enriched functional category (as a
percentage of the overall bicluster size), i.e. a larger bubble
has a greater coherence with its most enriched functional
category (see Figure 3). In this study, we use Gene
Ontology (GO) enrichment information, based on the
mRNAs within the miRNA–mRNA functional module,
to assign a functional category. We also assess miRNA
functional modules in terms of enrichment for known
miRNA families and genomic clusters.

miRNA–mRNA module visualization software

We have implemented our method of miRNA functional
module visualization within an interactive Java applica-
tion, ‘miRMAP’, that allows the user to visualize and
query selected modules and individual miRNAs or

mRNAs (see Figure 4). Different GO categories are
rendered as bubbles with a unique combination of perim-
eter and area colours; therefore, a modest palette of 10
colours can render up to 100 distinct GO categories. It
is also necessary to order the modules on the Z-axis by
size to allow all modules to be visible, i.e. smaller modules
overlaid on larger modules.
Functional modules within the bubble plot may be se-

lected by left clicking on the bubble interest, and plotted in
the neighbouring panel as a bipartite graph presented in a
compact radial layout. Inversely associated miRNA–
mRNA are connected via red edges and positively
miRNA–mRNA associations are represented as green
edges. Correlation thresholds can be dynamically
adjusted to fine-tune the visualization of nodes and
edges in each miRNA module. Functions are assigned to
each miRNA module using the most over-represented
GO category within the mRNA present in the module.
The top 10 significant GO categories are also shown in
the bottom right panel as a bar chart with associated
P-values based on the hypergeometric distribution.
A subset of nodes and interactions within a module, per-
taining to any one of these functional modules, may also
be viewed. Finally, modules containing an mRNA or
miRNA of interest may be selected and viewed. A Java
implementation of the full analysis and visualization
pipeline, or miR Module Analysis Program (miRMAP),
is available at https://www.dropbox.com/s/
pnluebfq9lto6iw/miRMAP.zip.

Data set description

Neuroblastoma
Neuroblastoma is a paediatric cancer arising from precur-
sor cells of the sympathetic nervous system. It has several
genetic subtypes that range in outcome from spontaneous

Figure 3. Visualization of biclusters representing miRNA–mRNA
functional modules as a 2D bubble chart. The similarities in terms of
miRNA overlap and mRNA overlap are projected on the X- and
Y-axes, respectively. The radius (r) of each ‘bubble’ is proportional to
the size (as a percentage of the mRNAs in the bicluster) of the most
enriched mRNA functional category (E) for that miRNA–mRNA
module.
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regression to rapid progression and death. There are
several markers and genomic imbalances that correlate
with subtype and survival, the most notable of which is
amplification of the MYCN oncogene. The data consist of
42 matched neuroblastoma tumour samples for which
both miRNA and mRNA expression profiling was
carried out. The miRNA expression data consist of 298
miRNA, and was reported previously as part of a larger
study (12). The mRNA expression profiling was carried
out with GeneChip Human Exon (1.0 ST) Array, which
contains 22 011 core transcripts.

Human immune cell subsets
The second data set is derived from an miRNA and
mRNA expression profiling of human immune cells (45).
Nine cell subsets (CD16+CD66b+ neutrophils, CD16-
CD66b+ eosinophils, CD14+ monocytes, CD4+ T cells,
CD8+T cells, CD56+NK cells, CD19+B cells, CD123+
pDCs and CD11c+ mDCs) were profiled for mRNA,
using the Affymetrix U133 Plus 2.0 chip, and miRNA,
using the Affymetrix miRNA chip.

RESULTS

Pre-processing the association matrix

First, mRNA–miRNA expression correlation matrices for
each data set were compiled using Spearman’s rank cor-
relation. This matrix was then integrated with predicted
miRNA target data from TargetScan V5.1 using the rules
defined in ‘Data and metrics’ section. It should be noted

that no correlation threshold was enforced at this stage,
i.e. it was sufficient to have no conflict between the expres-
sion and predicted targeting of an miRNA for the value to
be included in the association matrix; see Supplementary
Data for further details. After this compilation and
filtering, the neuroblastoma miRNA-mRNA integrated
association matrix contained 13 122 mRNAs and 201
miRNAs. The human immune cell miRNA-miRNA
integrated association matrix contained 15 735 mRNAs
and 677 miRNAs.

Cooperativity within miRNA clusters and families

Previous studies have used the term ‘synergy’, in the
context of miRNA regulation, to describe pairs of
miRNAs that significantly co-regulate at least one func-
tional module (39). Another study, examining the effects
of multiple miRNAs binding to a single mRNA, discrim-
inates between types of cooperativity, where the result of
co-targeting is equal to the sum of the individual effects,
‘additive’, or greater, ‘synergistic’ (38).

Here we examine whether one or both types of targeting
cooperativity can be computationally detected between
members of the same miRNA family or genomic cluster.
miRNA family information is available at (16) and
genomic clusters where generated using (34) (selecting a
10 kb or the same gene as a window) and are given in
Supplementary Table S1. Should a level of cooperativity
be present for a given miRNA family/cluster, one would
expect the effect on mRNAs, as measured by level of

Figure 4. (a) Interface of the custom software application built to support visualization and (b) functional annotation of all miRNA modules
(biclusters) uncovered in a data set. (c) Detailed viewing of the members and interactions within individual miRNA functional modules, (d) querying
of an individual miRNA or mRNA of interest and (e) detailed GO enrichment analysis based on the mRNAs within the module is also supported.
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inverse expression, to increase if they are targeted by more
members of a miRNA cluster/family.

We have examined mRNA groups that are targeted
between 1:N times for each miRNA cluster/family, where
N is the size of the miRNA cluster/family. Where there is
more than one miRNA targeting an mRNA, the maximum
inverse correlation for these interactions is taken. Scatter
plots of the number of targeting miRNA versus miRNA–
mRNA expression correlations for selected miRNA
families/clusters, from both data sets, are shown in
Figure 5. Each point in the scatter plot represents the cor-
relation of one mRNA target (X-axis) and one or more
miRNAs (Y-axis). In some cases, we can see a clear trend
as the median inverse correlation of the points increases in

magnitude as the number of miRNA from the family/
cluster targeting these mRNA increases (see Figure 5).
This trend or association with cooperativity is measured
by Spearman’s rank correlation (r). Significance for each
miRNA family/cluster is assessed based on a background
of 100 randomly generated miRNA groupings of the same
size (see Table 1 and Supplementary Table S2). Existence of
significant cooperativity, across both data sets, for genomic
clusters up to 32 miRNAs in size and families up to 23
miRNAs adds support for the presence of coordinated
interplay within miRNA families and clusters.
We also note that some miRNA groupings, such as

the hsa-let-7 family, show significant cooperativity across
both data sets (see Table 1 and Figure 5a and c).
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Figure 5. miRNA cooperativity. Scatter plots showing the number of miRNAs targeting an mRNA (Y axis) versus the correlation between miRNAs
and mRNA expression (Y axis) for selected miRNA families within the integrated data set for neuroblastoma (a) the let-7 family and (b) and mir-302
family, and human immune cells (c) the let-7 family and (d) the mir-320 family. A point in a plot represents the maximum (Max) correlation for a
miRNA family and a mRNA target. The level cooperativity is calculated using Spearman’s rank correlation (r) of the median points (circled in red)
for each level on the Y axis. See Table 1 for significance values.
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Cooperativity within miRNA families/clusters seems to be
chiefly additive. In some cases, there is limited evidence of a
greater effect, such as in the plots of the mir-302 family in
the neuroblastoma data set (Figure 5b) and the mir-320
family in the human immune cells data set (Figure 5d). A
further more comprehensive analysis of this phenomenon is
warranted but is outside the focus of this current study.
In the next section, we examine whether the mRNAs

targeted by such miRNA modules have significant func-
tional coherence. We also consider that the notion of a
miRNA functional module may not directly correspond to
known miRNA genomic clusters or families, i.e. being
made up by subsets of one or more cluster/family or an
entirely unknown grouping miRNAs. As such, we have
used a wholly unsupervised method in the next section,
which seeks out coherent patterns within the integrated
data sets without referencing any miRNA or mRNA
class information. Such information is only used post
hoc for module functional annotation and evaluation.

Unsupervised modelling and analysis of miRNA
functional modules

In this section, we first retrieve miRNA–mRNA functional
modules from the integrated association matrix in a wholly

unsupervised manner by using a bicluster analysis
approach using the BUBBLE algorithm (41) modified for
the current context. Results are visualized and interpreted
using a novel visualization and analysis application,
‘miRMAP’, described in the ‘miRNA-mRNA Module
Visualization Software’ section and shown in Figure 4.
Here we evaluate the discovered miRNA–mRNA func-
tional modules in terms of GO category and miRNA
cluster/family enrichment and assess agreement with both
known, experimentally validated miRNA–mRNA target
pairs and our own miRNA transfection data.

Neuroblastoma tumour data
Bicluster analysis uncovered 100 putative miRNA func-
tional modules from the integrated association miRNA–
mRNA matrix derived from neuroblastoma data.
Functional labels were assigned to each miRNA module
depending on the most significantly enriched GO category
within the associated mRNAs. The full set of miRNA
modules was visualized using our custom software appli-
cation, outlined in Figure 4, and presented in Figure 6.
The most frequent categories that occurred in this data set
were Mitotic Cell Cycle:18 modules (orange, green
border), Nervous System Development:9 modules (white,

Table 1. miRNA clusters/families (n> 2) that exhibit significant cooperativity in the integrated Neuroblastoma or Human Immune data sets

Neuroblastoma Human immune cells

miRNA Cluster/Family n Cooperativity (r) P n Cooperativity (r) P

let-7A-1 cluster 3 �0.73 < 0.01 3 �0.73 < 0.01
mir-106A cluster 4 �0.46 0.01 6 �0.48 < 0.01
mir-106B cluster 3 �0.35 < 0.01 3 �0.42 0.02
mir-1185 cluster 20 �0.48 0.17 32 �0.58 < 0.01
mir-127 cluster 4 �0.26 0.3 7 �0.35 0.01
mir-1283 cluster 6 �0.44 0.01 27 �0.56 < 0.01
mir-17 cluster 4 �0.22 0.6 6 �0.51 < 0.01
mir-181C cluster 4 �0.47 0.01 5 �0.36 < 0.01
mir-216A cluster 3 �0.45 < 0.01
mir-23B cluster 3 �0.31 0.03 3 �0.23 0.81
mir-302A cluster 5 �0.42 0.02 5 �0.39 0.03
mir-424 cluster 3 �0.36 < 0.01
mir-506 cluster 6 �0.38 < 0.01
let-7 family 9 �0.69 < 0.01 9 �0.85 < 0.01
mir-130 family 4 �0.69 < 0.01
mir-148 family 3 �0.37 < 0.01 3 �0.78 < 0.01
mir-15 family 4 �0.62 < 0.01 4 �0.66 < 0.01
mir-154 family 12 �0.39 0.45 15 �0.49 < 0.01
mir-17 family 6 �0.60 0.01 8 �0.75 < 0.01
mir-181 family 3 �0.56 < 0.01 4 �0.71 < 0.01
mir-29 family 3 �0.71 < 0.01 3 �0.76 < 0.01
mir-30 family 3 �0.73 < 0.01 5 �0.84 < 0.01
mir-302 family 4 �0.78 < 0.01 5 �0.35 0.16
mir-320 family 4 �0.69 < 0.01
mir-329 family 3 �0.34 0.04
mir-368 family 3 �0.25 0.02
mir-379 family 5 �0.28 < 0.01
mir-506 family 7 �0.36 < 0.01
mir-515 family 4 �0.29 0.14 23 �0.52 < 0.01
mir-548 family 14 �0.50 < 0.01
mir-743 family 4 �0.30 0.01
mir-8 family 4 �0.32 0.08 5 �0.27 < 0.01
mir-95 family 4 �0.28 0.03

Association with cooperativity of number of targeting miRNA versus inverse expression, is calculated using Spearman’s Rank Correlation (r).
Significance (P) is calculated based on a background of 100 randomly generated miRNA groupings for each miRNA cluster/family size(n). See
Supplementary Table S2 for full set of results.
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green border), Signal Transduction:6 modules (blue,
green border) and Small GTPase Mediated Signal
Transduction:4 modules (light gray, yellow border). The
similarity of these miRNA functional modules in terms
of miRNA and mRNA membership is reflected in their
position on the X- and Y-axes, respectively. For example,
we can see from the X-axis separation of the three
most frequent modules that they differ their miRNA
membership.

The most significant miRNA modules for each func-
tional category are shown in Table 4 and full results are
given in Supplementary Table S3. Here we also present the
most significantly over-represented miRNA family/cluster
for each miRNA functional module.

To address the question of the likelihood of retrieving
such a set by chance given the null hypothesis (i.e. if there
were no miRNA–mRNA functional modules within the
data set), we also retrieved 100 miRNA modules after
miRNA and mRNA labels had been randomly
permuted. Figure 7 displays the distribution of GO signifi-
cance values for each of these results. A significant
(P< 4.43e-13) difference in the distributions is observed.
The result contains 62 miRNA modules that are more
significantly enriched (many far more so as can be seen

in the distribution) for GO categories than any of the 100
found by chance. We also see that our result contains
significantly (P< 1e-5) more miRNA modules with
miRNA family/cluster over-representation (P< 0.05)
than one would expect by chance, see Table 2.
Finally, we also evaluate the overall result by examining

agreement with 1093 experimentally validated miRNA–
mRNA target pairs in human, from Tarbase V5 (46), see
Table 3 and Supplementary Table S5. The overall set of
100 miRNA modules is supported by 95 experimentally
validated miRNA–mRNA target pairs, as compared with
only 5 as expected by chance. After standardization for
total coverage of miRNA–mRNA target pairs, the density
of experimentally validated miRNA–mRNA target pairs
is still 14.3-fold more than expected by chance. We now
examine some selected miRNA modules in more detail.
The top 20 miRNA modules, in terms of GO enrich-

ment, are given in Table 4, and all have a GO enrichment
more significant than any found by chance in the
randomly permuted data set. Selected miRNA functional
modules, involving the let-7 family interaction with ‘pre-
miRNA processing’ and ‘Gene silencing by RNA’, are
shown in further detail in Figure 8. We also present data
from a transfection of a member of this module, hsa-
let-7a, in the neuroblastoma cell line KELLY, that adds

Figure 6. Visualization of miRNA modules uncovered in the neuro-
blastoma tumour data set. The miRNA similarity and mRNA similar-
ity of the miRNA modules (see Equation 2) are projected onto the
X- and Y- axes, respectively, using classic multidimensional scaling.
The colour and diameter of a bubble in the plot represent the type
and size, respectively, of the most significantly enriched GO category
in the miRNA–mRNA functional module. miRNA functional modules
annotated with the functions ‘Mitotic Cell Cycle’, ‘Nervous System
Development’, ‘Signal Transduction’ and ‘Small GTPase-Mediated
Signal Transduction’ make up one-third of the biclusters discovered.

Figure 7. The spread of significance values (based on Gene Ontology
functional enrichment) of the 100 miRNA modules retrieved from the
neuroblastoma data set (black bars) compared with the expected dis-
tribution (grey bars), i.e. 100 biclusters generated after mRNA labels
were randomly permuted. miRNA family/cluster enrichment for these
sets is examined in Table 2.

Table 2. miRNA functions module miRNA family/cluster enrichment

Result Expected

miRNA cluster
Significantly enriched 73 8
Non-significant 27 92

miRNA family
Significantly enriched 78 19
Non-significant 22 81

Chi-square: P< 1e-5

The number miRNA functional modules that are significantly enriched
for miRNA clusters and families are significantly more (Chi-squared
P< 1e-05) than expected (found by chance in the randomly permuted
data set).
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support to the mRNA nodes and relevant edges in this
module. All mRNA members of ‘pre-miRNA processing’
miRNA module are downregulated as predicted after
transfection (see Figure 8a and c). Some support can
also be seen for the ‘Gene silencing by RNA’ miRNA
module where, following transfection of hsa-let-7a,
EIF2C3, LIN28B, TARBP2 and ZCCHC11 are
downregulated and PIWIL4 is upregulated.
Several miRNA and mRNA target genes have been

implicated in neuroblastoma pathogenesis (47). In some
cases, miRNAs have been identified but a specific target
and mechanism has yet to be elucidated. For example, it
is known that the endogenous knockdown of hsa-miR-7
promotes neurite outgrowth in neuroblastoma cell
lines, but no target or mechanism has been identified.
Similarly, hsa-miR-214 has been shown to promote
neurite growth when ectopically over-expressed, but a
specific target and mechanism remain elusive (48).

Using our visualization and analysis software applica-
tion, the modular miRNA-mRNA network revealed by
our approach may be queried for individual miRNA or
mRNA relationships. In Figure 9a, we see that hsa-miR-7
is a well-connected node within the module ‘Positive
Regulation of Neuron Projection Development’ that is
principally enriched for the mir-302a family/cluster
(P< 1.9-04). The connection between hsa-miR-214 and
neurite growth was not evident in the miRNA modules
uncovered in the initial unsupervised analysis. However,
guided by the phenotype and supported by our custom
software application, further interrogation of hsa-miR-
214 containing modules, primarily enriched for ‘Mitotic
Cell Cycle’, yielded a sub-module module enriched for
‘Neuron Projection Development’ shown in Figure 9b.

Immune cell data
To assess the broader application of our method of
modelling miRNA functional modules, we also applied
this technique to a publicly available data set differing in
cell type; see the section Dataset Description and (45).
Results of the unsupervised bicluster analysis are
visualized in Figure 10, and the top 20 miRNA-mRNA
functional modules for each category are presented in
Table 5 and Supplementary Table S4.

Interestingly, we can see that again the let-7 family
module is prominent in terms of miRNA family enrich-
ment (P=1.5E-08), with all 9 members occurring in the
module related to ‘Apoptotic process’ (P=8.4e-06);
see Figure 11a. Another module that may be involved in
the immune response is enriched genes related to
the ‘Response to lipopolysaccharide’ (P=9.3e-07) and
for members of the mir-15 family (P=1.3e-03), see
Figure 11b.

Table 4. The top 20 miRNA-mRNA functional modules, in terms of enrichment for Gene Ontology (GO) categories, for the neuroblastoma

integrated data set returned by biclustering

GO category n S P-value miRNA cluster/family n N P-value

Mitotic cell cycle 57 250 2.0e-39 mir-17 cluster 3 6 3.0e-03
M phase of mitotic cell cycle 18 220 2.0e-15 mir-8 family 2 5 2.1e-02
Mitotic prometaphase 11 154 5.9e-10 mir-17 family 5 8 7.3e-05
Signal transduction 48 250 9.6e-10 mir-200a cluster 2 3 1.1e-02
Innate immune response 24 250 3.7e-08
Nervous system development 23 250 5.9e-08 mir-135 family 2 2 6.5e-03
Cell division 19 250 7.0e-08 mir-17 family 6 8 7.6e-06
Platelet activation 16 250 8.4e-08 mir-29 family 3 3 7.9e-04
Nucleosome assembly 12 250 9.0e-08 mir-181 family 2 4 1.5e-02
DNA replication 13 213 9.6e-08 mir-192 cluster 2 2 1.0e-02
Inflammatory response 15 250 7.3e-06 mir-489 cluster 2 2 6.5e-03
pre-miRNA processing 4 250 9.3e-06 let-7 family 8 9 1.4e-07
Gene silencing by RNA 6 250 1.2e-05 let-7 family 8 9 1.4e-07
Collagen fibril organization 6 250 1.2e-05 mir-15 family 4 4 1.1e-04
Small GTPase-mediated signal transduction 16 250 1.9e-05 mir-302a cluster 5 5 2.0e-03
Microtubule cytoskeleton organization 7 250 2.1e-05 mir-329 family 2 3 1.1e-02
Cytokine-mediated signaling pathway 13 250 2.0e-05 mir-8 family 3 5 2.1e-03
Cellular response to drug 5 250 2.6e-05 mir-329 family 2 3 1.1e-02
Cell adhesion 22 250 3.0e-05 let-7 family 7 9 1.3e-06
Nucleotide-binding domain, leucine rich repeat
containing receptor signaling pathway

6 250 4.1e-05 mir-302a cluster 5 5 6.8e-03

Enrichment for miRNA genomic clusters and families in human is also shown were applicable. The number of members found in a category (n), the
number total of members in the category (N) and the total number of mRNA (S) are given. See Supplementary Table S3 for full set of results.

Table 3. Evaluation of miRNA functional modules discovered in

the neuroblastoma data set with experimentally validated

miRNA–mRNA target pairs, see Supplementary Table S5 for full

set of results

Evaluation Criterion Result Expected

Total miRNA modules retrieved 100 100
miRNA modules with �1 validated
miRNA-target pairs

38 4

Mean number of miRNAs in miRNA modules 19.8 14.9
Mean number of mRNAs in miRNA modules 235.5 236.7
Total validated miRNA-target pairs in
miRNA modules

95 5

Density of validated miRNA-target pairs
in miRNA modules

0.00078 5.4e-05
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(a) (b)

(c) (d)

Figure 8. (a) ‘miRNA processing’ and (b) ‘gene silencing by RNA’ functional modules found in the neuroblastoma tumour-integrated data set. These
hsa-let-7a interactions are supported by hsa-let-7a transfection results shown in (c) and (d), respectively. miRNA (outer green node) and mRNA
(inner red node) are connected via red (inversely correlated) and green (positively correlated) edges, the thickness of which is proportional to the
magnitude of correlation.

Figure 9. (a) miRNA module containing hsa-mir-7 enriched for the GO category ‘positive regulation of neuron projection development’ (b) miRNA
module containing hsa-mir-214 enriched for the GO category ‘neuron projection development’.
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Another prominent module, Viral Infectious Cycle
(P=2:0e� 28), has enrichment for hsa-mir-146a family.
It has been reported previously that mir-146a family
is stimulated by viral infection in an NFkB related
manner (49). Also prominent is the hsa-mir-181a cluster,
which may be involved in haematopoietic cell lineage
differentiation (50).

DISCUSSION

As with previous trends in mRNA expression analysis, the
elucidation of miRNA function may be aided by a
systems-level approach. Accepting the premise that
mRNAs may be co-regulated to perform specific func-
tions, it seems natural that miRNAs may contribute
to this modular regulation at a post-transcriptional
level. Here we first examined the possible cooperativity
of miRNA classes and saw that, where present,
cooperativity generally appears to be additive in nature,
having a linear relationship between the number of target-
ing miRNAs and the effect on target mRNAs. Some

miRNA classes, such as the mir-302 family in the
Neuroblastoma data set and mir-320 family in the
Human Immune Cells data set appeared to show some
limited evidence of synergistic cooperativity that may
warrant further investigation. Interestingly, although
the mir-302 family showed cooperativity in the
Neuroblastoma data set, it did not show any significant
cooperativity in the Human Immune Cells data set. It is
intriguing to speculate that cooperativity itself may
be modulated, e.g. by miRNA concentrations or other
factors, to regulate the effect of miRNA module.
Significant miRNA cooperativity for a number of
miRNA clusters and families was also present across
both data sets, despite differing cell types. It is of
interest to note that certain miRNA classes, such as the
hsa-let-7 and hsa-mir-29 families, showed significant
cooperativity across data sets, perhaps due their regula-
tion of fundamental cellular functions.

Supported in part by these findings, we investigated the
functional basis for such cooperativity by applying a
bicluster analysis to locate subsets of miRNAs that were

Figure 10. Visualization of miRNA modules in immunology data set.
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associated with groups of mRNAs within integrated
miRNA-mRNA association matrices. This unsupervised
analysis uncovered significant evidence of an extensive
modular miRNA–mRNA network by locating many
modules, enriched both for specific miRNA cluster/
families and GO Biological Process, in both data sets
examined. It was also of interest to see that, although
sparse in absolute terms, the coverage of experimentally
validated miRNA-mRNA target pairs was 14.3-fold more
than discovered by chance. In the Neuroblastoma data
set, one-third of modules uncovered fell into the
three categories—Cell Cycle, Signal Transduction and
Nervous System Development—and reflected the

dominance of these modules. Perhaps, somewhat expect-
edly, given both their prominence in the literature, the
most significant evidence for modular miRNA regulation
was provided by the hsa-let-7 family (P=1.4e-07) and the
hsa-mir-17 family (P=7.6e-06). The magnitude and dir-
ection of influence of several edges within two hsa-let-7
functional modules were supported by hsa-let-7a cell line
transfection data. The agreement across tumour and cell
lines supports these targets and functions and again points
to fundamental cellular functions of the hsa-let-7a family.
Modules providing insight into the possible mechanism
of how hsa-mir-7 and hsa-mir-214 regulate neuron
projections in neuroblastoma were also uncovered,

Table 5. The top 20 miRNA functional modules, in terms of enrichment for GO categories, uncovered in the Human Immune Cells data set

GO category n S P-value miRNA cluster/family n N P-value

Viral transcription 39 198 5.1e-45 mir-320 family 4 4 1.1e-04
Viral infectious cycle 28 202 2.0e-28 mir-146 family 2 2 6.5e-03
Translational termination 21 199 3.4e-20 mir-181a cluster 2 2 5.5e-03
Translational elongation 21 198 1.2e-19 mir-320 family 4 4 1.1e-04
Translational initiation 21 196 1.1e-17 mir-320 family 4 4 1.1e-04
Respiratory electron transport chain 18 220 6.4e-15 mir-181a cluster 2 2 6.5e-03
Intracellular signal transduction 17 176 3.2e-08
Axon guidance 17 176 3.2e-08 mir-320 family 4 4 1.1e-02
Gene expression 25 221 4.3e-07 mir-181a cluster 2 2 6.5e-03
Response to lipopolysaccharide 10 170 9.3e-07 mir-15 family 3 4 1.3e-03
Small molecule metabolic process 31 211 4.2e-06 mir-188 cluster 4 7 4.6e-04
Inflammatory response 13 182 5.0e-06 mir-17 family 4 8 6.6e-04
DNA repair 14 203 7.4e-06
Apoptotic process 22 214 8.4e-06 let-7 family 9 9 1.5e-08
Prostanoid metabolic process 4 180 1.4e-05 mir-15 family 3 4 1.3e-03
Microtubule organizing center organization 3 158 2.0e-05 mir-17 family 8 8 6.8e-04
Receptor-mediated endocytosis 6 192 2.2e-05 mir-17 family 5 8 7.3e-05
Mammary gland development 5 199 2.5e-05 mir-320 family 4 4 1.1e-04
Antigen processing and presentation of peptide or

polysaccharide antigen via MHC class II
4 162 3.0e-05 mir-500 family 2 3 2.1e-02

Positive regulation of DNA replication 5 175 4.5e-05

Enrichment for miRNA genomic clusters and families is also shown were applicable. The number of members found in a category (n) and the
number of members in the category (N) are given. See Supplementary Table S4 for full set of results.

Figure 11. Selected miRNA modules found in the immune cells data set enriched for (a) the let-7 family and ‘Apoptotic process’ and (b) the mir-15
family and ‘response to lipopolysaccharide’.
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demonstrating how this approach may aid filling in the
gaps in functional mechanism for specific miRNAs.
We also saw potential for miRNA functional module

analysis to apply to other cell types with retrieval of an ex-
tensive modular network within the Human Immune Cell
data set. Several miRNA modules with enrichment of
immune-related functions, such as ‘Viral Transcription’,
‘Response to Lipopolysaccharide’ and ‘Apoptotic
Process’, were uncovered. The ‘Apoptotic Process’
module is enriched for hsa-let-7 family members, which
are found to be downregulated in several cancers, and
may offer some mechanistic insight into their
dysregulation. miRNA functional modules would meet
the needs of cellular functions that require a rapid
coordinated regulation, such as those involved in the
immune response. Although this data set represented a
normal unchallenged model, several immune-related func-
tions are evident and we see potential for the future ap-
plication miRNA functional module analysis in this area.
As we learn more about the transcriptional regulation

and activity of miRNAs, we see potential to improve the
modelling of miRNA functional modules and the accuracy
of integrated miRNA-mRNA association matrices. The
modelling, visualization and analysis methods developed
here will still apply to such association matrices and can
also be applied to other domains where bicluster analysis
is used, such as high-dimensional gene expression or
metabolomics data sets.
The question of how to visualize biclustering results is

still open, and currently there is no generally accepted
visualization method akin to the dendrogram used for
cluster analysis. Although the software visually depicts
similarity of miRNA functional modules, one way in
which this approach might be further refined is by the
implementation of a ‘merging’ step (either at the search
or visualization stage) in which similar miRNA–mRNA
modules could be amalgamated. This would perhaps ne-
cessitate additional threshold settings. Also, it is possible
that individual solutions may be further refined by per-
forming an additional ‘pruning’ step. This can be carried
out by the user at the visualization stage via two adjust-
able sliders. We have also demonstrated that unifying
visualization and analysis within a single software appli-
cation allows the user to rapidly explore and query large
complex, otherwise overwhelming, data sets.
Currently this approach models static networks;

however, such visualization may be extended to include
an extra dimension, e.g. by the addition of animation, to
support the modelling of dynamic networks and how the
miRNA–mRNA modules are perturbed with the onset of
disease. In the current context, we are only scratching the
surface, and we envisage the development of a rich vein of
research in the area of miRNA functional modules and
their contribution to normal gene regulation and
dysregulation in disease.
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