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ABSTRACT

Correctly estimating isoform-specific gene expres-
sion is important for understanding complicated
biological mechanisms and for mapping dis-
ease susceptibility genes. However, estimating
isoform-specific gene expression is challenging
because various biases present in RNA-Seq (RNA
sequencing) data complicate the analysis, and if
not appropriately corrected, can affect isoform
expression estimation and downstream analysis.
In this article, we present PennSeq, a statistical
method that allows each isoform to have its own
non-uniform read distribution. Instead of making
parametric assumptions, we give adequate weight
to the underlying data by the use of a non-paramet-
ric approach. Our rationale is that regardless what
factors lead to non-uniformity, whether it is due
to hexamer priming bias, local sequence bias, pos-
itional bias, RNA degradation, mapping bias or other
unknown reasons, the probability that a fragment is
sampled from a particular region will be reflected
in the aligned data. This empirical approach thus
maximally reflects the true underlying non-uniform
read distribution. We evaluate the performance of
PennSeq using both simulated data with known
ground truth, and using two real lllumina RNA-Seq
data sets including one with quantitative real time
polymerase chain reaction measurements. Our
results indicate superior performance of PennSeq
over existing methods, particularly for isoforms
demonstrating severe non-uniformity. PennSeq is
freely available for download at http://sourceforge.
net/projects/pennseq.

INTRODUCTION

Transcriptomics studies using RNA sequencing (RNA-Seq)
provide a promising avenue for characterization and under-
standing of the molecular basis of human diseases. In the
past decade, microarrays have been the method of choice
for transcriptomics studies due to their ability to measure
thousands of transcripts simultaneously (1). However,
microarrays are subject to biases in hybridization strength
and potential for cross-hybridization to probes with similar
sequences (2). Recently, RNA-Seq has emerged as a new
approach for transcriptome profiling. With high coverage
and single nucleotide resolution, RNA-Seq can be used to
study expressions of genes or isoforms, alternative splicing,
non-coding RNAs, post-transcriptional modifications and
gene fusions (3). RNA-Seq is arguably the most complex
next-generation sequencing data we face. Unlike DNA
sequencing, RNA-Seq yields many dimensions of data.
A number of analytical and computational challenges
must be overcome before we can fully reap the benefit of
this new technology.

In this article, we present our work on estimating
isoform-specific gene expression while allowing for non-
uniform read distribution along transcripts. Knowledge of
isoform expressions is of fundamental biological interest to
researchers due to their direct relevance to protein function
and disease pathogenesis. Recent evidence suggests that
almost all multiexon human genes have more than one
isoform (4), and different isoforms are often differentially
expressed across different tissues, developmental stages and
disease conditions. Therefore, correctly estimating isoform-
specific gene expression is important for understanding
complicated biological mechanisms and for mapping
disease susceptibility genes using expression quantitative
trait locus (eQTL) or splicing QTL approaches (5,6).

However, estimating isoform-specific gene expression is
challenging because the current technologies can only
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sequence complementary DND (cDNA) molecules that
represent partial fragments of the RNA. Additionally,
most reads that are mapped to a gene are shared by
more than one isoform, making it difficult to discern
their isoform origin. An even more serious issue that com-
plicates gene expression estimation is various biases
present in RNA-Seq data. Many methods for estimating
gene expression in RNA-Seq assume the sequenced frag-
ments (or reads) are uniformly distributed along tran-
scripts (7-10), i.e. the starting positions of sequenced
fragments are chosen approximately uniformly along a
transcript. Under this assumption, it is straightforward
to model read counts using a Poisson distribution (7,10).
However, it is widely acknowledged that the true distribu-
tion of fragment start positions deviates substantially
from uniformity and varies with the fragmentation
protocol and sequencing technology. In the presence of
such bias, the accuracy of isoform expression in-
ference based on the uniformity assumption will
deteriorate.

Li et al. (11) showed that correcting bias caused by local
sequence difference significantly increased the accuracy of
gene expression quantification; for genes demonstrating
high degree of non-uniformity, their correction led to
26-63% relative improvement for accuracy. Although
encouraging, this method only considers bias due to
local sequence difference. As shown by Li er al. (11),
only <50% of the non-uniformity can be explained by
local sequence difference. Recognizing the importance of
this problem, several other methods have been developed.
Li and Dewey (12,13) modeled the empirical read distri-
bution using all mapped reads in the transcriptome,
whereas Wu ef al. (14) considered gene-specific empirical
distribution. Lin ez al. (15) proposed a parametric model
that specifically models the non-uniformity caused
by RNA degradation. Roberts et al. (16) developed a
variable length Markov model that corrects both
sequence and positional bias. Nicolae et al. (17) imple-
mented a reweighting scheme to correct for hexamer and
repeat bias (18). More recently, Li ez al. (19) proposed
a quasi-multinomial model with a single parameter to
capture positional, sequence and mapping biases.
Although these methods have advanced the field, they
either oversimplify the problem or provide complex solu-
tions, neither of which is ideal.

Empirical studies indicate that the non-uniform read
distributions are complex, and parametric models are
unlikely to capture all factors that lead to non-uniformity.
In this article, we present PennSeq, a statistical method
that allows each isoform to have its own non-uniform read
distribution. Instead of making parametric assumptions,
we give adequate weight to the underlying data by the use
of a non-parametric approach. We evaluate the perform-
ance of PennSeq using both simulated data with known
ground truth, and using two real Illumina RNA-Seq data
sets. Our results indicate superior performance of PennSeq
over existing methods in isoform-specific gene expression
quantification, particularly for isoforms demonstrating
severe non-uniformity.
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MATERIALS AND METHODS
Notations

In a typical RNA-Seq experiment, a population of RNA,
typically poly-A-selected messenger RNAs, is converted
into cDNA by reverse transcription. Those reverse-
transcribed cDNAs are then fragmented and undergo a
size selection procedure in which fragments with size
within a certain range are kept in the library. Each
fragment in the library is then sequenced in a high-through-
put manner to obtain short sequences from both ends in
paired-end sequencing. Following the sequencing experi-
ment, the resulting sequenced reads are then either
aligned to a reference genome or a reference transcriptome.

Because isoform expression estimation is done at a
gene-by-gene basis, later in the text we describe the
analysis for a particular gene only. Let R denote the set
of read pairs that are mapped to a gene of interest, and I
denote the set of known isoforms of the gene. For a
specific isoform i€, let /; denote its length and 6; denote
its relative abundance, with 0 <6; <1 and ), ,6; = 1.
Because the length of each fragment is not fixed, we
treat it as a random variable with distribution function
F(*). Following Trapnell et al. (8), we estimate F empiric-
ally from the data. The effective length for isoform i,
which reflects the number of possible start positions

that a selected fragment can be sampled, is
li= Zi:l F(k)(l; — k+1). The probability that a read pair
originates from isoform i is P(iso. = i) = Lei = 6;. For

uel !

read pair r with alignment start position s, let L/(r,s)
denote the fragment length implied by r’s alignment to
isoform i. We define Zgy as a |R|x [I] matrix with
Zg(r, i) = 1if r is generated from a fragment that origin-
ates from isoform 7, and Zg(r, i) = 0 otherwise. Our goal
is to estimate ® = {0;,i € I} based on RNA-Seq reads
mapped to the gene of interest.

Complete data likelihood

With the aforementioned notations, the complete data
likelihood of the RNA-Seq data can be written as

Zg(r,i)
L(OIR,Z) = l_[ l_[ [P(read pair = r, start = s] !
reR iel
= l_[ l_[ [é,—P(read pair = r|start = s, frag. len.
reR iel

= Li(r, 5),is0. = i)xP(start = s,frag. len.

. 7 Zr(r,0)
= Li(r, s)|iso. = l)] .

The above calculation uses the fact that given the isoform
origin and alignment start position, the fragment length of
a read pair can be inferred. The conditional probability of
a read pair r derived from isoform 7 with start position s is

P(read pair = r|start = s,frag. len. = L;(r,s),is0. = i)

= Hj:1 q./(xl'ﬂyi,/“rsfl) = Bi(r,s),
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Figure 1. Illustration of the empirical modeling of non-uniform read distribution. Displayed is the coverage plot for isoform i, which has six
exons colored in green. The red box indicates a read pair r that is under consideration. The mapping start position of r is s and end position is
s+ L{r, s) — 1, where Lr, s) is the length of the fragment from which r originates. The shaded gray area indicates the region that is spanned by r.

where x is the sequence of read pair r, y, is the sequence of
isoform 7 and m is the length of the read pair. The value of
g{a, b) is the probability that we observe base a at position
j of the read pair given that the true base is b, which can be
calculated as 1-1072/" with Q; being the per-base
Phred quality score at position j. Key to the aforemen-
tioned likelihood calculation is on the modeling of
h{r, s) = P(start = s, frag. len. = L(r, s) | iso. = i). Most
existing methods assume that the read start position is
uniformly distributed. Under this assumption, /Z(r, s)

can be modeled by h,—(r,s)zm. However, this

uniform assumption often does not hold in real data.
Our experience with analysis of various real data sets
suggests that the non-uniform read distribution has
complicated forms and is unlikely to be fully captured
by parametric models. Later in the text we describe a
non-parametric approach to estimate /,(r, s).

Modeling of read start distribution

Suppose for each read pair r, we know its isoform origin
and the total number of bases that are mapped to the
isoform. Then a natural way of modeling /(r, s) is to let
it reflect the probability that a randomly selected read pair
maps to the region spanned by r. Analytically, this can be
quk Z.\] s, Zwa(r,)Li(r1,1)
Zrzek Z\-,gs,- Zra(r2,)Li(r2,2)
numerator represents the number of bases from isoform
i that fall within the region spanned by r (shaded area in
Figure 1), and the denominator represents the total
number of bases from isoform i (overall area in
Figure 1). Here S; is the set that contains all possible start
positions within isoform 7, and S;, = [s, s+ L{r, s) — 1] is
the interval spanned by r. For any read pair r; chosen

where the

written as /h;(r,s) =

from the rest of the aligned RNA-Seq reads, L;(r,s1) is
the length of ry that overlaps with S;,.

Unlike the previous approaches (11,15,19,20), the afore-
mentioned modeling of /,(r, s) does not make any para-
metric assumptions. Our rationale is that regardless what
factors lead to non-uniformity, the probability that a
fragment is sampled from a particular region of a tran-
script will always be reflected in the aligned data. This
empirical approach thus maximally reflects the true
underlying non-uniform read distribution. In practice,
the isoform origin of a read pair is unobserved. We can
treat h(r, s) as an unknown quantity and estimate it non-
parametrically in an EM algorithm as described later in
the text. Although feasible, this approach is computation-
ally prohibitive, as it requires the calculation of per-base
coverage during every EM update. To speed up the calcu-
lation, we propose an estimate of 4,(r, s) by approximating
the isoform-specific read distribution. Specifically, for
isoform informative reads, we assign them to the corres-
ponding isoforms; for those non-informative reads,
we assign them to all compatible isoforms. Once the
isoform-specific read distribution is determined, we can
easily estimate h(r, s) based on the procedure illustrated
in Figure 1. Our results indicate this approximation works
well in both simulated and real data.

Parameter estimation using the expectation-maximization
algorithm

We are interested in inferring @ from which we can

~ —1
infer © based on the fact that 6, =% (Zuel j’—) (8.12).

The complete data likelihood is

LOIR) = nrek l_[iel [éiﬂi(",s)h;(l’,S)]ZR’I("’[),
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and the update procedure of the EM algorithm is as
follows:
E-step: Calculate
~ ~ (1) ~
0©10")=E, g [log L(®|R)]

= E -
ZreR Zie[ Zr1IR,0"

(Zr1(r,)) log(0:Bi(r,)hi(r,s)),

N OB hi(rs)
where E re” (Zra(r,i)) = S Db
M-step: Maximize Q((:)|(:)(t)), and this gives
M) PN EZR,.la(’>,R(Z“r‘(r’i))

0. = .
i [R]|
The EM algorithm consists of alternating between the

E- and M-steps until convergence. We start the algorithm

. ~ (0 . .
with ®( : assuming all isoforms are equally expressed and
stop when the log likelihood is no longer increasing
significantly.

Quantification of isoform expression level

What we obtained above are the estimates of relative
abundance of each isoform, which is useful in splicing
QTL analysis (5,21). In addition to relative abundance,
it is also important to quantify the absolute expression
level of an isoform, and the obtained measurements
can be used in differential expression (22-24) or eQTL
analyses (21). For paired-end RNA-Seq data, the
standard is to report Fragments per Kilobase of transcript
per Million mapped reads (FPKM) (8,25). FPKM is
defined as FPKM =5 -10°-10°, where C is the total
number of fragments (or read pairs) mapped in a region
of interest, N is the total number of mapped reads in the
experiment and L is the length of the region. With this
FPKM concept, we can estimate the expression level of a
particular isoform. The estimate is similar to what is
described earlier in the text, except that we need to
replace C by the estimated number of read pairs that ori-

ginate from isoform i, i.e. FPKM(i) = 6 - % 10° - 10°.

RESULTS

In this section, we evaluate the performance of PennSeq
on both simulated and real RNA-Seq data and compare it
with five existing algorithms, including Cufflinks (8,25),
CEM (19), RD (15), IsoEM (17) and iReckon (9).

Simulations

RNA-Seq data simulation

To evaluate the performance of PennSeq, we conducted
simulations and compared it with other state-of-the-art al-
gorithms for isoform expression estimation. To simulate a
realistic data set with known ground truth, we used the
Flux Simulator (26), which simulates paired-end RNA-
Seq data by modeling RNA-Seq experiments in silico.
The human genome sequence (hgl9, NCBI build 37) was
downloaded from University of California, Santa Cruz,
together with the coordinates of the isoforms in the
refGene table. The Flux Simulator program assigns an

PaGce4 or 14

abundance value for each isoform following a mixed
power/exponential law. Additionally, it simulates
common sources of systematic bias in the abundance and
distribution of produced reads by in silico library prepar-
ation and sequencing. Using the Flux Simulator, we
generated 100 million (100 M) 76-bp paired-end reads. To
evaluate the impact of sequencing depth on isoform expres-
sion estimation, we randomly selected 10, 20 and 60 million
reads from the simulated data, and denoted these subsets
by 10 M, 20 M and 60 M, respectively. For each dataset, the
simulated RNA-Seq reads were mapped to the reference
genome using Tophat (27). We then picked all expressed
genes (covered by at least 10 read pairs) with two or more
isoforms in our evaluation (note: relative abundance for
genes with a single isoform is 1, thus there is no need to
estimate its relative abundance). For each gene, we
estimated the isoform relative abundance using PennSeq,
Cufflinks (8,25), CEM (19), RD (15), IsoEM (17) and
iReckon (9). For Cufflinks and CEM, we implemented
both the bias-correction version and the non-bias-correc-
tion version. We denote the bias-correction versions as
Cufflinks-bias and CEM-bias. For IsoEM, we implemented
its bias-correction version only. All methods were run with
the same set of aligned reads as input and were asked to
estimate isoform expression for all genes annotated by
refSeq. Command lines used in each program were
provided in Supplementary Data.

The characteristics of the simulated data are shown in
Figure 2. The median numbers of read pairs mapped in
each gene in the 10 M, 20 M, 60 M and 100 M data sets are
200, 402, 1208 and 2015, respectively. Among the
evaluated genes, 49% have two isoforms, 24% have
three isoforms and 27% have four or more isoforms.
The simulated isoforms have a wide range of relative
abundance (interquartile range = 0.75, median = 0.041).
Additionally, the coverage plots of the simulated data
resemble those seen in real studies, demonstrating
various biases. These simulated data thus provide an
ideal basis to evaluate the performance of PennSeq as
the ground truth is known.

Comparison of estimation accuracy

We explored several measures to quantify the estimation
accuracy of each method. First, we measured the similar-
ity between the estimated isoform relative abundance and
the ground truth by calculating R% the coefficient of de-
termination (i.e. squared Pearson correlation coefficient).
This measure has been used by various methods including
Cufflinks (8,25), IsoEM (17) and CEM (19). Second, we
measured the estimation accuracy by calculating the root

Zg Zi (égv”_eg”’)z

where the summation is taken over all genes and all
isoforms within each gene and » is the total number of
isoforms across all genes. Third, we calculated the fraction
of genes that have incorrectly inferred major isoforms.
The major isoform of a gene is defined as the most
abundant isoform of the gene.

Figure 3 (Supplementary Figure S1 and S2) shows the R*
values of all methods. PennSeq clearly has the highest R>

mean squared error (RMSE), defined as

b}



utilized
,
above
,
,
In order t
UCSC
 million
 million,
denote 
,
one
,
-
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt1304/-/DC1
,
,
,
,
square root of mean squared error 
,
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt1304/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt1304/-/DC1

Nucleic Acids Research, 2014, Vol. 42, No.3 €20

PAGE 5 oF 14

*SOUAS Pajad[ds Ajwopurl a1y} 10J sjo[d 98BI0A0D) () POUBPUNQE JATJB[AI WLIOJOSI A

Jo uonnquisi (D) -oud3 yord Ul SWIOJOSI JO Ioquinu 9y Aq soudsd Jo uonnquisi (g) -oudd yoes ur sired peal jo Joquunu ) Jo uonnquisiq (V) “erep paje[nuis Y} Jo sONSLIORIRYD) "7 M3

u = 'HH”H”-“ BIFZTOZ_WN/L DdID
047202 N/ DdID
BIFCOZ_N/L OdIO
PEEZOZ_AN/L DD
- .- .- 91 JG00 WN/LOGIO
obeI8A0D pES)
10002091 1000908} 1000508V} 1000091 10CO'E0SL  1000TOSYY  1000GE YL 1000'008'L 1 000'66S'VL  1000'86S ) | 000'A6S YL 1000'96S VL 1000ISeS'VL 1000 V6S VL 1000'EBS YL 1 000TES YL 1000TIeS YL 10000S YL I %mmwmu
68.EFZL00_AN/LONIAE
0BZ£FZLO0_WN/LONIE
L62E7CL00 N/ ONIAE
LLErLO IANALONAS
I L81EPTL00_AN/LONIAE
s wmmqsg AN ONIAS
afeier00 peal
10057855 |000T8SHS | 00S'I8SHS | O0D'ISSPS | 00G08SKS | 000'08S «m@m; 100S'6/S°VS  J000BISYS  |00SBSYS | 000'BISYS | OOSLIGYS  |000'LISHS  |O0SOISYS  |0009MSYS 005G WS J000'SISYS | mwkﬂmu
} 214
i 4 — 0200100 AN/ZOIQ
- — 05Z L 00ANZO (T
5 ¥ 05 7CLO0 ANZOIT
f— €61000_ANZOI]
' ‘ —— FEEL0 ANICOID
ebessn0d pesl
-6vl
100056908 1000'069'08 1000'689'08 100008908 1000'629'08 100002908 1 bl
BLBU | @101 ek2s a
(saed peai Jo saquinu)gBo| (sned pea Jo 1aquinu) 60|
s v € 2 + 0 s v € 2 + 0
I S | I N S |
90UBPUNQE SANE[SI WIOJO0S| =y - 0 =) T 0
< €C 8 [4 — — F- — — z
o'l 80 90 v'0 20 00 T 7z S T 008 m 008 w
(=1 [=}
L - | 1 1 _II | - T 12 1 otT ooo_w. ooopm
] 2
. I (114 14 6 & &
~ 000} 0051 005+
0 6T el 8
z
~ 0002 m € 8T LL L woot wo9
I € LT 99T 9
- 000€ &
=X T 91 89¢ q (sared peas Jo sequinu)g . Boj (sied peai jo sequinu)o 6oy
- @
000¥ s S ST 619 14 s v € 2 + 0 s v € 2 L 0
| NS S S E— — | S S S E——
- 0008 3 4 [ 8v0T € 1 r 0 0
S €T 9£0T 4 — g — 4
- 0009 005 m 005 m
suag auad
souad sauad Q S
— 000Z 12d swojosi 13d swioj0s) 000t & 000} &
J0.J3quinN Jo13quinN 3 3
Jo13quinN Jo1aquinN 3 3
005+ 0051
o] g Woz Wot \'4



e20 Nucleic Acids Research, 2014, Vol. 42, No. 3

PAGE 6 OF 14

A All isoforms
1.0
0.8 o
.6 X - 0.660.66
600.590.590-60p 55 50.640-650.65 ¢ 0.65 0.62
0.6
0.4
0.2
0.0
10M 20M 60M 100M
M PennSeq MWCEM-bias mCEM M Cufflinks-bias m Cufflinks ®mRD mIsoEM-bias m Ireckon
B Isoforms stratified by fraction of coverage C Isoforms stratified by chi-squared statistic
1.0 1.0
0.8 0.8
0.6 0.6
.490.480.49 47
0.43
0.4 0.4
0.2 0.2
0.0 0.0
10M (frac cov < 50%) 10M (frac cov > 50%) 10M (chisq > median) 10M (chisq < median)
M PennSeq B CEM-bias uCEM M PennSeq B CEM-bias uCEM
B Cufflinks-bias M Cufflinks B RD B Cufflinks-bias M Cufflinks mRD
m IsoEM-bias m Ireckon  IsoEM-bias m Ireckon
D Percent RZ improvement of PennSeq over CEM-bias
35 314
30
25
20
15
10
5
0
All Frac cov < 50% Frac cov > 50% Chisq > median Chisq < median
®10M ®m20M m60M m100M

Figure 3. R” between estimated and true isoform relative abundance for the simulated data. (A) All isoforms. (B) Isoforms are stratified by the fraction
of coverage. The left panel is for those isoforms in which <50% of the transcripts are covered by reads, and the right panel is for the remaining isoforms.
(C) Isoforms are stratified by the chi-squared goodness of fit statistic for uniformity. The left panel is for those isoforms in which the chi-squared statistic
is greater than the median, and the right panel is for the remaining isoforms. (D) Percent R? improvement of PennSeq over CEM-bias.

values across all data sets. Compared with the second-best
performing method, CEM-bias, PennSeq has 5.3-10.1%
higher R>. For CEM, the bias-correction version leads to
noticeable improvement in R* compared with its non—bias-
correction version. In contrast, the bias-correction version
of Cufflinks offers only limited improvement over its

non-bias-correction version. Because iReckon (9) assumes
reads are uniformly distributed, it is not surprising that it
generally yields the lowest R”.

Next, we evaluated the impact of the degree of non-
uniformity in read coverage on isoform expression estima-
tion. We considered two measures to quantify the degree
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of non-uniformity. The first measure is the fraction of
coverage, defined as the fraction of the transcript that is
covered by reads. The second measure is the chi-squared
statistic that measures the goodness-of-fit of coverage uni-
formity. These two measures were calculated internally by
the Flux Simulator. For each measure, we divided the
isoforms into two categories based on the median of the
corresponding measure. Not surprisingly, for isoforms
that have fraction of coverage <50% or chi-squared stat-
istic greater than the median, the R* values are generally
lower than the other isoforms. Despite the reduced
R? values, PennSeq appears to be much more accurate
than the other methods, especially when the sequencing
depth is low. For example, in the 10 M data set, for
isoforms that have fraction of coverage <50%, the
R? value of CEM-bias is only 0.38, whereas the corres-
ponding value of PennSeq is 0.49, which is 31% higher;
similarly, for isoforms that have chi-squared statistic
greater than the median, the R* value of PennSeq is
15% higher than CEM-bias. We observed similar
patterns for data sets with higher sequencing depth
(Supplementary Figures S3 and S4). These results clearly
demonstrate the advantage of PennSeq when the read
distribution is not uniform.

The superior performance of PennSeq is also revealed
by the RMSE (Figure 4; Supplementary Figures S5
and S6). Among all tested methods, PennSeq has the
smallest RMSE. Compared with the second-best perform-
ing method, CEM-bias, the RMSE values of PennSeq are
13-16% smaller. Stratified analysis by the degree of non-
uniformity yields a similar pattern. The percentage of
RMSE reduction is most notable for isoforms that have
the fraction of coverage <50%.

Next, we examined whether the major isoform of each
gene can be correctly inferred. Correct identification of the
major isoform is important, as the major isoform might
lead to more biological consequence due to the more
abundant protein product. As expected, PennSeq outper-
forms other methods (Figure 5; Supplementary Figures S7
and S8). Its error rate is 5-16% lower than CEM-bias.
Further examination of those genes with incorrectly
inferred major isoforms reveals that the relative abun-
dance difference between the most abundant and
second-most abundant isoforms is often small, thus
making the inference of the major isoforms difficult. To
better discern the major isoforms, we next restricted our
analysis to those genes with well-defined major isoforms
by requiring the relative abundance difference between the
most abundant and second-most abundant isoforms to be
>0.2. Not surprisingly, the error rates of all methods are
reduced with PennSeq, RD, IsoEM and iReckon having
error rates ~5%. Stratified analysis by the degree of non-
uniformity suggests that when the fraction of coverage for
the true major isoforms is <50% or when the chi-squared
statistic is greater than the median, CEM-bias, CEM and
Cufflinks have much higher error rates than PennSeq, RD,
IsoEM and iReckon.

We note that IsoEM only returned isoform expression
estimates for 20-50% of all tested genes, and the returned
genes are different from run to run even on the same data
set using the same command. Owing to this reason, results

Nucleic Acids Research, 2014, Vol. 42, No.3 20

on IsoEM should be interpreted with caution. iReckon
also failed to return expression estimates for a notable
number of genes (~7%) due to unknown reasons.

Application to the MicroArray Quality Control data

We recognize that data sets generated by simulations
depend on the parameterization and the assumptions of
the selected model. Moreover, such data sets may consti-
tute only a partial representation of reality as the complex-
ity of RNA-Seq data is hard to mimic. To evaluate
the performance of PennSeq in real studies, we analyzed
the Human Brain Reference (HBR) and the Universal
Human Reference (UHR) RNA-Seq data sets from the
MicroArray Quality Control (MAQC) project (28). Both
samples were sequenced using Illumina GenomeAnalyzer
using seven lanes, yielding 35-bp single-end data (29). The
RNA-Seq data were downloaded from NCBI Read
Archive under accession number SRA010153. As part of
the MAQC project, the expression levels of 894 transcripts
were also measured by TagMan Gene Expression Assay
based on quantitative real time polymerase chain reaction
(qRT-PCR) technology. The qRT-PCR measurements
were downloaded from Gene Expression Omnibus under
accession number GSES5350.

For each sample, we analyzed one lane of the sequenced
reads and mapped them to the reference genome using
Tophat (27). We then estimated isoform-specific expres-
sion for all refSeq-annotated genes. The qRT-PCR
measures were treated as the gold standard when
comparing different methods. We note that 563 of the
894 transcripts with qRT-PCR measurements are from
genes with a single isoform. Because estimating isoform-
specific expression for these single-transcript genes is
trivial, to better assess the performance of different
methods, we only considered those transcripts that are
derived from genes with two or more isoforms. We did
not analyze the data using IsoEM because of its unreliable
performance. iReckon was also excluded from comparison
because it cannot handle single-end reads. For the other
programs, we used the same command line options as we
did in the simulations (Supplementary Data).

As shown in Figure 6, the estimation accuracy of all
methods is significantly lower than simulated data. This
could be due to several reasons. First, the MAQC data are
35-bp single-end. Compared with the simulated data with
76-bp paired-end reads, this data set contains much less
isoform-informative reads, leading to more uncertainty in
the estimation. Second, the qRT-PCR measures may not
be accurate, especially for those transcripts with qRT-
PCR measures close to 0. Nevertheless, the relative per-
formance of the different methods is consistent with the
simulation results, with PennSeq clearly outperforming
the other methods. For HBR, the R? value of PennSeq
is 0.42, whereas the corresponding value from the
second-best performing method, CEM, is only 0.23. For
UHR, Cufflinks-bias seems to correlate with the qRT-
PCR measurements better than CEM and CEM-bias,
but its R? value is still substantially lower than PennSeq.
Comparison of different methods using Spearman correl-
ation reveals a similar pattern. The better performance of
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CEM-bias.

PennSeq is likely due to its more accurate estimation for
those lowly expressed transcripts. As shown in Figure 6,
the estimated FPKMs from PennSeq demonstrate
an almost linear relationship with the qRT-PCR

measurements in log-scale. However, many of the lowly
to moderately expressed transcripts were underestimated
using the other methods with their FPKM values being
compacted toward 0. Our further examination reveals that
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these isoforms are typically from genes with severe
non-uniformity and low-to-moderate coverage. This is
consistent with what is observed in the simulations
(Supplementary Figure S2).

Because the MAQC data include seven lanes of reads
for both HBR and UHR, this allows us to evaluate the
reproducibility of PennSeq and other competing methods.
We analyzed the remaining six lanes of HBR and
calculated the pairwise Spearman correlation of estimated
isoform expression levels between different lanes for each
method. As shown in Supplementary Table S1, PennSeq
consistently has higher Spearman correlations than the
other competing methods, suggesting that PennSeq can
achieve higher reproducibility between replicates than
other methods.

Because EM algorithm is deterministic, as a quality
check, we further evaluated whether the PennSeq estima-
tion is robust to parameter initialization, especially for

genes with a large number of isoforms. Based on the
MAQC HBR data set, we re-estimated isoform expression
levels using different starting values in the EM algorithm.
The initial values were randomly chosen from Uniform
(0, 1) distribution and rescaled so that the sum of the
initial values was equal to 1. We generated two sets of
initial values and plotted the estimated isoform expression
levels. As shown in Supplementary Figure S9, the impact
of parameter initialization is negligible. This is true even
for genes with a large number of isoforms. This result
suggests that PennSeq estimation is robust to parameter
initialization.

Application to the human adipose RNA-Seq data

We next applied PennSeq to a RNA-Seq data set
generated from our ongoing study on transcriptomic vari-

ations in the genetics of evoked responses to niacin and
endotoxemia (GENE) study (30,31). The RNA-Seq data
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was generated from adipose of a healthy female in the
GENE study using Illumina HiSeq 2000. Poly-A library
preparation and sequencing was performed at the
Penn Genome Frontiers Institute’s High-Throughput
Sequencing Facility using four lanes yielding ~1040
million 2 x 101-bp paired-end reads. In our analysis, we
randomly selected 50 million (50 M) reads from this deeply
sequenced sample, and mapped the reads to the reference
genome using Tophat (27). There are two reasons that
motivated us to choose 50 M reads. First, most RNA-
Seq studies sequence samples around this depth, thus
results from our analysis will be most relevant to the
current practice. Second, as shown by the simulations,
when sequencing depth is high, all methods yield relatively
high R? and the difference between methods is small. In
our analysis, we considered all genes with at least two
isoforms and estimated their isoform relative abundance
and FPKMs using various methods (Supplementary
Table S2). We excluded IsoEM and iReckon from
analysis owing to their inferior performance. Consistent
with results from the simulations and the MAQC data
sets, the estimated isoform relative abundance and
FPKMs from PennSeq are the most concordant with
CEM-bias but least concordant with RD.

To compare the relative performance of different
methods, we next examined the major isoforms inferred
by each method. Because we do not know the ground
truth, we focused on genes in which the major isoforms
inferred by PennSeq and RD are the same but different
from the other methods. We chose to be concordant with
RD because the simulations results suggest that RD has
low error rate for genes with well-defined major isoforms.
To better discern what the true isoform is, we visually
examined the coverage plots of each gene. We restricted
our visual examination to genes that meet the following
criteria: (i) the gene does not overlap with other genes,
(i1) covered by at least 500 read pairs and (iii) for the
major isoform inferred from PennSeq, the relative abun-
dance difference between PennSeq and CEM-bias, CEM,
Cufflinks-bias and Cufflinks is >0.2. The third criterion
selects genes that have different relative abundance esti-
mates between PennSeq and the other methods. These fil-
tering criteria left 10 genes for further examination, most
of which demonstrate severe 3’ bias. Figure 7 shows the
coverage plots for three genes, all suggesting that the
major isoforms inferred from PennSeq and RD are more
plausible. A similar pattern is observed for the remaining
genes (Supplementary Figure S10). Results from this data
set clearly demonstrate the advantage of PennSeq when
there is severe non-uniformity in read distribution.

DISCUSSION

Accurate estimation of isoform-specific gene expression is
critical for eQTL and splicing QTL studies using RNA-
Seq. Even if the goal is to study expression at the gene
level, it is still important to estimate isoform-specific ex-
pression levels first because in a recent study, it was shown
that method that uses ‘isoform deconvolution” approach
yields more accurate gene expression estimates than ‘raw

Nucleic Acids Research, 2014, Vol. 42, No. 3 20

count’ methods that simply count the sequence reads
mapped to the exons of each gene (25). A major challenge
in the analysis of RNA-Seq data is the presence of various
biases, which if not appropriately corrected, can affect
isoform-specific expression estimation. The current
methods for analysis of RNA-Seq data either ignore the
biases by assuming read start positions are uniformly
distributed along transcripts or model the biases using
simple non-parametric approaches or complicated para-
metric models. In this article, we present PennSeq, a stat-
istical method that allows each isoform to have its own
non-uniform read distribution. All the discussions of this
article are for paired-end reads, but simplification to the
situation of single-end reads is straightforward and has
been implemented in our program. The central idea of
our method is to model non-uniformity by using the em-
pirical read distribution in RNA-Seq data. It is the first
time that the non-uniformity is modeled at the isoform
level. Compared with existing approaches, our method
allows bias correction at a much finer scale.

Because of the non-parametric nature of our method, it
can model any biases that lead to non-uniformity. This
flexibility is important as there are still unknown factors
that contribute to non-uniformity and they are unlikely to
be fully captured by parametric models. Through simula-
tions and the analysis of two real RNA-Seq datasets, we
show that PennSeq consistently outperforms existing
methods for isoform expression estimation with respect
to a variety of quality metrics. The advantage of
PennSeq is the most pronounced when sequencing depth
is low and the isoforms demonstrate severe non-uniform-
ity. The accurate estimation of isoform expression levels
from PennSeq will be valuable for eQTL, splicing QTL
and differential expression analysis that take isoform-
specific gene expression as input (21-24).

As a non—parametric-based approach that relies on em-
pirical read distributions, PennSeq is inevitably computa-
tionally intensive. However, our approximation of A{r, s)
significantly improved the computation speed. Based on
the MAQC dataset, we found that the running time of
PennSeq is only 20% slower than Cufflinks with bias cor-
rection. Because the computations can be parallelized
across chromosomes, we believe that the computation is
tractable even for large datasets if a computing cluster is
available.

We note that although PennSeq significantly outper-
forms the other tools, there is still room for improvement.
Even with 100 M reads, the R? value of PennSeq is 0.86.
Several steps can be taken to further improve the perform-
ance. A drawback of the EM algorithm is overfitting
because all isoforms are assigned a positive abundance
estimate even if they are not expressed. To prevent
overfitting, a simple solution is to refit the data while
eliminating those isoforms with estimated relative abun-
dance below a threshold. A more systematic approach
would be to use regularized EM algorithm, which auto-
matically penalizes isoforms with low expression (9). We
are currently exploring these alternatives.

We have assumed that the gene annotation models are
known beforehand. Although the current gene annotation
models are still incomplete, we anticipate that many
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RNA-Seq datasets will be available in the near future for
various tissues and cell types, making it feasible to
discover most of the expressed isoforms. Therefore, one
can use the latest gene annotation models as input for
PennSeq. Nevertheless we recognize that it is desirable
to identify novel isoforms using RNA-Seq data, particu-
larly for tissues and cell types that are not well studied. We
are currently extending our method to do simultaneous
transcriptome assembly and isoform expression estimation
by using the component elimination EM algorithm (19).
Other extensions that we are pursuing include detection of
differential expression and differential alternative splicing.
Results for these extensions will be presented elsewhere.

In summary, we have developed a non—parametric-
based statistical method that allows each isoform
to have its own non-uniform read distribution. Through
simulations and analysis of real datasets, we showed
superior performance of PennSeq over competing
methods, particularly for isoforms demonstrating severe
non-uniformity. Our results indicate that it is important
to correct non-uniformity effectively to accurately
quantify isoform-specific gene expression.

ACCESSION NUMBER

The human adipose RNA-Seq data have been deposited in
the Gene Expression Omnibus (GEO) database (accession
number GSE50792).
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Supplementary Data are available at NAR Online.
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