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ABSTRACT

Increasing numbers of protein structures are solved
each year, but many of these structures belong to
proteins whose sequences are homologous to se-
quences in the Protein Data Bank. Nevertheless, the
structures of homologous proteins belonging to the
same family contain useful information because
functionally important residues are expected to
preserve physico-chemical, structural and energetic
features. This information forms the basis of our
method, which detects RNA-binding residues of a
given RNA-binding protein as those residues that
preserve physico-chemical, structural and energetic
features in its homologs. Tests on 81 RNA-bound
and 35 RNA-free protein structures showed
that our method yields a higher fraction of true
RNA-binding residues (higher precision) than
two structure-based and two sequence-based
machine-learning methods. Because the method
requires no training data set and has no parameters,
its precision does not degrade when applied to
‘novel’ protein sequences unlike methods that are
parameterized for a given training data set. It was
used to predict the ‘unknown’ RNA-binding residues
in the C-terminal RNA-binding domain of human
CPEB3. The two predicted residues, F430 and
F474, were experimentally verified to bind RNA, in
particular F430, whose mutation to alanine or
asparagine nearly abolished RNA binding. The
method has been implemented in a webserver
called DR_bind1, which is freely available with
no login requirement at http://drbind.limlab.ibms.
sinica.edu.tw.

INTRODUCTION

Interactions between proteins and RNA play essential
roles for life. For example, protein—RNA interactions
mediate  RNA metabolic processes such as splicing,
polyadenylation, messenger RNA stability, localization
and translation (1). Furthermore, many of these RNA-
binding proteins are involved in human diseases (2) such
as neurological disorders, e.g. TDP-43 (3), ATXN2 (4)
and muscular atrophies [SMN (5)]. Consequently, iden-
tifying the key amino acid (aa) residues involved in
RNA recognition is critical for understanding these im-
portant biological processes.

Several methods and servers have been developed to
predict RNA-binding residues from the protein 1D
sequence or 3D structure. Methods that predict RNA-
binding residues using only the protein sequence generally
employ machine-learning algorithms such as a neural
network (6,7), a Naive Bayes classifier (8—10), a support
vector machine (11-19), random forest (20,21) or decision
trees (C4.5 algorithm) (22). These algorithms usually
employ aa physico-chemical properties, sequence conserva-
tion, the local sequence context, solvent accessibility and
secondary structure. Publicly available web servers that im-
plement sequence-based methods include RNABindR (8),
Pprint (13), PRINTR (14), PiRaNhA (16), PRBR (21),
RISP (23), BindN (11), BindN+ (17) and NAPS (22) for
predicting RNA-binding residues. Compared to sequence-
based methods, structure-based methods for predicting
RNA-binding residues are far fewer (20,24,25) with only
a few methods available as web servers, namely, KYG
(26) and dRNA-3D (27). The predicted RNA-binding
residues can be verified by measuring the RNA-binding
affinities of mutant proteins. Hence for an experimentalist,
high precision (i.e. high fraction of correctly predicted
RNA-binding residues) would be more useful than predict-
ing the entire protein—RNA interface correctly.
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In this work, we present a structure-based detection
method to identify the most likely RNA-binding residues
rather than all RNA-binding and all nonbinding residues.
The method is based on evolutionary and physical prin-
ciples with the following rationale: RNA-binding residues
generally possess electropositive atoms that interact with
the RNA electronegative atoms or water oxygen atoms.
In the absence of RNA or water, these RNA-binding
residues would be in an unfavorable electrostatic environ-
ment due to the electrostatic repulsion among the electro-
positive atoms and would therefore be energetically
unstable (24,28). On the other hand, RNA-binding
residues within the same family are known to be highly
conserved (29). They would be expected to preserve not
only their physico-chemical features (i.e. aa type and
solvent accessibility) but also their energetic features due
to their critical functional roles. Hence, solvent-accessible
residues that share the highest evolutionary conservation
of aa type, as well as structural and energetic features
within the same family are predicted to bind RNA. The
method was tested on two nonredundant datasets,
one containing 81 RNA-bound protein structures
(dataset I) and the other with 35 RNA-free structures
(dataset II). It was also tested on CPEB3, an important
nucleocytoplasm-shuttling RNA-binding protein, and the
predictions were experimentally verified. Since the method
should work for other polyanions, it was also tested on a
set of 83 DNA-bound protein structures taken from our
previous work (30). The method, as described in the next
section, has been implemented in a webserver called
DR_bindl1.

MATERIALS AND METHODS
Datasets

Dataset 1 .

To create dataset I, all available <3 A X-ray structures of
RNA-bound proteins were obtained from the May 2012
release of the Protein Data Bank (PDB) (31). For protein
structures belonging to the same class, architecture, top-
ology and homologous (CATH) superfamily (32), the
structure with the best resolution was selected as the rep-
resentative one. If any of these representative proteins
share >30% sequence identity, the protein with the
longer sequence was kept, while the others were discarded.
This yielded 81 RNA-bound protein structures with
distinct CATH codes, which are listed alphabetically ac-
cording to the PDB code in Supplementary Table S1. All
these proteins have conservation data in the ConSurf-DB
database (http://consurfdb.tau.ac.il/) (33).

Dataset 11

Dataset II was derived from dataset I by searching each of
the 81 RNA-bound proteins for proteins sharing >90%
sequence identity with RNA-free structure(s) using the
SAS database (http://www.ebi.ac.uk/thornton-srv/
databases/sas/). The root-mean-square deviation of the
C* atoms (C*-RMSD) in the RNA-free structure from
those in the RNA-bound structure was computed using
the SSAP program (34). If multiple RNA-free structures
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were found, we chose the structure with the largest
C*-RMSD as the representative one since the purpose of
dataset II is to evaluate the effect of protein conform-
ational changes on the RNA-binding residue prediction.
This yielded 35 RNA-free structures that deviate from the
respective RNA-bound structures with RMSDs ranging
from 0.35 to 8.87 A. Supplementary Table S1 lists these
proteins along with their RMSDs and sequence identities
between the RNA-bound and corresponding free proteins,
which were computed using global alignment with
ClustalW1.83 (35).

Searching for homologous proteins

The SAS database was used to search all sequences in the
PDB that are homologous to each protein in dataset I/II.
For proteins in dataset 11, the homologous proteins found
were excluded if their structures contain RNA. Since
sequences corresponding to the RNA-bound and free
protein structures share >90% sequence identity (see
above), homologous proteins sharing >90% sequence
identity were deemed to be similar and grouped together
using CD-HIT (36), and the longest protein was selected
as representative of that group. If a homologous protein
representative shared <30% pairwise sequence identity
with the target protein sequence in dataset I/II, it was
excluded as proteins belonging to the same family gener-
ally exhibit pairwise residue identities >30% (37).

Definition of true RNA-binding residues

A residue was considered to bind RNA if it contains >1
nonhydrogen atoms within van der Waals contact
(<4.0A) or hydrogen-bonding distance (<3.5A) to the
nonhydrogen atom of its binding partner directly or indir-
ectly via a bridging water molecule(s). The hydrogen
bonds and van der Waals contacts were computed using
HBPLUS (38).

Definition of solvent-accessible residues

An aa X is considered to be solvent accessible if the
percent ratio of its relative solvent-accessible surface
area is >15% (39) computed by NACCESS (40).

Electrostatic ranking of each residue

Given the 3D structure of a /-residue protein, all Asp/Glu
residues were deprotonated, while Arg/Lys residues were
protonated; His residues were protonated if both side
chain nitrogen atoms were within hydrogen-bonding
distance to an acceptor atom, or deprotonated if the side
chain nitrogen was not within hydrogen-bonding distance
of an acceptor atom. / mutant structures were generated
by mutating each Ala, Asn, Asp, Cys, Gly, Ser, Thr or Val
in the wild-type (wt) sequence to Asp~ and the other
residues to Glu™ using SCWRL (41). To relieve bad
contacts resulting from the sidechain replacement, each
mutant structure { was energy minimized with heavy con-
straints on all heavy atoms, and the resulting structure was
used to compute the gas-phase (¢ = 1) electrostatic energy
of the mutant (mut) protein relative to that of the wt
protein (E¥*¢, .., — E%°y,). The corresponding difference
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in an ‘extended reference’ state, where the residues do not
interact with one another, was computed as E/elecD/E -
E'¢.. All energy calculations were performed using the
AMBER (42) program with the all-hydrogen-atom
AMBER force field (43). The change in the gas-phase
electrostatic energy upon mutation of aa i to Asp~/
Glu™, AAE®™, is given by:
AN = (s — BVE) = (Epji — BF) (1)
A negative AAET, means that residue i is
electrostatically stabilized upon mutation to an Asp |
Glu™ and would likely bind to the electronegative RNA
atoms (see ‘Introduction’ section). Hence, residues with
the top 10% most negative <AAE®>, values were
assigned Rank®® = 10, residues with the next 10% most
negative <AAE"°>; values were assigned Rank®® =9,
while the least likely RNA-binding residues were
assigned Rank®® = 1.

Evolutionary ranking of each residue

For a given protein, the conservation score of residue i, C;,
was obtained from the ConSurf-DB database (29,44). The
C; score is an integer number ranging from 9 for a slowly
evolving, conserved residue to 1 for a rapidly evolving,
highly variable residue.

Cleft assignment of each residue

Given the 3D protein structure, the 10 largest clefts were
found using SURFNET (45), where cleft 1 is the biggest
and cleft 10 is the smallest. If any atom of a residue was
assigned as a constituent of the cleft by the SURFNET
program, then this residue was regarded as a component
of the cleft. When atoms of a residue were assigned to two
different clefts, the residue was assigned to the larger of
the two clefts. Residues not in any of these 10 clefts were
assigned to cleft 11.

Detecting RNA-binding residues

Given the structures of protein X and its homologs, RNA-
binding residues were detected as follows: for each residue
in protein X, the sum of Rank®® and C was computed. Let
Max denote the largest value of Rank®®+ C in protein X.
Based on the structure of protein X, n residues that are
solvent accessible with Rank®*+ C = Max were identified.
If n is <3, we included m solvent-accessible residues in
van der Waals contacts to these n residues with
Rank®+C=Max — 1. If n+m is still <3, then
Rank®®+ C was successively decreased by one until
n+m is > 3. Max was then redefined as the value of
Rank®®+ C for which n+m is > 3. Let N denote n or
n+m.

Next, the structure of protein X was aligned with that of
each homologous protein representative using the
MASPCI program (46) to determine the correspondence
between the N residues of protein X and the respective
residues in the homologous proteins. N residues of the
N residues of protein X were selected if their correspond-
ing residues in any of the homologous proteins were also
solvent accessible with Rank®®+ C >Max. If N' = 0, then
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the original N residues of protein X were chosen. The N’
or N residues were grouped according to their cleft
number, and the cleft containing the most residues was
predicted to be the RNA-binding site. If two or more
clefts contained the same number of residues, then the resi-
dues comprising these clefts were predicted to bind RNA.

Detecting RNA-binding residues in human CPEB3

The above RNA-binding residue method was used to
predict the unknown RNA-binding residues in the
C-terminal RNA-binding domain (RBD) of human
CPEB3 (hCPEB3) using the NMR structure (2dnl-A) of
hCPEB3 RNA recognition motif 1 (RRMI)-binding
domain (residues 426-532). First, the SAS database was
used to search all sequences in the PDB that were hom-
ologous to the 2dnl-A. This yielded three representative
homologous proteins (Iwhw-A, 1wi8-A and 2dhg-A),
which share 35%, 33% and 31% sequence identity with
2dnl-A, respectively.

Based on the 2dnl-A structure, residues P469 and F474
in the hCPEB3 RBD were found to be solvent accessible
with a maximum Rank®+ C value of 18: F474 has
Rank®® =9 and C = 9, while P469 has Rank® = 10 and
C =8 (no residues have Rank®® = 10 and C = 9). Since
n = 2, we searched for solvent-exposed residues within van
der Waals contacts of P469 and F474, and found two with
Rank®®+ C = 17, namely, F430 with Rank®°=9 and
C =8 and D456 with Rank® =10 and C = 7. Among
F430, D456, P469 and F474, only two residues, F430
and F474, have corresponding residues in the homologous
proteins that were also solvent accessible with
Rank®+ C > 17. The residues corresponding to F430 in
Iwhw-A (F41) and 2dhg-A (F99) were both solvent
exposed with Rank®® =10 and C = 7 or 8. The residues
corresponding to F474 in 1whw-A (F83) and 2dhg-A
(F141) were also solvent exposed with Rank®® = 10 and
C = 9. Hence, F430 in cleft #1 and F474 in cleft #8 in the
hCPEB3 RBD were both predicted to bind RNA.

To compare with DR_bindl, two RNA-binding
residues were also predicted using two structure-based
methods, KYG (http://cib.cf.ocha.ac.jp/KYG/) (26) and
OPRA (25), based on the 2dnl-A structure and two
sequence-based methods, BindN+ (http://bioinfo.ggc.
org/bindn+/) (17) and Pprint (http://www.imtech.res.in/
raghava/pprint/index.html) (13) based on the 2dnl-A
sequence. The two residues predicted to bind RNA are
those with the most positive KYG, BindN+ or Pprint
scores and the most negative OPRA values.

Performance evaluation

The performance of our method was evaluated by
computing the numbers of (i) correctly predicted RNA-
binding residues (TP), (ii) correctly predicted non-RNA-
binding residues (TN), (iii)) wrongly predicted
RNA-binding residues (FP) and (iv) wrongly predicted
non-RNA-binding residues (FN). These numbers were
then used to compute the following performance
measures:

Sensitivity = TP/(TP+FN), (2)
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Specificity = TN/(FP+TN), 3)
Precision = TP/(TP+FP), 4)
Accuracy = (TP+TN)/[TP+FP+TN+FN), 5)

MCC = (TP x TN) — (FP x FN)/[(TP+FP)

(TP+FN)(TN+FP)(TN+FN)]"/2. ©)

Verifying RNA-binding residues in CPEB3

To verify the RNA-binding residues predicted by
DR_bindl (F430, F474), KYG (R449, G432), OPRA
(R449, R514), BindN+ (R427, S465) and Pprint (K460,
D456), we constructed single alanine-substituted mutants
(see Supplementary Methods) and tested the RNA-
binding activity by UV-cross-linking RNA-binding assay
and western blotting. Twenty microliter reactions contain-
ing 4 x 10 cpm of labeled RNA, 50 pg heparin, 1 pg yeast
tRNA and 10l of 293T cell lysate were kept on ice for
10 min, and then irradiated with 1200J of UV (254 nm)
light for 10min. The UV-cross-linked samples were
treated with 200 ng of ribonuclease A at 37°C for 10 min
and resolved by sodium dodecyl sulphate—polyacrylamide
gel electrophoresis (SDS-PAGE). The radioactive signals
were monitored by the phosphorimager Typhoon FLA
4100 system (GE Healthcare). Two microliters of cell
lysates mixed with 20 pul 1x Laemmli sample buffer were
separated on SDS-PAGE and then transferred to PVDF
membrane for western blotting using myc antibody. The
immunoblotted signals, analyzed by the Image] software,
represented the expression levels of various CPEB3
mutants. The normalized RNA-binding ability was
calculated by dividing the specific RNA-binding signal
(i.e. after subtracting the background signal in the
mock-transfected lysate) with the expression level of
mutant CPEB3.

RESULTS

Comparison with KYG, OPRA, BindN+ and Pprint using
default settings

DR _bindl was tested on 81 RNA-bound structures
(dataset I, Table 1) as well as 35 unbound-bound RNA-
binding protein structures (dataset II, Table 2) to assess
the effect of protein conformational changes upon binding
RNA. Using the same datasets, its performance was
compared with the performance of two structure-based
methods, KYG (26) and OPRA (25) using the default pre-
diction mode, and two sequence-based methods, BindN+
(17) and Pprint (13) using the default specificity settings.
These methods were chosen because they had been shown
to outperform previous RNA-binding residue prediction
methods (47) and were available for testing. Their results
were compared with the results using DR_bind1 based on
the dataset I structures in Table | and dataset II structures
in Table 2.

Since providing an experimentalist with a set of pre-
dicted RNA-binding residues containing few false posi-
tives (i.e. high precision) would be more useful than a
comprehensive set with many false positives, DR_bind1
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Table 1. Performance of DR_bindl based on 81 RNA-bound protein
structures compared to that of KYG, OPRA, BindN+ or Pprint
using default settings

DR_bind1 KYG OPRA BindN+ Pprint
TP 166 1820 1021 2235 2516
FP 75 2916 1018 1868 3534
TN 14628 11787 13685 12835 11169
FN 2892 1238 2037 823 542
Sensitivity 0.05 0.60 0.33 0.73 0.82
Specificity 0.99 0.80 0.93 0.87 0.76
Precision 0.69 0.38 0.50 0.54 0.42
Accuracy 0.83 0.77 0.83 0.85 0.77
MCC 0.16 0.34 0.31 0.54 0.46

aimed to detect the most likely RNA-binding residues
rather than all RNA-binding residues. Hence, DR_bind1
predicted fewer RNA-binding residues (TP -+ FP = 241)
than KYG (4736), OPRA (2039), BINDN+ (4103) and
Pprint (6050). Because DR_bind1 predicted an order of
magnitude less RNA-binding residues than the other
methods, it yielded relatively large FN and thus
much lower sensitivity (0.05) and MCC (0.16) values.
However, its precision (0.69) is higher than the precision
of KYG (0.38), OPRA (0.50), BindN+ (0.54) and Pprint
(0.42). Using the default prediction mode in KYG and
OPRA and the default specificity settings in BindN-+
and Pprint, the accuracy of DR_bind1 (0.83) is compar-
able to OPRA (0.83) and BindN+ (0.85), but is higher
than that of KYG or Pprint (0.77).

Dependence on protein conformational change upon
binding RNA

To assess how the performance of the structure-based
methods would be affected by protein conformational
changes that accompany RNA binding, the performance
measures derived from the free structures were compared
with those derived from the respective RNA-bound struc-
tures (numbers in parentheses in Table 2). Protein con-
formational changes upon RNA binding do not seem to
significantly affect the performance of DR_bindl: even
though the RMSD of the RNA-free structure from the
respective RNA-bound structure may be as large as 9 A
(see Supplementary Table S1), the sensitivity, specificity,
accuracy, derived from the RNA-bound and respective
free structures are nearly identical, while the precision
and MCC values decrease slightly (by 0.08 and 0.04, re-
spectively) when the free structures were used instead of
the bound ones. For the other structure-based methods,
KYG and OPRA, the performance measures [Equations
(2-6)] derived from the RNA-bound and respective free
structures do not differ by more than 0.03. Because the
protein sequences of the RNA-bound and respective free
structures may not always be identical (see ‘Materials and
Methods’ section), they yield slightly different precision
and MCC values for the two sequence-based methods.

Dependence on the dataset composition
Ribosomal proteins consist of roughly half the proteins
in dataset I (41/81) and a fifth of the proteins in
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Table 2. Performance of DR_bindl based on 35 RNA-free protein structures compared to that of KYG, OPRA, BindN+ or Pprint using

default settings®

DR_bindl KYG OPRA BindN+ Pprint

TP 47 (64) 457 (528) 179 (224) 554 (601) 673 (735)

FP 46 (45) 1699 (1688) 440 (549) 1007 (1001) 1773 (1798)
TN 8307 (8522) 6654 (6879) 7913 (8018) 7346 (7566) 6580 (6769)
FN 903 (967) 493 (503) 771 (807) 396 (430) 277 (296)

Sensitivity 0.05 (0.06) 0.48 (0.51) 0.19 (0.22) 0.58 (0.58) 0.71 (0.71)
Specificity 0.99 (0.99) 0.80 (0.80) 0.95 (0.94) 0.88 (0.88) 0.79 (0.79)
Precision 0.51 (0.59) 0.21 (0.24) 0.29 (0.29) 0.35 (0.38) 0.28 (0.29)
Accuracy 0.90 (0.89) 0.76 (0.77) 0.87 (0.86) 0.85 (0.85) 0.78 (0.78)
MCC 0.13 (0.17) 0.20 (0.23) 0.16 (0.17) 0.37 (0.39) 0.34 (0.35)

“Numbers with and without parentheses are based on the RNA-bound and free protein structures, respectively.

Table 3. Performance of DR_bindl based on 41 ribosomal (or 40 nonribosomal) RNA-bound protein structures compared to that of KYG,

OPRA, BindN+ or Pprint using default settings®

DR_bindl KYG OPRA BindN+ Pprint

TP 102 (64) 1334 (486) 931 (90) 1679 (556) 1782 (734)

FP 19 (56) 812 (2104) 593 (425) 730 (1138) 1406 (2128)
TN 3673 (10955) 2880 (8907) 3099 (10 586) 2962 (9873) 2286 (8883)
FN 1883 (1009) 651 (587) 1054 (983) 306 (517) 203 (339)

Sensitivity 0.05 (0.06) 0.67 (0.45) 0.47 (0.08) 0.85 (0.52) 0.90 (0.68)
Specificity 0.99 (0.99) 0.78 (0.81) 0.84 (0.96) 0.80 (0.90) 0.62 (0.81)
Precision 0.84 (0.53) 0.62 (0.19) 0.61 (0.17) 0.70 (0.33) 0.56 (0.26)
Accuracy 0.66 (0.91) 0.74 (0.78) 0.71 (0.88) 0.82 (0.86) 0.72 (0.80)
MCC 0.15 (0.16) 0.44 (0.18) 0.33 (0.06) 0.63 (0.34) 0.50 (0.33)

“Numbers with and without parentheses were derived from 40 nonribosomal and 41 ribosomal RNA-bound protein structures, respectively.

dataset II (7/35). Interestingly, the percentage number of
RNA-binding residues in ribosomal proteins is three to
four times more than that in nonribosomal proteins:
35% of residues in ribosomal proteins bind RNA,
whereas only 9% of residues in nonribosomal proteins
bind RNA. To determine if the different RNA-binding
residue prediction methods perform equally well for the
two types of RNA-binding proteins, they were tested on
the 41 ribosomal proteins in dataset I and separately on
the remaining 40 nonribosomal proteins. All the methods
showed significantly higher precision for ribosomal
proteins than for nonribosomal proteins (numbers in
parentheses in Table 3): the precision for ribosomal
proteins is greater than that for nonribosomal proteins
by 0.31 (DR_bindl), 0.43 (KYG), 0.44 (OPRA), 0.37
(BindN+) and 0.30 (Pprint).

To further examine the performance sensitivity of the
various methods on the dataset composition (proportion
of ribosomal/nonribosomal proteins), we randomly chose
20 ribosomal and 20 nonribosomal RNA-bound protein
structures, and computed the precision obtained by each
of the methods; this was repeated 1000 times. Figure la
and b shows the frequency distribution of the precision
values derived from ribosomal and nonribosomal RNA-
bound protein structures, respectively. Since DR_bindl
requires no training dataset, its precision is less dependent
on the dataset composition than the precision of KYG,
OPRA, BindN+ or Pprint. DR_bind1 yielded precision
values derived from ribosomal protein structures

(0.70-0.95) that partially overlap with those derived
from nonribosomal protein structures (0.30-0.70). In
contrast, the other methods yielded precision values
derived from ribosomal protein structures that do not
overlap with those derived from nonribosomal protein
structures: KYG yielded precision values ranging from
0.45 to 0.70 for ribosomal proteins that are much higher
than those for nonribosomal proteins (0.10-0.20). OPRA
yielded precision values ranging from 0.45 to 0.75 for ribo-
somal proteins and 0.05-0.35 for nonribosomal ones,
while BindN+ and Pprint, respectively, yielded precision
values ranging from 0.55 to 0.75 and 0.45-0.65 for
ribosomal proteins but 0.20-0.40 and 0.15-0.30 for
nonribosomal ones.

Comparison with KYG, OPRA, BindN+ and Pprint for
the same number of predictions

To evaluate how the performance of KYG, OPRA,
BindN+ and Pprint for ribosomal/nonribosomal proteins
would change if their sensitivities/specificities were com-
parable to DR_bind1’s sensitivity/specificity, they were
compared to the performance of DR_bind1 for the same
number of predictions. Thus, if DR_bindl predicted m
RNA-binding residues for protein X, then we chose the
same number (m) of RNA-binding residues for KYG,
OPRA, BindN+ or Pprint. We chose m residues with the
most positive KYG, BindN+ or Pprint scores or the
most negative OPRA values. For example, using the
1di2-A protein structure, DR_bindl predicted three
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Figure 1. Frequency distribution of the precision values derived
from ribosomal (top) and nonribosomal (bottom) RNA-bound
protein structures using DR_bindl (black curves), KYG (gray
curves), OPRA (dotted curves), BindN+(dashed curves) and Pprint
(dashed dot curves). (a) Ribosomal RNA-bound protein structures.
(b) Nonribosomal RNA-bound protein structures.

RNA-binding residues, but KYG predicted 16. To
compare with DR_bindl, the 16 residues predicted by
KYG were ranked according to their scores from the
most positive to the most negative, and the top three
residues with scores of 1.81, 1.64 and 1.17 were deemed
to be the RNA-binding residues predicted by KYG.
When KYG, OPRA, BindN+ and Pprint yielded
the same number of predictions (same TP+ FP) as
DR _bindl, their sensitivity, specificity and accuracy
values became similar or identical to those of DR_bind1
(Table 4). Notably their MCC values are now less than the
MCC value of DR_bindl, in contrast to their values when
the number of predictions greatly exceeded DR_bind1 (see
Table 3). Although the precision values of KYG, OPRA,
BindN+ or Pprint for the same number of predictions as
DR_bind1 (Table 4) has increased by ~2-20% compared
to their values using default settings (Table 3), they are
still less than the precision of DR_bindl: for ribosomal
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proteins, the precision of DR_bind1 (0.84) is higher than
that obtained by KYG (0.68) or OPRA (0.63) or the two
sequence-based methods (0.80 or 0.74). For nonribosomal
proteins, the precision of DR_bind1 (0.53) is also higher
than that of KYG (0.28), OPRA (0.22), BindN+ (0.49) or
Pprint (0.40).

Difference between the RNA-binding residues predicted
by DR_bind1 and other methods

Does DR_bind!l predict the same RNA-binding residues
as KYG, OPRA, BindN+ or Pprint for the same number
of predictions (Table 4)? To answer this question, we
compared the true positives predicted by DR_bind1 with
those predicted by KYG, OPRA, BindN+ or Pprint and
identified those RNA-binding residues correctly predicted
by DR _bindl that were not predicted by the other
methods. The results in Figure 2 show that each method
could yield true positives that are not found by other
methods. For example, in nonribosomal proteins,
DR_bindl, KYG, OPRA, BindN+ and Pprint correctly
predicted 64, 33, 26, 59 and 48 RNA-binding residues,
respectively. Among the 102 correctly predicted ribosomal
RNA-binding residues by DR_bindl, 12, 5, 23 and 14
are also predicted by KYG, OPRA, BindN+ or Pprint,
respectively, with 66 true positives predicted only by
DR_bind1 (Figure 2a). Likewise, among the 64 correctly
predicted nonribosomal RNA-binding residues by
DR _bindl, 4, 3, 13 and 8 are also predicted by KYG,
OPRA, BindN+ and Pprint, respectively, while 44
true positives were ‘missed’ by the other methods
(Figure 2b). The numbers of unique true positives pre-
dicted by DR_bindl, KYG, OPRA, BindN+ and Pprint
are, respectively, 66, 48, 51, 49 and 44 in ribosomal
proteins and 44, 17, 16, 24 and 22 in nonribosomal
proteins.

Performance of DR_bind1 compared with BindN+ for
‘novel’ proteins

For the same number of predictions made by DR_bind|,
the precision of BindN+ is close to that of DR_bind1 (see
Table 4). However, BindN+ requires a training dataset,
PRINR2S5 (11), so its precision may drop if it were used to
predict RNA-binding residues in ‘novel’ proteins whose
sequences are not homologous to those in its training
dataset. Hence, BindN+ was used to predict the RNA-
binding residues of 17 proteins in dataset I (referred to
as dataset 1_17) whose sequences share <30% sequence
identity with the sequences in PRINR25. For the
same number of RNA-binding residues predicted by
DR_bindl, the precision (0.47) and MCC (0.12) values
of BindN+ in predicting the RNA-binding residues in
dataset I _17 becomes significantly less than those of
DR _bind1 (0.74 and 0.22) (Supplementary Table S2).
How would DR_bind1 perform for a protein with no
homologous structures? To address this question,
DR _bindl was used to detect RNA-binding residues
based solely on the target protein structure without
using any homologous structures. The results in the
second column of Table 5 show that when homologous
structures were removed, the precision of DR_bind1 based
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Table 4. Performance of DR_bindl based on 41 ribosomal (or 40 nonribosomal) RNA-bound protein structures compared to that of KYG,
OPRA, BindN+ or Pprint for the same number of predictions made by DR_bind1?*

DR_bind1 KYG OPRA BindN+ Pprint

TP 102 (64) 82 (33) 76 (26) 97 (59) 90 (48)
FP 19 (56) 39 (87) 45 (94) 24 (61) 31 (72)
TN 3673 (10955) 3653 (10924) 3647 (10917) 3668 (10950) 3661 (10939)
FN 1883 (1009) 1903 (1040) 1909 (1047) 1888 (1014) 1895 (1025)
Sensitivity 0.05 (0.06) 0.04 (0.03) 0.04 (0.02) 0.05 (0.05) 0.05 (0.04)
Specificity 0.99 (0.99) 0.99 (0.99) 0.99 (0.99) 0.99 (0.99) 0.99 (0.99)
Precision 0.84 (0.53) 0.68 (0.28) 0.63 (0.22) 0.80 (0.49) 0.74 (0.40)
Accuracy 0.66 (0.91) 0.66 (0.91) 0.66 (0.91) 0.66 (0.91) 0.66 (0.91)
MCC 0.15 (0.16) 0.10 (0.07) 0.09 (0.05) 0.14 (0.14) 0.12 (0.11)

“Numbers with and without parentheses were derived from 40 nonribosomal and 41 ribosomal RNA-bound protein structures, respectively.

(a) Ribosomal true positives

DR_Bind1 DR_Bindl

PPRINT

(b) Nonribosomal true positives

DR_Bind1 DR_Bind1 BindN+

OPRA

PPRINT

Figure 2. Venn diagram showing four sets of true positives predicted by DR_bindl, KYG, OPRA, BindN+ and Pprint. (a) Ribosomal true positives.
(b) Nonribosomal true positives.
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Table 5. Performance of DR_bind1 based on 41 ribosomal (or 40 nonribosomal) RNA-bound protein structures compared to that of dRNA-3D*

Homolog structures DR_bind1

dRNA-3D

None® No complex® Best complexd Second best complex®
TP 110 (74) 101 (58) 1950 (873) 1295 (627)
FP 24 (66) 22 (54) 173 (321) 463 (681)
TN 3668 (10945) 3670 (10957) 3519 (10690) 3229 (10330)
FN 1875 (999) 1884 (1015) 35 (200) 690 (446)
Sensitivity 0.06 (0.07) 0.05 (0.05) 0.98 (0.81) 0.65 (0.58)
Specificity 0.99 (0.99) 0.99 (1) 0.95 (0.97) 0.87 (0.94)
Precision 0.82 (0.53) 0.82 (0.52) 0.92 (0.73) 0.74 (0.48)
Accuracy 0.67 (0.91) 0.66 (0.91) 0.96 (0.96) 0.80 (0.91)
MCC 0.15 (0.17) 0.15 (0.15) 0.92 (0.75) 0.54 (0.48)

“Numbers with and without parentheses were derived from 40 nonribosomal and 41 ribosomal RNA-bound protein structures, respectively.

®Numbers were derived without free/complex structures of homologs.
“Numbers were derived without complex structures of homologs.
YNumbers were derived based on the best matching complex structure.

“Numbers were derived based on the second best matching complex structure.

on 40 nonribosomal RNA-bound protein structures
remained the same as that in Table 4 (0.53), while that
based on 41 ribosomal RNA-bound protein structures
dropped from 0.84 to 0.82. Notably, even if homologous
structures were not available, the precision of DR_bindl is
still higher than that obtained by the other methods.

Performance of DR_bind1 compared with dRNA-3D for
proteins with homologous protein—-RNA complex
structures

Unlike the above methods, dRNA-3D (27) requires
protein—-RNA complex structures in predicting RNA-
binding residues. In dRNA-3D, the target protein struc-
ture is structurally aligned with known protein—RNA
complex structures, and if structural similarity is above a
given threshold, it replaces the template protein structure
to yield its complex structure; if the lowest binding energy
between the target protein and template RNA computed
using a knowledge-based energy function is below a given
threshold, the corresponding protein—RNA structure is
used to predict all RNA-binding residues. If no templates
can be found to satisfy the structural similarity and
binding energy thresholds, the test protein is predicted
to be a non-RNA-binding one.

In contrast to dRNA-3D, DR_bind1 does not require
protein-RNA complex structures: when structures of the
test protein homologs in complex with RNA were
removed, the resulting performance measures in Table 5
(third column) differ from those in Table 4 (second
column) by <0.02. However, the precision of DR_bindl
is lower than that of dRNA-3D (by 0.10 and 0.21 for
ribosomal and nonribosomal proteins, respectively) using
the best template. The high precision obtained by dRNA-
3D is because 71 of the 81 test proteins share > 90%
sequence identity with the respective proteins from the
best templates. However, only 12 of the 81 test proteins
share >90% sequence identity with the respective proteins
from the second-best template. If the RNA-binding
residues were predicted using the second-best template,
the precision of dRNA-3D dropped significantly (by

0.18 and 0.25 for ribosomal and nonribosomal proteins,
respectively), indicating that its precision is sensitive to the
sequence identity between test and template proteins.

Verification of the predicted RNA-binding residues
in hCPEB3

To test the precision of DR_bindl, KYG, OPRA,
BindN+ and Pprint, the five methods were used to predict
the RNA-binding residues in hCPEB3, as described in the
‘Materials and Methods’ section. Based on the represen-
tative structure of the hCPEB3 RBD (2dnl-A) and repre-
sentative homologous structures, DR_bind1 predicted two
RNA-binding residues, namely, F430 and F474. The two
most probable RNA-binding residues predicted by KYG,
OPRA, BindN+ and Pprint are (R449, G432), (R514,
R449), (R427, S465) and (K460, D456), respectively.
Interestingly, based on the 2dnl-A structure, dRNA-3D
predicted the hCPEB3 RBD as a non-RNA-binding
protein, but the 22 predicted binding residues based on
the best template (1b7f-A) encompass the RNA-binding
residues predicted by DR_bindl, OPRA (R514) and
Pprint.

To experimentally verify the predicted RNA-binding
residues, single alanine-substituted mutants were con-
structed to assess their contributions to RNA interaction
(see Supplementary Methods). Figure 3a shows the myc-
tagged wt and RRM1-deleted mutant CPEB3 used as the
positive and negative controls for RNA binding, respect-
ively (48). The RNA binding and expression of the CPEB3
mutants were examined by UV-cross-linking RNA-binding
assay and western blotting, respectively (Figure 3b). The
normalized RNA-binding ability (i.e. the ratio of RNA-
binding signal versus the expression level) of these
alanine-substituted mutants from three independent experi-
ments was analyzed and the difference in binding RNA as
compared to wt CPEB3 was evaluated using the Student’s
t-test (Figure 3c). Among the alanine-substituted mutants,
only F430A and F474A mutants were defective in RNA
binding like the RRMIl-deleted mutant CPEB3. To
ensure that such a defect was not caused by protein
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Figure 3. Experimental evaluation of the predicted RNA-interacting aa residues in CPEB3. (a) Salient features of CPEB3 showing the N-terminal
glutamine-rich region (Q) and the C-terminal RBD composed of two RRMs and zinc fingers (Zif). The myc-tagged wt and the RRMI-deleted
(ARRMI1) hCPEB3 are shown. All point mutations are located in the RRM1 domain. (b) The 293T lysates containing wt or various mutant CPEB3
proteins were cross-linked with the radiolabeled 1904 RNA probe for RNA-binding assay or used for western blotting with myc antibody. (¢) The
normalized RNA-binding abilities of various CPEB3 mutants were expressed relative to the wt CPEB3, which was arbitrarily set to 1. Gray and
black bars indicate that the two sets of experiments were conducted separately. The data from three independent experiments were expressed

as mean + standard deviation. One and two asterisks denote the statistical significance, *P <0.05 and **P <0.001,

Student’s t-test.

conformational changes due to replacing phenylalanine
with the much smaller alanine, additional F430N and
F474N mutants were constructed and tested for RNA
binding (Figure 3b and c). Although the F474N mutant
interacted with the RNA better than the F474A mutant,
its RNA-binding ability was still impaired. In contrast, the
F430 residue is crucial for RNA binding, as the F430N
mutant remained defective in RNA binding like the
F430A mutant. To assess if the aromatic rings of F430
and F474 are important in binding RNA, they were
retained by mutating the Phe sidechains to tyrosines
(Figure 3b and c). Both F430Y and F474Y mutants
bound to the RNA like wt CPEB3, suggesting the
aromatic ring is important for stabilizing the interaction
with RNA.

Application of DR_bind1 to predict DNA-binding residues

The method implemented in DR_bind1 should in principle
be able to detect DNA-binding residues, which, like RNA-
binding residues, would be expected to preserve their aa
type, solvent accessibility and energetic features (30,49)
due to their critical functional roles. Hence, DR_bind1
was tested on 83 DNA-bound structures taken from
our previous work (30). The results in Supplementary

respectively, from the

Table S3 show that the precision of DR_bind]1 in detecting
DNA-binding residues (0.68) is similar to that for RNA-
binding residues (0.69), while the accuracy (0.90) and
MCC (0.22) are higher than those in Table 1.

DISCUSSION

The novelty of this work lies in predicting RNA-binding
residues on the basis that these functionally important
residues would preserve not only their aa type but also
their structural and energetic features within the same
protein family. DR_bind1 requires as input the structure
and conservation scores of the target protein and yields as
output, RNA-binding residues that share evolutionary
conserved structural and energetic features in the same
family. The key advantage of DR_bindl is that it
requires no training data set and it has no parameters,
hence the precision of DR_bindl is less dependent on
the nature of the target (test) protein than that of KYG,
OPRA, BindN+ or Pprint (see Figure 1). In contrast,
machine-learning methods such as BindN+ require
training datasets, hence their precision values drop signifi-
cantly when applied to ‘novel’ sequences that are nonhom-
ologous to the sequences in the training data sets
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(Supplementary Table S2). For such ‘novel’ proteins,
DR_bindl generally yields higher precision than the
structure-based methods, KYG and OPRA, and
sequence-based methods, BindN+ and Pprint for the
same number of RNA-binding residues predicted by
DR _bindl. It is complementary to these structure/
sequence-based methods, as its predicted RNA-binding
residues generally differ from the top-scoring residues by
KYG, OPRA, BindN+ or Pprint. For non-novel proteins
with homologous protein-RNA complex structures
dRNA-3D (27), which employs the latter structures in
predicting RNA-binding residues, may yield better preci-
sion than DR_bindl, but it is not clear which of the pre-
dicted residues should be experimentally tested first. The
key limitation of DR_bind1 is that it requires conservation
scores of the target protein like most methods such as
BindN+ as well as structures of homologous proteins.
This limitation, however, would be alleviated by the
increasing number of sequences and free protein structures
solved each year, most of which are not truly novel but
share >30% sequence identity to known proteins.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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