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ABSTRACT

Telomeres comprise the protective caps of natural
chromosome ends and function in the suppression
of DNA damage signaling and cellular senescence.
Therefore, techniques used to determine telomere
length are important in a number of studies,
ranging from those investigating telomeric structure
to effects on human disease. Terminal restriction
fragment (TRF) analysis has for a long time shown
to be one of the most accurate methods for quanti-
fication of absolute telomere length and range from a
number of species. As this technique centers on
standard Southern blotting, telomeric DNA is
observed on resulting autoradiograms as a heteroge-
neous smear. Methods to accurately determine
telomere length from telomeric smears have proven
problematic, and no reliable technique has been sug-
gested to obtain mean telomere length values. Here,
we present TeloTool, a new program allowing
thorough statistical analysis of TRF data. Using this
new method, a number of methodical biases are
removed from previously stated techniques,
including assumptions based on probe intensity cor-
rections. This program provides a standardized
mean for quick and reliable extraction of quantitative
data from TRF autoradiograms; its wide application
will allow accurate comparison between datasets
generated in different laboratories.

INTRODUCTION

Telomeres represent nucleoprotein structures that cap the
natural ends of linear eukaryotic chromosomes. Telomeric

DNA consists of tandem repeat arrays of TTAGG-like
sequences at terminal chromosome ends, e.g. T2AG3 in
mammals, T3AG3 in Arabidopsis and TG1–3 in budding
yeast. The mean length of telomeric DNA is thought to
mainly derive from a homeostatic balance between attri-
tion due to the end replication problem and elongation
via the reverse transcriptase telomerase (1). However,
telomerase is not active within human somatic cell popu-
lations and thus, telomere shortening serves as a cellular
senescence marker limiting cell proliferation capacity.
When cells have undergone a large number of cell div-
isions, telomeres shorten to critical levels where they
elicit a strong DNA damage response that may ultimately
lead to chromosome fusions and mass genomic instability.
Ectopic activation of telomerase is considered to be an
important mechanism in tumor etiology to overcome
one of many tumor suppression barriers and to allow im-
mortalization of somatic cells and cancer progression.
Therefore, the study of telomere length within organisms
is essential to understand the mechanistic aspects of
telomere maintenance through analysis of mutants dis-
playing telomeric defects (2), study of telomere length in
respect to human disease and organismal aging (3) or to
study variation of length in natural populations and its
contribution to the definition of lifespan (4,5).
A number of assays currently exist to measure telomere

length from a number of organisms and tissues. The use of
certain techniques essentially depends on the nature of the
study; some techniques focus on telomere length at specific
telomeres or within single cells, while others can measure
telomere length distribution over whole tissues or organ-
isms. Terminal restriction fragment analysis (TRF) is a
popular choice within the field; this technique requires
digestion of genomic DNA with frequently cutting restric-
tion enzymes that exclude the telomeric sequence, gel elec-
trophoresis of digested DNA and Southern blotting using
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a telomeric probe [for detailed protocol see (6)]. Other
techniques such as quantitative PCR (qPCR)-based
methods, Q-fluorescence in situ hybridization (FISH)/
Flow-FISH, single telomere elongation length analysis
and primer extension telomere repeat amplification are
also available (7–15); despite this, TRF-based measure-
ments are still considered the gold standard within the
field as they provide data on absolute telomere length
and heterogeneity [for an extensive review on the advan-
tages and disadvantages of each technique, refer to (16)].
Certain challenges arise in the analysis of TRF data

including the extraction of telomere length information
from Southern blots. Because telomere length is not
uniform over an entire tissue or organism, the TRF
signal is presented as a heterogeneous smear. Methods
outlining how this type of data can be accurately
analyzed to provide precise information on telomere
length and heterogeneity are not well defined. In the
past, only a few statistical approaches for TRF smear
analysis have been described; previous methods,
however, do not fully correct for methodical biases. In
fact, these analysis methods can create additional biases
due to the imprecise estimation of parameters and
boundaries. One major example includes the calculation
of mean telomere length by averaging probe intensity over
the entire lane (17–21). This method can only be adopted
if the origin of the distribution was tested beforehand; if
the distribution does not follow a normal distribution, the
mean cannot be used as a parameter to describe the
telomere length distribution. Further biases are also
introduced by erroneous probe intensity corrections. In
the case of standard Southern blotting techniques where
telomeric DNA is denatured, probes in saturation would
randomly bind to all available telomeric repeats. This
means that raw data need to be corrected for probe inten-
sity because of the increased number of binding sites at
longer telomeres (6,22). Probe intensity correction can be
performed simply by dividing the raw data by the number
of available binding sites (22). However, this approach
leads to an underestimation of the actual mean telomere
length, as probes bind in a probabilistic way (23). Despite
the fact that TRF-based measurements are so commonly
used in telomere biology, there is currently no
standardized way to analyze TRF blots.
In this article, we outline current problems with the

analysis of TRF data and present TeloTool, a freely avail-
able program to perform correct statistics on TRF smears.
TeloTool takes all known problems and challenges with
TRF analysis into account and provides a statistically
correct method to standardize analysis of TRF data. We
compare TeloTool with a previously published analysis tool
for TRF smears called Telometric (22). Finally, we will
discuss all known problems that affect TRF smear
dynamics and suggest biological applications for TeloTool.

MATERIALS AND METHODS

TeloTool was developed in Matlab (Mathworks) and runs
on a 64 bit windows platform, which requires installation
of the MATLAB Compiler Runtime [version 7.17

(R2012a), freely available at the Mathworks web
page http://www.mathworks.com/products/compiler/mcr/].
TeloTool is available for download at (https://github.
com/jagoehring/TeloTool; the source code is available at
http://www.mathworks.com/matlabcentral/fileexchange/
44573) along with specific details for installation and op-
eration. Here, we describe the typical workflow for data
analysis in TeloTool and describe features exhibited by the
program; this workflow is illustrated in Figure 1.

Image preprocessing

TeloTool provides a complete image analysis pipeline for
the processing of raw TRF scans to extract telomere
length data. In principle, any 8- or 16-bit TIFF file can
be used for analysis, as long as the exposure time is set
within the linear range of the detector (no saturation of
the peak signals). TeloTool automatically converts RGB
images to grayscale without information loss. As soon as
the image has been loaded, the user may perform standard
image manipulation steps such as contrast and brightness
adjustments, cropping and image inversion. Contrast and
brightness adjustments are for the convenience of the user,
as they only transform the visible gel image; data analysis,
however, is always performed using the original raw
image.

TRF scans containing artifacts such as bubbles and
blotches are always a concern during analysis; therefore,
we recommend that the user judge the integrity of each gel
as the accuracy inferred by TeloTool is, of course, depend-
ent on the quality of the raw data. When the integrity of
certain smears within a TRF is questionable, it is recom-
mended to exclude these from analysis. When ‘smiley’ gels
are a common problem, introduction of internal marker
lanes during the gel preparation will allow the user to ac-
commodate such effects.

Lane detection

The next step in analysis requires recognition of the gel
lanes, a process which is automated by TeloTool. This is
based on the recognition of local minima within the x-
projected intensity profile over the whole gel. It is
possible to adjust the local minima detection by
changing two parameters: (i) the slider ‘Filter for Lane
Number’ adjusts the global image threshold using Otsu’s
method (24). This threshold is used to convert an intensity
image to a binary mask, which is 1 for each pixel with an
intensity above the threshold. Changing the slider position
influences the number of lanes that are recognized. If the
ladder’s intensity is much higher than the samples, lane
detection may be more time-consuming as the user has to
find the correct threshold. (ii) After the logical mask has
been generated, TeloTool x-projects the mask creating an
‘intensity’ profile of the gel. The slider ‘Filter for Lane
Width’ influences the erosion of the local minima, which
define the borders between the lanes. Changing the slider
position basically widens or narrows the lane width. If the
user is finally content with the detected lanes, the user may
equalize their width by selecting ‘Constant Lanes’. It
detects the narrowest lane and changes all others to be
the same width. This may be important for comparison

e21 Nucleic Acids Research, 2014, Vol. 42, No. 3 PAGE 2 OF 10

(
)). 
 (STELA)
,
 (PETRA)
(
)).
s
since
paper
to
which
 (MCR)
(
http://www.mathworks.com/products/compiler/mcr/
)
https://github.com/jagoehring/TeloTool
https://github.com/jagoehring/TeloTool
http://www.mathworks.com/matlabcentral/fileexchange/44573
http://www.mathworks.com/matlabcentral/fileexchange/44573
-
,
since
, therefore,
are
``
''
1
``
''
which
2
``
''
``
''
``
''


of intensities between lanes of the same gel. If there is any
need for further adjustment of the lanes (e.g. in the
presence of gel defects), the user may perform this
manually with ‘Adjust Lanes’, which opens a new graph-
ical user interface (GUI). Here, the user can change the
boundaries of already detected lanes or add new lanes. It
is important to note that the user can only manipulate the
lane boundaries in x and not in y, i.e. the analysis window
always contains the whole gel lane. This only can be varied
by cropping the image, but the user is strongly advised to
analyze the whole TRF smear. In some cases, smears from
short interstitial centromeric sequences containing limited
telomeric repeats can be observed at the bottom of the
membrane, this can occur when using certain restriction
enzymes. These smears are easily identifiable and should
not be included in the analysis.

Ladder manipulation and fit

After the lanes have been defined to the user’s satisfaction,
the intensity profiles of the lanes are plotted in an extra
analysis axes. TeloTool recognizes both first and last lanes

as molecular markers and automatically detects bands
within these lanes. At this point, the user then has to
define the molecular weight values of the ladder and
delete incorrectly recognized ladder extrema; ladder
values are stored until manually changed. The analysis
will be more accurate if the gel contains two flanking
ladders so that it is possible to correct for a shift in mi-
gration throughout the gel. There is the option to define
just one ladder within the ‘Adjust Ladder’ GUI; however,
because gel shifts are a common phenomenon, it is recom-
mended to use two ladders.
From the theory of DNA propagation in electrophor-

esis gels, it is well known that the DNA velocity displays a
length dependency (25,26). Short sequences pass easier
through the ‘pores’ of a gel than bulky large sequences,
as they often contain secondary structures and, thus,
migrate slower. To correct for non-linear DNA migration
through gels, four different functional fits are available
(Ladder Fit) to transform the pixel position of the gel
into molecular weight. If no fit has been chosen,
TeloTool automatically fits the ladder with a polynomial
function of the third order (25), which is sufficiently

Image Pre-Processing

Automatic Lane Detection

Extraction of Intensity Profiles, Gaussian Fit,
Probe Correction [optional] and Statistical Analysis

Background
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Figure 1. Typical work flow for TRF analysis with TeloTool. Raw TRF scans in 8- or 16-bit TIFF formats can be loaded directly into TeloTool and
easily rotated and cropped for analysis. Lanes are then detected automatically, ‘Filter for lane number’ and ‘Filter for lane width’ sliders can be used
to fine tune lane recognition. Marker bands are then detected and a fit is applied to determine the molecular weight over the gel image, incorrectly
identified bands must be removed. A Gauss curve is fitted to each lane and data are automatically subject to probe intensity corrections. The user can
choose to display the resulting data for the fitted raw data or the probe-corrected data. After analysis, data are presented in a graph displaying mean
and range values along with exportable length values in Microsoft Excel format.
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accurate in most cases. However, for a better comparison,
and to simplify the choice between the fits, the coefficient
of determination (R2) and the adjusted version (R2

adj) are
calculated and displayed.

The residual sum of squares SSres is defined as

SSres ¼
XN
i¼1

ðyi � fiÞ
2,

where the determined pixel position for each band of the
ladder is yi, the associated modeled values are fi and N is
the number of detected bands of the ladder.

The total sum of squares SStot is defined as

SStot ¼
XN
i¼1

ðyi�yÞ
2,

where y is the mean of the observed data.

The coefficient of determination R2 is defined as

R2 ¼ 1�
SSres

SStot
,

and the adjusted coefficient of determination R2
adj is

defined as

R2
adj ¼ 1�

SSres

SStot

� �
�

N� 1

N� d� 1

� �
,

where d is the degrees of freedom of the polynomial.

Statistical analysis

After establishing the correct size vector throughout the
gel image, the intensity profile from every lane is automat-
ically displayed according to its molecular weight.
Eventually, probe intensity distributions over each smear
can be assessed for mean telomere size and dispersion
values. In detail, the data arising from our test sets can
be described by a Gaussian curve, which has been found
to be the best fitting function. The Gaussian probability
density function is fitted into ðx,yÞ points using the itera-
tive least mean square method that minimizes the residuals
with each iteration (the maximum number of iterations is
50). The Gaussian fit is finally given by

fðxÞ ¼
1

�
ffiffiffiffiffiffi
2�
p � e�

ðx��Þ2

2�2 ,

where � is the mean and � the standard deviation of the
distribution.
Therefore, the fitted curve can be used to calculate the

mean and standard deviation of the distribution resulting
in an improved estimation of the mean and the range of
the telomere length. To allow the user to judge how well
the curve describes the original data, the fit quality is dis-
played beneath the axis containing the profile. The fit
quality resembles the coefficient of determination R2 and
is computed as described previously (see ‘ladder manipu-
lation and fit’).

Probe dynamics and correction

TRF analysis can be subdivided into two separate modes
of probe hybridization: (i) in-gel hybridization where telo-
meric DNA is not denatured and the probe binds only to
the G-overhang of the native telomere and (ii) standard
Southern blotting techniques where the DNA is denatured
after electrophoresis and transferred to a membrane where
the probe can bind to the entire telomeric sequence.
Traditionally, in the case of the second technique, it is
assumed that probes bind randomly to their target
sequence; because they are in saturation, all available
target sites should be bound. Therefore, TRF smears
from the in-gel protocol represent the true telomere
length distribution, whereas the smears of denatured
DNA need to be corrected for probe intensity before
analysis (6,22). As previously mentioned, current probe
correction techniques involve dividing probe intensity by
the molecular weight that is assumed to be proportional to
the number of all possible binding sites; this assumes all
sites are saturated and every label is intact. Because probes
likely bind in a probabilistic manner, it is statistically
relevant to correct the raw data for probe intensity by
mathematical modeling.

To explain the approach to mathematical modeling of
TRF smear profiles and the correction for probe intensity,
its application to raw data is illustrated in Figure 2. First,
the raw signal profile (Figure 2A) is subject to a preprocess-
ing step where the program extracts the low molecular
weight flank (up to the maximum intensity) (25) and
performs a mirror reflection along the y-axis (Figure 2B).
Herein, we have to point out that for long repetitive se-
quences like telomeres, issues such as probe labeling stoi-
chiometry (27), self-complementary metastable states of
telomeric DNA (28,29), complex hybridization kinetics
due to probe diffusion in porous supports (30–32) and dif-
fusion of long telomeres in porous supports (33,34) play a
crucial role in hybridization kinetics (see Supplementary
Data S1 for theoretical considerations). Therefore, the
profile correction can be reduced to the correction based
on low molecular weight flank. The mirrored curve is fitted
via a first order Gauss function. The same mirrored
Gaussian is then used for fitting of the high molecular
weight flank. Subsequently, the error between the new
‘falling’ flank and the original flank is calculated. If the
error approaches a minimum, it is used to correct the
original data creating the new ‘corrected’ data set
(Figure 2C). This data set is again fitted with a Gaussian
curve and finally, the fit quality is calculated (Figure 2D).

The program has two implemented methods for profile
correction: Let friseðxÞ be the Gauss-fit function of the
mirrored original data of low molecular weight flank (to
the maximum intensity, called rising flank). The first cor-
rection method calculates the mean value between the
mirrored Gauss-fitted distribution and the original data
for each point of the high molecular weight flank (up to
the maximum intensity, called falling flank).

ðyci ,xiÞ¼

(
ðyi,xiÞ xi 2Xrise and Xrise[ Xfall¼X
ðmeanðyi,friseðxiÞÞ,xiÞ, xi 2Xfall
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The second method uses the Gaussian fit fðxÞ of the
original data and the mirrored Gauss-fitted distribution
friseðxÞ of the low molecular weight flank for the profile
correction.

ðyci ,xiÞ ¼ ðmeanðfðxiÞ, friseðxiÞÞ,xiÞ, xi 2 X

The new fitted distribution is derived by Gaussian mixing
of the two distributions described earlier in the text.

The corrected points ðyc,xÞ are finally approximated
with the new Gaussian probability density function fcðxÞ.
In most cases, results obtained from method 1 (Gaussian
profile) and method 2 (Gaussian mixing) exhibit a similar
fit quality. This additionally confirms the high similarity of
the TRF smear profile to a Gaussian distribution.

Background correction

Furthermore, the user may choose between three back-
ground subtraction options: (i) the ‘trendline’ option
detects the minimum of the first and last 10 pixels of the

lane and calculates a smooth line between these values
along the lane and then the trendline is subtracted from
the raw data. (ii) The ‘baseline’ option calculates the mean
between these two values and subtracts the mean from the
original data. (iii) The user may manually define an area of
the gel as background. Subsequently, the area mean is
subtracted from the raw data. All aforementioned
options are based on background subtraction; we recom-
mend usage of the ‘trendline’ option, as it subtracts an
intensity gradient from the whole intensity profile.
Background correction has not been implemented, as
available methods cut off signal intensity especially from
the typical smooth ‘rising’ flank of the TRF smear; this
flank is needed for our mathematical modeling approach.

Results summary

Finally, the resulting analysis of the gel is displayed in a
new GUI. The mean, the standard deviation, the range,
the max intensity and the fit quality are summarized
within a table for the ‘raw’ data and the ‘corrected’
data. The user may export individual tables or all at
once into the .xls format (Microsoft Excel).
Furthermore, a simplified graph of the gel is created dis-
playing bars that symbolize 1.18 times the calculated
standard deviation (covers 75% of the data) and the
mean. If the fit quality falls below a manually adjustable
threshold, the bar is displayed in red and the user may
exclude it from the graph. The graph, as well as the indi-
vidual intensity profiles, can be exported as a .png, .eps,
.pdf and .tif file. For the conversion to the vector format
(eps and pdf), the user has to manually install respective
open-source programs (Ghostscript at http://www.
ghostscript.com and pdftops at http://www.foolabs.com/
xpdf).

Statistical analysis within the manuscript

The Kolmogorov-Smirnov test (KS-test) is used to
compare two samples (two-sample KS-test), which tests
whether the samples are drawn from the same distribution
(the null hypothesis). The two-sample KS-test is one of the
most useful and general non-parametric methods for
comparing two samples, as it is sensitive to differences in
both location and shape of the empirical cumulative dis-
tribution functions of the two samples. The KS-test can be
modified to serve as a goodness of fit test. The null hy-
pothesis is rejected if level a< 0.05.

RESULTS

Comparison TeloTool and Telometric

Telometric (22) is a previously published program for the
purpose of TRF analysis; however, biases have been pre-
viously identified using this program (35). Telometric
functions by averaging the intensity distribution over the
entire lane of the gel; this then allows the program to cal-
culate mean and median telomere length information. One
major problem with this approach is that the distribution’s
origin is not tested beforehand; therefore, it is assumed
that each smear follows a normal distribution.
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Figure 2. Optional probe correction by TeloTool. The intensity
analysis of one lane usually results in an asymmetric profile (A). The
falling flank (high molecular weight) is especially heterogeneous and
prone to local maxima. The binding probability of the probe is
nearly linear in the range of smaller telomeres, i.e. they contain the
largest number of validly bound probes. Therefore, the rising flank of
the data is used to mathematically model the intensity-corrected profile.
First, the rising flank is extracted, mirrored on the x-axis (correction of
profile symmetry based on the rising flank) and subsequently fitted with
a first-order Gaussian function (B). The Gaussian fit is used for the
correction of the falling flank of the intensity profile. TeloTool provides
two different correction methods. (i) For each point of the falling flank,
TeloTool calculates the mean between the fitted Gaussian function and
the original data. (ii) TeloTool mixes two different Gaussian functions;
one is obtained by fitting the original data and a second Gaussian is
fitted into the mirrored left flank profile. Finally, the intensity-corrected
profile (C) is fitted with another Gaussian function and the mean,
sigma and fit quality of the fit is displayed in the result section (D).
mr and mc—mean telomere length for the corrected (c) and uncorrected
(r) data set.
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To compare TeloTool with Telometric, we analyzed
TRF data from Arabidopsis thaliana to assess the intergel
variation experienced with each program. We measured 33
different TRF smears of the Col-0 accession from 29 dif-
ferent gels and compared the mean and median of
Telometric with the mean of TeloTool (Figure 3A and
B, Supplementary Table S1 and see Supplementary Data
S2 for information on TRF analysis and plant lines used).
When probe intensity profiles are normally distributed,
mean and median values are the same by definition.
Telometric calculates the mean under the assumption of
a normally distributed intensity profile; therefore, the
median values deviate significantly for asymmetric raw
data. TeloTool fits a Gaussian curve to the raw data
and models a new curve based on the correction of the
higher molecular weight flank. In this case, because of the
symmetric curve, mean and median values will always be
identical. Therefore, the tested data set consists of raw
data and probe intensity corrected data. Telometric’s
mean and median estimation of the raw data indicates a
large overestimation of telomere length along with an
increased variance from gel to gel (Figure 3A and B).
The differences are highly significant (TT mean – TM
mean: P=9.99E�11; TT mean – TM median:
P=0.0013, KS-test, two-sided, a=0.05). Furthermore,
we found that TeloTool computes an average mean
telomere length for the corrected data set of 3236 nt
(95% CI=3172–3301 nt), whereas Telometric’s average
mean is significantly different with 4101 nt (95%
CI=3838–4363 nt) (P=2.90E�07, KS-test, two-sided,
a=0.05). However, Telometric’s average median is
not significantly different from TeloTool’s mean
(P=0.8107); this effect arises from Telometric’s inaccur-
ate probe correction formula, which compensates the
error. Averaging data over the whole lane overestimates
the telomere length of the raw data, but at the same time

Telometric overcorrects for probe intensity. Because the
tested Col-0 accession only has a small telomere length of
�3200 nt, the effect is not visible.

We further used both programs to analyze four add-
itional Arabidopsis accessions, which harbor longer telo-
meres (Pro-0, Ler-2, Est-1, Cvi-1). The effects of incorrect
probe correction are expected to affect measurements
from samples exhibiting longer telomeres because of an
overcompensation of the probe binding capacity. The
effects of probe correction can be easily monitored by
plotting the corrected versus the uncorrected data tupels
(Figure 3C). Especially longer telomeres tend to be
overcorrected by Telometric, e.g. a 12-kb telomere
derived from the raw data is corrected to only 10 kb.
The standard deviation between corrected and original
data obtained with TeloTool is relatively small, which
justifies the robustness of the correction. Also, the correc-
tion by TeloTool is independent of the molecular weight,
which arises from the mathematical modeling approach of
the intensity profile, this is, thereby, an improved method
of correcting for probe intensity rather than normalizing
with molecular weight. A visual representation of the
tested TRF data can be found in Figure 4A. It is clearly
visible that results obtained from Telometric’s analysis
differ from TeloTool’s calculations. The corresponding
intensity profiles for the raw and the corrected data
(Figure 4B) illustrate the increased analysis power of
TeloTool’s Gauss fitting approach. Through using the
rising flank of the intensity profile to model the falling
flank, the statistical analysis is robust and less error
prone to biases.

In addition to examining the intergel variation, multiple
sequential analysis of the same gel was performed to
address whether TeloTool can continuously reproduce
the same measurements. To do this, the same gel image
containing Col-0 and Pro-0 samples was analyzed 10 times
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with both programs. Box plots containing raw and cor-
rected measurements were compared for each sample,
measurements were found to fluctuate with Telometric,
whereas measurements with TeloTool were highly repro-
ducible (Figure 5).

DISCUSSION

The TRF technique is a biochemical assay yielding infor-
mation on the in vivo distribution of telomere length
within a whole organism, tissue or culture. We developed
a system for accurate analysis of TRF data; this method
uses mathematical modeling of smear distribution to cal-
culate telomere length data and is independent of the
manual definition of lane and ladder bands particularly
removing steps prone to estimator biases. Because
TeloTool is based on fitting a Gaussian function
through the intensity profile of the individual lanes of
the gel, it is possible to yield important statistical param-
eters such as the median/mean, the standard deviation of
the distribution and a parameter describing the fit quality.
The latter depicts how well the fit describes the original
data. Filtering the resulting data set with a threshold for
the quality parameter greatly increases the chance to yield
a significant outcome of subsequent analysis steps, as
poor-quality TRF smears are excluded. These could be
produced due to the use of low-grade DNA or other tech-
nical problems, which lead to a deviation in the normal
distribution of the intensity profile. Typically for most
bioassays, a variety of experimental factors (e.g. restric-
tion enzymes, hybridization probes or gel quality) intro-
duces an inter-individual variation or variation from
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laboratory to laboratory. To recognize such anomalies
usually requires high technical expertise and a well-
trained ‘judgment by eye’. Having an automatically
generated and non-subjective quality parameter renders
the analysis more objective. Nonetheless, the fit quality
parameter is context-dependent, as it may also be used
as an indicator for a non-normal telomere distribution
within an organism. For example, some crosses between
Arabidopsis accessions exhibiting different telomere
lengths produce offspring with bimodal or discrete distri-
butions (36). Therefore, this quality parameter introduces
a method to identify technical problems, along with non-
typical telomere distributions within an organism.
Although discrete telomere distributions can easily be
identified with TeloTool, further deconvolution of
specific telomeric subpopulations was not implemented.
The user is, nonetheless, able to use this qualitative par-
ameter as an input for subsequent analysis steps. The
quantitative parameters (central tendencies as well as dis-
persion values) gained from analysis of normally
distributed smears may be used for more statistically
complex approaches [e.g. study of mutants that display
heterogeneous telomere length profiles (2,37)]. In
addition, TeloTool models probe binding and produces
corrected results that take into account higher signal
intensities at longer telomeres. With this modeling
approach, TeloTool does not only correct for probe inten-
sity but also for inhomogeneity in the electrical field
during the gel run and gel impurities. Using this
approach, our data show TeloTool can consistently
measure telomere length over many gels giving little devi-
ation (Figure 3A and B) along with consistent measure-
ments of the same sample from the same gel (Figure 5)
revealing high reproducibility of the results.
As mentioned previously, many methods have been

described to extract telomere length from raw TRF data.
As described at the start of the article, averaging probe
intensity over the whole lane was previously used to
quantify average telomere length; this method, however,
introduces severe biases as shown within this article. Other
methods were also used in a number of studies, this
includes manual definition of an analysis window, i.e. to
only use certain parts of the TRF smear for analysis. This
practice is only rarely allowed and leads to largely biased
results if applied incorrectly. Only a few studies report to
have used an analysis window that is appropriate to the
investigated organism (17,38). In another case, a manually
defined analysis window was selected to cover the majority
of the probe distribution (39). This procedure is problem-
atic as the signal intensity is often dependent on exposure
time. The next attempt was to analyze the telomere length
from the bottom of the smear to just below the limit of
mobility (40). This approach also leads to biases, as it is
hard to experimentally determine the limit of mobility
and, furthermore, it is also highly variable between indi-
viduals of the same species (41). Another study focuses on
the shortest telomeres with statistical identification of the
analysis window by searching for the highest correlation
between parameters of interest (42). However, this
approach assumes that there is actually a correlation
(e.g. telomere length and age) and, because such studies

want to show that there is a correlation in the first place,
vastly biased. Because TeloTool fits a Gaussian curve
through the whole TRF smear, biases introduced by in-
correctly chosen analysis windows are removed.

On the one hand, we have shown that Telometric over-
estimates telomere length derived from the raw data in
comparison with TeloTool’s results. On the other hand,
when plotting measurements of probe-intensity-corrected
data for both programs, Telometric was shown to
overcorrect longer telomeres, e.g. a 12-kb telomere
would be as much as 2 kb shorter (Figure 3C).
Telometric’s probe correction represents a simple normal-
ization by molecular weight and, therefore, assumes that
first, every hypothetical binding site is actually bound and
second, the labeling of every bound probe is intact. In
reality, it is more likely that probes bind in a probabilistic
way and some of them may have lost their label.
Therefore, it is most likely that the number of probes
binding to the telomeric DNA as calculated by
Telometric is vastly overestimated leading to a large
overcorrection at longer telomeres. TeloTool’s probe cor-
rection on the other hand is based on the mathematic
modeling of the raw data distribution not on the assump-
tion that a specific number of probes bind. Using the best
Gaussian fit through the raw data, the deviation from a
normal distribution is calculated and eventually the raw
data is corrected with precisely this error creating the cor-
rected data set. This procedure is more flexible, as it takes
multiple biases into account such as probe intensity, gel
impurities, inhomogeneity within the electrical field and
local background heterogeneity. The latter would induce
fluctuations in the intensity profile, which has a large
impact on the segmental Telometric analysis method,
but are completely irrelevant for the analysis with
TeloTool.

TeloTool is able to analyze data that have previously
shown to be difficult to quantify. Various studies in
Arabidopsis have revealed a number of mutants that
display telomere defects and, therefore, skewed or asym-
metric telomere profiles. Arabidopsis stn1 and ctc1
mutants have both shown to contain extensive telomere
length heterogeneity in comparison with wild-type plants
(2,37). Using TeloTool, it would be possible to compare
dispersion information between wild-type and mutant
samples. In addition, it may also be possible to make com-
parisons between multiple combinations of mutants that
display heterogeneous telomere profiles. Crossing in add-
itional mutants may exacerbate this phenotype; compari-
son between diffuse TRF smears could be difficult by
eye and easy to quantify using TeloTool. Drastic
length fluctuations are also seen within a number of
studies investigating mutants with disrupted telomeres;
Arabidopsis Ku70 and Ku80 mutants have previously
shown to display extensive telomere length elongation
(43,44). Analysis of such data with TeloTool allows
exact quantification so that appropriate significance tests
can be performed. Length variation in natural populations
of Arabidopsis has also previously been recorded (5). This
variation has also been experienced in yeast, humans, mice
and maize and has previously been used for mapping-
based approaches (4,45–51). Increased accuracy of
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telomere length measurements may improve the signifi-
cance of quantitative trait loci mapping data or uncover
new peaks for those studies that have used TRFs to
quantify telomere length. TRFs are also frequently used
to profile telomere length in a number of studies
investigating human disease and cellular lifespan [see
Supplementary Figure S1, e.g. of TRF analysis from
HeLa cells; the gel was taken from a previous publication
(52)]. For example, TRF data were used to show that tel-
omerase-positive human cells display increased telomere
length and an elongated life span (53). In addition,
Agarwal et al. (2010) showed that human fibroblasts
with mutations in dyskerin (DKC1), a known cause of
dyskeratosis congenita (DKC), displayed induction of en-
dogenous telomerase activity and an eventual increase in
telomere length (54). Such studies would benefit from the
increased accuracy introduced through TeloTool-based
measurements.

Using TeloTool, it is now possible to accurately extract
telomere length and heterogeneity information from
Southern blot data to analyze TRF smears. This
approach is applicable to any TRF-based study from
any organism and provides a quick and reproducible
method for telomere length analysis.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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