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ABSTRACT

Systems scale models provide the foundation for an
effective iterative cycle between hypothesis gener-
ation, experiment and model refinement. Such
models also enable predictions facilitating the
understanding of biological complexity and the
control of biological systems. Here, we demonstrate
the reconstruction of a globally predictive gene
regulatory model from public data: a model that
can drive rational experiment design and reveal
new regulatory mechanisms underlying responses
to novel environments. Specifically, using ~1500
publically available genome-wide transcriptome
data sets from Saccharomyces cerevisiae, we have
reconstructed an environment and gene regulatory
influence network that accurately predicts regula-
tory mechanisms and gene expression changes on
exposure of cells to completely novel environments.
Focusing on transcriptional networks that induce
peroxisomes biogenesis, the model-guided experi-
ments allow us to expand a core regulatory network
to include novel transcriptional influences and
linkage across signaling and transcription. Thus,
the approach and model provides a multi-scalar
picture of gene dynamics and are powerful re-
sources for exploiting extant data to rationally
guide experimentation. The techniques outlined
here are generally applicable to any biological
system, which is especially important when experi-
mental systems are challenging and samples are

difficult and expensive to obtain—a common
problem in laboratory animal and human studies.

INTRODUCTION

Systems biology promises to impact all areas of biological
sciences, including ecology (1), biotechnology (2) and
medicine (3,4). Such studies are generally characterized
by large-scale data generation followed by analysis,
modeling and prediction. Typically, data are deposited
in publically accessible databases, which present an oppor-
tunity to use data integration strategies to more fully
exploit the rich data sets generated by different
laboratories. However, large ‘omics data sets are often
underused because the conditions under which the data
were originally generated may not be considered directly
relevant to a new question or condition under study. Thus,
it remains a significant challenge to effectively use such
data sets to generate genome-scale predictive models
that are relevant to novel conditions. Ideally extant data
can be analysed to illuminate comprehensible molecular
networks that suggest specific experiments and reveal
novel mechanistic behavior (5). In this study, we provide
a template for molecular systems approaches to exploit
large public data sets, which are increasingly available
for numerous and varied biological systems. Such
approaches are critically important to further research
into human health. Applications include fundamental
research into genetic regulation, identification of drug
targets in diseased or pathogen-infected cells and engin-
eering microorganisms for remediation or production of
biomaterials.
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Gene regulatory influence network (GRIN) models are
typically constructed by integrating high-throughput ex-
periments with existing biological knowledge to fuel a
virtuous cycle where the GRIN informs biological experi-
mentation, which yields yet more informative models for
new experiments (6). Large databases of high-throughput
experiments abound; as of Spring 2013, the Gene
Expression Ominibus [GEO (7)] contained >920000 ex-
pression samples. Databases like these can inform an
initial GRIN, but the specific interactions are highly de-
pendent on the environment (8), thus it is necessary to
construct models that include environmental influences—
so called environment and gene regulatory influence
networks (EGRIN).

Here we demonstrate that a yeast EGRIN can be
generated from a large publically available mRNA data
set, and that this EGRIN can make accurate predictions
of gene expression under novel experimental conditions.
We use this network to identify factors that regulate a
process of interest. We then show that a small number
of additional condition-specific experiments can refine
these predictions and result in an ever more accurate
model. The factors selected by this refined model were
then examined experimentally by gene disruption and
genome-wide binding (ChIP-chip) studies further improv-
ing the mechanistic basis and predictive power of the
model. Using this process, free publically available data
and relatively cheap gene expression experiments identify
relevant regulators to explore with more detailed (and
expensive) experiments. This approach stands in contrast
with others that integrate different data types (generally
generated under the same environmental conditions) to
create the initial model (9,10), and thus miss the full
power presented by consortium data sets.

Our method is based on a previous study that con-
structed EGRINs for Halobacterium salinarum (11). The
basic strategy for EGRIN generation is 2-fold. First con-
ditionally coherently expressed subsets of genes (i.c.
biclusters) are identified as forming putatively coregulated
modules that are coherent across some environmental
conditions. These modules can be often associated with
specific aspects of cellular function through enrichment
of gene ontology (GO) terms for composite genes (12).
Second, direct gene regulatory influences by transcription
factors (TFs) are inferred based on changes in mRNA
expression data for TFs within each module (11). Our
strategy follows this approach, but, because of the preva-
lence of posttranslational control mechanisms in eukary-
otic systems, it also considers other forms of regulation
(such as kinases and other posttranslational modifiers)
that may influence mRNA expression (13—15). From this
list of regulators, which implies a large number of possible
combinations, the EGRIN was used to select a manage-
able number for detailed experimentation. It was then
augmented with additional data types to build a more
detailed model of gene regulation through an iterative
three-level strategy (presented in Figure 1); and thus
turn low-resolution global data into condition-specific
predictions.

Importantly, as Saccharomyces cerevisiae is a common
model system for molecular cell biology and genetics
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that is exploited in synthetic biology, the global yeast
EGRIN has wide applicability. We demonstrate its
utility by generating insight into peroxisome biogenesis
and function. Peroxisome biogenesis is a tightly regulated
and highly integrated process in numerous cell types from
yeasts to humans, and regulated peroxisome biogenesis is
fundamentally important to human health. Peroxisomes
perform many essential and diverse functions in eukary-
otic cells, the most notable of which is the B-oxidation of
fatty acids. Importantly, they are dynamic—proliferating
in response to different environmental cues, including
fatty acid exposure in yeasts (16-20). Thus peroxisomes
are essential for normal human development and peroxi-
somal defects lead to severe neuropathologies (21). The
varied roles that peroxisomes play in different aspects of
cell biology and cellular function continue to be uncovered
(21-24). Therefore, applying the yeast EGRIN to study
peroxisomes is useful for understanding human health
and disease.

Here, we demonstrate (i) a yeast EGRIN that accur-
ately predicts gene expression across a broad array of
novel environmental conditions (i.e conditions not
probed as part of the data set used to construct the
model) and identifies factors that regulate peroxisome-
annotated genes; (ii) filters based on condition-specific ex-
periments that refine the EGRIN and make it more
accurate; (iii) five novel regulators of peroxisomes
identified by the EGRIN and confirmed by gene deletion
studies; (iv) novel aspects of peroxisome regulation; and
(v) novel hypotheses regarding specific mechanisms re-
sponsible for mediating condition-specific cellular
responses.

The resulting gene regulatory networks and raw data
are available online as well as the R scripts used in this
analysis (http://AitchisonLab.com/YeastEGRIN). Thus,
we make public our approach to establish a large-scale
predicted regulatory network from public data. This
network is sufficiently predictive to suggest useful experi-
ments for elucidating molecular mechanisms that confer
specific phenotypes under novel environmental conditions.
The experimental results are then fed back into the large-
scale network to improve the overall predictive power.

MATERIALS AND METHODS

This article combines both computational and biological
methods. The computational methods used in this
research, cMonkey and Inferelator (25,26), were originally
developed to study H. salinarum (11). We adapted these
tools to eukaryotic S. cerevisiae and included a number of
changes detailed below. Unless otherwise noted, all algo-
rithms developed for this research were implemented in
the R programming language (27). All P-values were
subject to standard false discovery rate controls as appro-
priate. Plots were generated using R (27), regulatory
diagrams generated using Cytoscape (28) and all images
prepared using Adobe Illustrator CS5. The R scripts used
for this research contain additional details not presented
in this text.
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Figure 1. EGRIN overview and application. The three levels of EGRIN. (A) Level 1: (A.1) mRNA experiments are used to (A.2) construct a
globally predictive network using cMonkey and Inferelator. (A.3) Regulators are chosen that are statistically overrepresented as regulating genes in
the clusters. (A.4) A ranked list of candidates for further experimentation is generated from regulators of interesting clusters. (B) Level 2: (B.1) The
initial data set is filtered to only include genes that change significantly during condition-specific experiments. (B.2) The predicted regulation
generated by the linear regression is filtered to only include targets that are well predicted during the condition-specific experiments. (B.3) Scores
for candidates to be considered for further experimentation are weighted by the coherence of clusters during condition-specific experiments. (C) Level
3: (C.1) Experimental results are combined with other available data to construct (C.2) a gene-level regulatory network. Once the experiments for
(B) and (C) are completed, the newly discovered biology is fed back into (A) to improve predictions for additional conditions.

Biclustering

cMonkey biclusters are based on multiple mRNA expres-
sion experiments, such as from microarrays (25). The
genes are clustered into putatively coregulated units
based on mRNA expression coherence, known network
interactions and common promoter regions TF binding
motifs. By default, the network interactions include
protein—protein  interactions from the STRING
database. As ChIP-chip data became available, we supple-
mented the network interactions by indicating which genes
were bound by the same TF under the same conditions.
Two sets of cMonkey biclusters are available, one built on

the 1516 compendium-based experiments and one built on
70 condition-specific experiments.

The condition-specific biclusters consist of 30 yeast-in-
glucose experiments that simulated the Low Sugar (LS)
condition, 19 Early Oleate (EO), and 21 Late Oleate
(LO) yeast-in-oleate experiments. These condition-
specific experiments came from three sources: 17 previ-
ously published chemostat experiments (29), 8 previously
published batch culture experiments (18) and 15 novel
batch culture experiments. None of these experiments
were in the 1516 experiments in the compendium and
none of the conditions tested in these experiments is
known to cause peroxisome proliferation.


,
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For each experiment, we constructed background dis-
tributions of the expected variance for n genes, where 7 is
the number of genes in a given cluster. By comparing the
variance for each experiment in a bicluster to the back-
ground distribution, we determined which experiments
were significantly coherent in that cluster (P-value
cutoff= 0.05). If more than half of the experiments for a
condition (LS, EO or LO) were included in a cluster, we
considered that cluster coherent under that condition.

Inferred regulation

Inferelator (26,30,31) is a linear regression program that
uses the mRNA expression levels of TFs or other regula-
tors to predict the expression level of a target gene (or
mean expression level of a bicluster). For this research,
we replaced the linear regression algorithm with elastic
net (32) regression setting o = 0.8 using the lars package
(33). The elastic net is preferable to the old LASSO
method because it does not select a predefined number
of parameters and does not tend to select one of a
number of high correlated regulators. Due to difficulties
arising from mixing chemostat with batch culture experi-
ments and insufficient temporal resolution in the experi-
ments we set the decay constant () to zero. To limit the
resulting increased number of predictions, we turned off
the ‘and’ logic embedded in Inferelator. Microarrays are
subject to noise, so for best results on gene-level predic-
tions, our version of Inferelator predicts only those regu-
lators or targets whose mRNA levels change significantly
during the course of the experiment. We calculate signifi-
cance using the lambda (34) when available or an
estimated lambda fit to a chi-squared distribution
(degrees of freedom=1, P =0.05) when no lambda is
available. Gene expression data are normalized using
z-score normalization (a form of quantile normalization
that ensures that all distributions have the same mean and
standard deviation) before being analyzed with cMonkey
or Inferelator. Gene expression profiles are prepared
for visualization by smoothing them with the loess algo-
rithm (35).

Evaluating inferred regulation

Inferelator provides a linear equation with coefficients
that show which factors promote or repress a target.
With the setting described above, the Inferelator
equation may be presented as follows:

Target =B, x Regulator,+---+B,, x Regulator,,

where Regulator is one of m putative regulators of a
Target gene or bicluster. After regression and shrinkage,
those Regulators with non-zero coefficients (Bs) are con-
sidered predicted regulators of Target. Regulators with
positive Bs are considered activators and those with
negative Bs are considered repressors.

We use four metrics to evaluate the accuracy of these
linear equations in light of microarray deletion experi-
ments where a Regulator has been deleted. Agreement
refers to the fraction of times that Regulator was predicted
to be a activator or repressor of a Target gene and the
expression level of Target was decreased or increased
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(respectively) when Regulator was deleted. Formally,
Agreement =x/n where n is the number of target genes
where Regulator has a nonzero coefficient in the linear
equation and x is the number of times that the coefficient
and the log expression ratio of the target gene have differ-
ent signs. Correlation is the Pearson correlation coefficient
between the target expression ratio and —1 times the co-
efficient for the Regulator. ProgramAgreement measures
the accuracy of the entire linear equation for each target
in which Regulator has a nonzero coefficient. The target
gene expression is predicted by the linear equation based
on the expression levels of all putative regulators in
the deletion experiment, including Regulator. Thus
ProgramAgreement refers to the fraction of times that a
target gene was correctly predicted to be up- or down-
regulated in a deletion experiment. ProgramCorrelation
is the Pearson’s correlation coefficient between the
predicted and actual expression levels of all genes for
which Regulator has a nonzero coefficient. These metrics
are most prominently displayed in the Supplementary
Data.

Evaluation of clustering efficacy

Table 3 was generated by comparing the accuracy of
cluster-level predictions with gene-level predictions. If
Inferelator predicted that a TF regulated a gene, and
that gene changed significantly in expression when
that TF was deleted, then we considered that a true
positive (TP). Similarly, all other receiver operator char-
acteristics (ROCs) were generated for these gene level
predictions. We then evaluated the predictions at a
cluster level: if a bicluster was significantly enriched
(P <0.05) for genes predicted by Inferelator to be
regulated by a TF, and a significant number of those
genes significantly changed in expression when that TF
was deleted, then we considered that a TP. Similarly, all
other ROCs were generated for these cluster-level predic-
tions. P-values were calculated using a Wilcoxon signed-
rank test.

Combining predictions

Inferelator predictions made based on different data sets
may be combined by combining the terms in the linear
equations so long as those predictions share common
Targets. For purposes of this study, coefficients from the
condition-specific data were given priority. For example, if
Inferelator produces

Target,=p1 X Regulator,+p, x Regulator,

+B3 x Regulators
from the compendium data set and
Target,=B, x Regulator,+B, x Regulator,

from the condition-specific data set, then the combined
regulatory program would be

Target, = B, x Regulator,+p2 x Regulator,
+B3 x Regulatory+p, x Regulator,
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Note that Regulator, appears in both equations, but only
B. (the condition-specific coefficient) appears in the
combined regulatory program. If Target is a gene, then
combined predictions may then be assigned to biclusters
by comparing the number of Target genes for a given
Regulator in a bicluster to a background distribution.

At Level 2, we combined our gene-level predictions
using this method. We calculated a P-value by comparing
the number of genes in each bicluster predicted to be
regulated by a TF to a distribution of the number of
genes that would be expected to be predicted to be
regulated by that TF if the genes in the bicluster were
selected at random. If a TF-bicluster pair had a
P < 0.05, then that TF was considered to be a predicted
regulator of that bicluster.

Predicted regulators of peroxisomes

We ranked the predicted regulators of peroxisomes with a
scoring function that combined the P-value of a predicted
bicluster regulator with the conditional coherence for
those biclusters enriched with peroxisomal genes.

Peroxisome Clusters LS,EO,LO
Score(Regulator) =
k ¢

Where P-value(Regulator,k) is the P-value calculated by
comparing the Inferelator predicted regulation of the gene
cluster k by Regulator to the background distribution of
genes regulated by Regulator. Coherent(c,k) is 1 if cluster k
is coherent (P-value cutoff= 0.05) under condition ¢ or 0
otherwise. These scores are shown for all regulators in
Table 2.

Streams of evidence

High-throughput and computational derived biological
experiments tend to produce noisy results. To arrive at
strong evidence for regulation, it is helpful to consider
regulatory relationships that are reinforced by multiple
streams of evidence (i.e. experimental types). This is par-
ticularly true when one stream of evidence shows direct
regulation, such as a ChIP-chip experiment, and another
stream of evidence shows indirect regulation, such as a
microarray deletion experiment. We considered three
streams of indirect evidence: one based on Inferelator pre-
dictions and two based on microarray deletion experi-
ments. We also considered three streams of direct
evidence: one based on ChIP-chip experiments and two
based on TF Binding Motif presence. Since multiple
genes may share the same promoter region, it is particu-
larly important to include another stream of evidence
when considering direct evidence.

Evidence of indirect regulation: wild-type microarray
time series

The 15 novel batch-culture experiments described in the
Biclustering section were prepared as described in Strains
and growth conditions but harvested at times other than

just LS, EO, LO. Specifically, they were harvested at 0.5,
1, 1.5,2,2.5,2.5,2.75,2.75, 3, 3, 3, 3, 3.5, 4 and 5h after
oleate induction (Supplementary Table S3). mRNA was
purified using ethanol precipitation with a Qiagen Mini-
prep kit. cDNA was labeled using Invitrogen Alexa 555
and 647 and bound to Agilent two color arrays. All
experiments used dye-flipping, so each time point was
compared with a LS reference point twice. The resulting
microarray expression ratios were analyzed with
Inferelator and cMonkey as described earlier in
Materials and Methods.

Evidence of indirect regulation: deletions microarrays

Yeast TF deletion strain cultures were prepared as
described in Strains and growth conditions and analysed
by microarrays as described in Evidence of indirect
regulation: wild-type microarray time series. Two biolo-
gical and two technical replicates without dye-flipping
were performed for the cat8, hap4 and spsi8
experiments, other experiments shown (excluding those
previously published) each had only a single dye-flipped

—log,o(P-value(Regulator,k) x Coherent(c,k))

replicate. The cat8, hap4 and spsi8 deletion experiments
were performed before the EGRIN was constructed but
never published. They were measured against a 0-h (LS)
control, so it was necessary to convert the expression when
they were to be compared against 0.5-h (EO) or 5-h (LO)
controls. To do this, we subtracted the log expression
ratios of wild-type EO and LO over LS controls from
the deletion expressions. These data are presented in
Supplementary Table S4.

We fit the resulting deletion expression values to a
normal distribution and assigned P-values using both
tails of the distribution. Statistically significant regulation
for n genes was calculated based on a hypergeometric dis-
tribution with a P-value cutoff of 0.05 using false discov-
ery rate multiple-testing controls.

An additional stream of regulatory evidence was
calculated using bicluster shattering. Shattering refers to
the deletion of a TF disrupting the mRNA expression
coherence of a bicluster. To detect this, we built a distri-
bution of gene expression variances in each cluster for
the LS, EO and LO conditions described previously. If
the variance for the genes in the LS, EO or LO deletion
experiments was >95% of the variances for that cluster,
then the deleted TF was said to regulate the bicluster
based on bicluster shattering. Thus, if genes were
particularly tightly coregulated in a given cluster, it
would be relatively easy for a deletion to shatter that
cluster, but if the genes were not tightly coregulated,
then it would be difficult for a deletion to shatter that
cluster. If a gene is in multiple biclusters, the lowest
P-value is wused. These results are presented in
Supplementary Table S5.
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Evidence of direct regulation: ChIP-chip binding

ChIP-chip experiments were performed using a modified
version of a ChIP-chip protocol previously described (18).
Cells with myc-tagged regulators were harvested as
described in Strains and Growth Conditions and fixed in
a 1% formaldehyde solution. Fixed cells were lysed with
glass beads and the DNA sheared with sonication. Tagged
fragments were collected by Invitrogen Dynabeads and
the cross-linking reversed by heat. Immunopurified
samples and whole-cell extracts were labeled using the
Kreatech ULS aRNA Fluorescent Labeling DNA Kit as
per the standard protocols. Microarrays were processed
in-house and interpreted using the MeDiChl (36) algo-
rithm to assign P-values to binding events. These results
are presented in Supplementary Table S6.

Regulation was assigned if a binding event occurred in
the region between 1000 bp upstream of a gene and 100 bp
after the transcription start site. Those binding events
assigned a P < 0.05 by MeDiChi were considered strong
evidence and those with any other P-value were con-
sidered weak evidence. When there were multiple hits for
a single TF-target pair, the lowest P-value was selected.
To determine if a TF regulated a bicluster containing n
genes, a score was calculated for each gene in the cluster
by taking the negative log of the P-value. A background
distribution of expected scores was calculated for n genes
selected at random and regulation was assigned if the
score was in the top 5% of expected scores.

Evidence of direct regulation: TF binding motif

We downloaded known yeast TF binding motifs probabil-
ity weight matrices from the YEASTRACT database
(37-39) and supplemented them with motifs appearing in
Saccharomyces Genome Database (SGD) (40). We
searched the promoter regions for all known yeast genes
using the Bioconductor Biostrings package (41).
Biostrings provided functionality to score sequences in
the promoter region (1000bp upstream of a gene and
100 bp after the transcription start site) against existing
probability weight matrices describing known binding
motifs using a sliding window. These scores were
compared with a background model of expected scores
to calculate a P-value. Each of the resulting matches
with a P < 0.05 (Bonferroni corrected) was considered a
hit. Some genes would thus have multiple hits from a
given TF, corresponding to multiple possible binding
sites for that TF in the promoter region. As the existence
of multiple binding sites has been previously observed as a
method of regulation in yeast (42), theoretically models of
TF regulation that include multiple bindings are more
accurate (43,44), and multiple hits increased the probabil-
ity that a gene’s expression will significantly change when
the TF is deleted (data not shown); we calculated a final P-
value for each TF with target gene as follows:
P = (.05Number of Hits * A resulting P < 0.05 (again subject
to Bonferroni correction) was considered evidence for
regulation. Additionally, we recalculated the background
distributions and used P-value of the best hit for each TF-
gene pair, but with a P-value cutoff of 0.01. We considered
a hit using either method evidence for the presence of a
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binding motif. These results are
Supplementary Table S7.

An additional stream of regulatory evidence was
determined based on the de novo motifs detected by
cMonkey (25). Those detected motifs with an e-value
<1 were run against the ‘macisaac’ and ‘scpd’ yeast
motif databases using TomTom (45). The resulting
P-values are subjected to a cutoff value of 0.05 to deter-
mine regulation. If a TF regulates a cluster, it is considered
to regulate all genes in that cluster.

presented in

Strains and growth conditions

The biological methods used in this research consisted of
ChIP-chip and microarray experiments and were con-
ducted using batch culture oleate induction (18). All
yeast deletion strains were taken from the MATalpha
yeast deletion library (46) and verified by polymerase
chain reaction. BY4742 (47) was used for all wild-type
strains. Cells for the ChIP-chip and microarray experi-
ments were grown overnight in Yeast Extract Peptone
Dextrose (YPD) solution, and transferred to S. cerevisiae
induction medium (SCIM) media (0.7% yeast nitrogen
base without amino acids or ammonium sulfate, 0.5%
yeast extract, 0.5% peptone, 0.79 g/l complete supplement
mixture, 0.5% ammonium sulfate) with low glucose (0.1%
w/v) at a final concentration of 6 x 10* cells/ml. The 0-h,
LS time point occurred after 15-16h incubation at 30° C
when these cells reach 0.5-1 x 107 cells/ml. For oleate in-
duction experiments, LS cells were harvested by 5 min of
centrifugation at 3300 relative centrifugal force (RCF) to
remove the low glucose media, and resuspended in an
equal volume of SCIM containing 0.1% glucose (w/v),
0.15% oleate (v/v) and 0.5% Tween 40 (w/v). After
addition of oleate-containing media, cells were harvested
for EO time points at 0.5h and LO time points at Sh. All
samples for analysis by microarray were harvested by cen-
trifugation of 50 ml yeast culture at 7000 RCF for 3 min to
remove liquid media, then flash-frozen for ~30s in liquid
nitrogen and stored at —80°C for up to 2 months.

ChIP-chip samples were harvested by addition of 6 ml
of 37% formaldehyde to 200 ml of yeast culture, followed
by shaking at room temperature on a rotator for 1h to fix
samples. Cross-linking of samples was quenched by the
addition of glycine to 125mM and shaking for an add-
itional 5min. Samples were then centrifuged at 3300 RCF
and washed with 40 ml Tris-buffered saline (20 mM Tris—
HCI, pH 7.6, 150 mM NaCl) two times, and cell pellets
were flash frozen for 30s in liquid nitrogen and stored at
—80°C.

RESULTS

This approach traverses three levels of detail as shown in
Figure 1. At Level 1, a compendium of mRNA expression
data (from public databases) is used to construct a global
predictive EGRIN model using cMonkey for biclustering
and Inferelator to infer topology of the gene regulatory
network (25,26). The EGRIN model from Level 1 is pre-
dictive of cellular responses to novel environmental expos-
ures (Figure 2) and, therefore, has captured causal mRNA
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Figure 2. Inferelator predicts gene expression across many unseen experimental conditions. Shown are Pearson correlation coefficients between the
predicted and experimentally determined mRNA expression levels for the Level 1 yeast EGRIN. The biclusters were generated using 1516 mRNA
expression experiments. (A) The predicted and actual mRNA expression levels for a cluster in the oleic acid data set. Experiments to the left of the
dotted line consist of 30 yeast-in-glucose experiments from the 1516 training examples. Experiments to the right of the dotted line consist of 40 yeast-
in-oleate experiments. (B) The average correlation and the fraction of statistically significant correlations for 27 experiment series not present in the
training set. These sets are labeled with their GEO accession numbers. The blue line labeled ‘Number of Experiments’ shows the relative fraction of
experiments for each experiment set. GSE25644 has the maximum number of experiments (464), thus its relative fraction is set to 1. (C), (D), and
(E) show the correlation for three of these experimental series: (C) GDS2029, histone H2B mutations, (D) GDS2715, dehydration and (E) oleic acid
exposure (peroxisome induction). Those correlations that are statistically significant (P < 0.05) are shown in red.

expression changes within the underlying regulatory
network. Importantly, interactions within this network
model include indirect regulation and thus are called regu-
latory influences. To improve the mechanistic accuracy of
the model, at Level 2, the yeast EGRIN is enhanced by
combining the compendium data with a modest amount of
new data that are generated under a specific and new en-
vironmental condition. Notably, these data can be rela-
tively sparse, typical of experiments from a single
laboratory and as such would, by themselves, be insuffi-
cient for construction of an EGRIN. These additional
data enable the filtering of the bicluster network to
include only regulatory relationships that remain
coherent on exposure to the new environment and can
discover new regulatory relationships not evident from
the compendium data alone. That is, Level 2 analyses
leverage the network structure learned from Level 1 to
identify predictions from the network that are relevant
to the new environmental condition and specify experi-
ments likely to improve the network. At Level 3, approxi-
mations inherent to biclusters are shed in favor of gene by

gene resolution. Regulatory mechanisms responsible for
specific environmental responses are reinforced with or-
thogonal streams of evidence to generate a higher confi-
dence network. Predictions from the Level 3 network
enable a rational approach to designing new experiments
to reveal novel biological insight and drive subsequent it-
erations of modeling and predictions for other environ-
mental responses. Thus, the yeast EGRIN provides a
multi-scalar picture of gene dynamics that combines pre-
dictions of gene-level and bicluster-level regulation. This
framework is deliberately modular so that it is conceptu-
ally easy to add additional regulatory information, such as
that from new experiments or new data types, as they
become available.

We hypothesized that a network constructed from com-
pendium data will include responses to environments not
explicitly used for its construction due to linked environ-
mental responses. For example, many conditions may be
stressful to cells, and the stress response may also include
anticipatory behavior that would prime the cell for per-
oxisomes should they be useful for dealing with a specific


,
up

stressor such as oleic acid. Building from compendium
data, a general yeast EGRIN model was established and
exploited to rationally design experiments that inform an
oleate-specific network model revealing novel mechanisms
operating during the response. Oleic acid treatment tested
the ability of our yeast EGRIN to uncover novel peroxi-
some-related regulation, although oleic acid exposure was
not part of the initial training set. This test demonstrated
that EGRIN predictions enabled rational selection of
TFs for elucidating regulatory mechanisms by measuring
the consequences of gene deletions and mapping genome-
wide binding locations.

Level 1: Globally predictive gene regulatory network

Large biological data sets tend to be noisy. Predicted
regulation based on analysis of these data often report
interactions that do not exist and to fail to report many
interactions that do exist. However, we expect these
predictions to be correct more often than incorrect, and
in aggregate to provide useful information (48). Thus, we
filter predictions of interactions through clusters of genes
and only keep those that are reported a significant number
of times. By aggregating the putative interactions, we
expect to enrich the number of true regulatory events.
We use this aggregation to identify candidate regulators
that are likely to regulate genes of a certain type (e.g. genes
in clusters enriched for peroxisome genes).

The Level 1 yeast EGRIN was constructed from a com-
pendium of 1516 transcriptional profiles for all yeast genes
(49) as shown in Figure 1A.1. These data were used to
construct linear models describing which regulators
control which genes (Figure 1A. 2) and augmented with
protein interaction data to make condition-specific
clusters of genes (i.c. biclusters). These biclusters were con-
structed using cMonkey (25), which generates a probabilis-
tic framework from protein interactions and functional
associations (50) and shared cis-regulatory promoter
elements to iteratively test genes for co-expression over
subsets of environmental conditions (25,45). The regulatory
model was constructed using Inferelator, a regression-based
approach that models the relative changes in the gene ex-
pression as a linear combination of temporally preceding
changes in the activities of putative regulators (26). At this
level, the EGRIN considered 406 proteins as putative regu-
lators to build linear regression models for each of the
>06000 genes in S. cerevisiae. The 406 proteins include 403
unique TFs, basal TFs, kinases, phosphatases and cofac-
tors, as well as other regulators such as polymerases and
histone-related proteins present in http://biochemie.web.
med.uni-muenchen.de/YTFD/YTF _alpha 2.htm (51) plus
three known factors not present in the database (open
reading frames: YILO36w, YKRO64w and YOR363c).
To compensate for the noise in the data and the
stochasticity in Inferelator, we identified proteins that
were significantly enriched (P < 0.05) as regulators for
the genes in biclusters (Figure 1A.3). We then considered
only those biclusters that were significantly enriched for
genes encoding peroxisomal proteins (‘peroxisome genes’)
and weighted the regulators of those clusters by their
P-values to build a prioritized list of peroxisome-regulating
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candidates for further study (Figure 1A.4). From this
analysis, the global data set revealed Mbrlp, Cat8p,
Sip4p, Adrlp and Hapdp as the top five candidates for
peroxisome regulation.

We tested the EGRIN trained on the 1516 experiments
(49) and using 406 possible regulators against 26 new data
sets taken from the Gene Expression Omnibus (GEO) (7).
These new data sets did not appear in the compendium
data set, tended to have large numbers of experiments,
and were not used to generate the EGRIN. We were inter-
ested in EGRIN’s ability to capture yeast responses to all
conditions, and thus the new data were derived from ex-
periments under conditions that were both similar to, and
different from, the environmental conditions used to
generate the compendium data (Supplementary Table
S1). To determine which predictions were statistically sig-
nificant, we shuffled the experiments (n = 1000) to calcu-
late an expected background distribution of correlation
between the predictions and the experimental results.
Shown in Figure 2, are the predicted and measured expres-
sion levels within a single bicluster (Figure 2A), aggregate
correlations for all data sets (Figure 2B) and a histogram
showing the breakdown of correlations for 96 histone
H2B mutation experiments (Figure 2C) (52,53), and 54
dehydration experiments (54) (Figure 2D). Because the
EGRIN constructed from the compendium data was
able to accurately reconstruct gene expression in peroxi-
some-proliferating oleic acid experiments (Figure 2E), we
considered it sufficiently accurate to identify factors
regulating genes related to peroxisomes.

As shown by the generally high proportion of signifi-
cant correlations in Figure 2B, there is sufficient informa-
tion within the compendium of gene expression profiles to
predict condition-specific regulation even though the
specific environmental conditions were not intentionally
perturbed in the training set experiments. Other than con-
ditional similarity, there are two related explanations why
this is possible. First, the ‘new’ environmental conditions
stimulate inextricably linked and coordinated responses.
For example, oleic acid exposure is coordinated with a
general stress response (19,20,29). Second, the organism
may ‘anticipate’ a related response that is normally
coordinated with the environmental conditions that are
used as a perturbation. For example, yeast glucose metab-
olism typically results in ethanol production, so it is rea-
sonable to expect that ethanol resistance is anticipated in
glucose metabolism.

In either case, environmental responses appear to be
tightly coupled in nature (18,55,56) and we can exploit
this to build generally predictive network models from a
modest number of environmental perturbation experi-
ments. In support of this idea, the best predicted responses
were associated with natural reversible physiological
responses and less well for unnatural conditions—gene
expression levels were predicted remarkably well for
most conditions, but not for exposure to caffeine.

Level 2: Condition-specific enhancements

Level 1 analysis enabled the development of a model
learned from a compendium of transcriptome profiles.
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This model accurately predicted gene expression changes
under novel environments that induce specific physio-
logical responses. However, during the course of this
study, we generated several yeast-in-oleate experiments
including a time series from 30 min to Sh after oleate
induction. This was combined with other experiments to
result in a 70-experiment oleate-specific data containing
time series experiments of yeast cells exposed to oleic
acid (40 experiments) and glucose (30 experiments) from
different  laboratories and  varying  conditions
(20,29,57,58). Previous experiments (18,29,59) suggest at
least two stages in yeast oleic acid response: one occurs
between 0 and 1.5h, and the second occurs beyond 1.5h.
Accordingly, we define EO response as the set of events
that occur within 90 min in oleic acid and LO response as
that which occurs after 90 min. We capture events in these
two stages by harvesting cells pre-oleic acid exposure, i.c.
under LS conditions at 0 min (the resting state), and at
two points post-oleate exposure, i.e. EO conditions at 30
min, and LO conditions at 5h. At Level 2, we combined
this condition-specific data with the compendium data to
improve the quality of the global network and the candi-
dates for peroxisome regulation.

Condition-specific data were combined with the com-
pendium data using the three filters shown in Figure 1B.
In the first filter, we artificially reduced the compendium
data set to include only those target genes and putative
factors whose expression changed significantly during the
yeast-in-oleate experiments (Figure 1B.1). Gene deletion
studies revealed that this resulted in a five-point improve-
ment (P <2 x 107°) in the classifier’s ability to identify
regulator targets (Table 1). We also used the analysis
shown in Figure 2E to include only those predictions
that were shown to be accurate when yeast was grown
in oleic acid (Figure 1B.2). This resulted in a similar
five-point improvement (P <4 x 107%) in the classifier’s
ability to identify regulator targets (Table 1).
Importantly, fatty acid (oleic acid) exposure, which
induces peroxisomes, was not included in the compendium
data set; yet, the (aggregate) correlation between EGRIN
predictions of bicluster expression and measured bicluster
expression was 0.74. On comparison of these predictions
with the background model, 85% of the predictions were
significant (P < 0.05). We then ran the 70-experiment
yeast-in-oleate data through the procedure outlined in
Level 1 and the filters outlined in Level 2. This generated

Table 1. Level two filters improve classifier accuracy

clusters that were more relevant to oleate-acid response
and many that were coherent under some combination
of LS, EO and LO conditions (Figure 1B.3). This
resulted in a three-point improvement (P < 8 x 107%) in
the classifier’s ability to identify regulator targets (Table
1). Taken in aggregate, the three filters improved the clas-
sifier by 10 points (P <5 x 107!'!), and removed two-
thirds of the predictions tested by our microarray dele-
tions (Table 1). We then ranked the remaining putative
regulators of peroxisomes by their P-values and by how
frequently the cluster they were regulating was coherent.

For the final yeast EGRIN, we combined the regulatory
program generated from the 1516 experiment compen-
dium data set with the program from the 70-experiment
condition-specific data set, giving the condition-specific
program priority wherever there was a conflict. This was
done so that the effect of the small number of condition-
specific experiments was not suppressed by the larger data
set. The outcome of this combined analysis identified a
ranked list of 53 (out of an initial list of 406) putative
regulators of the 6 coherent clusters enriched for peroxi-
some-related genes (Figure 3 and Table 2).

Earlier studies on induction of yeast peroxisome biogen-
esis in response to oleic acid treatment revealed four TFs
as particularly important: Adrlp, Oaflp, Pip2p and Oaf3p
(the AOPY motif) (18). These TFs strongly coregulate
peroxisome formation in response to oleic acid exposure,
but at least one of these proteins (Pip2p) has a delayed
response; in these experiments, Pip2p was expressed at
basal levels until mRNA levels increase dramatically
after 2h of oleate induction. This implies a gap in our
understanding of early peroxisome proliferation in
response to oleic acid, i.e. we do not know the sequence
of events that precede and are responsible for the delayed
induction of Pip2p.

This analysis identified biclusters that are significantly
enriched for peroxisome-related genes (P < 0.05) and
thereby their putative Inferelator-predicted regulators in
the yeast EGRIN (Figure 3). Notably, the expression
profiles within most of these biclusters are not coherent
under LS or EO conditions, implying that genes within
these biclusters are not coregulated under glucose deple-
tion conditions or during early stages of oleate induction.
In contrast, Clusters #261 and #124, the two biclusters
most heavily enriched for peroxisome annotated genes

EGRIN Agreement Correlation Agreement.fix Correlation.fix Numbers of P-value
predictions

Compendium 0.51 0.16 0.66 0.33 3145 1.00E+ 00

Filter 1 0.51 0.18 0.71 0.44 2012 1.82E — 06

Filter 2 0.49 0.20 0.71 0.40 2086 3.09E — 06

Filter 3 0.49 0.16 0.69 0.36 1881 7.22E — 03

Aggregate 0.50 0.17 0.76 0.50 1015 4.96E — 11

‘Agreement’ and ‘Correlation’ refer to the fraction of time that Inferelator identifiers a regulator as an activator or repressor of a target gene and the
target gene significantly decreases or increases in expression (respectively) when the regulator is deleted. The ‘.fix’ columns refer to the same
measurements, but with the activator/repressor role of predictions swapped when they are significantly anti-correlated with the role revealed by
the gene deletion assays. This swapping is intended to more accurately reflect the classifiers ability to identify peroxisome-related regulators. ‘P-value’
refers to the binomial P-value comparing the ‘Agreement.fix’ scores with those in the first column.
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Figure 3. Predicted regulators of peroxisomal biclusters. (A) The clusters significantly enriched for peroxisome-related genes and the regulators
predicted by linear regression analysis. Of the AOPY motif, only Pip2 is shown because only Pip2 mRNA levels change significantly in the yeast-in-
oleate experiments. (B-D) Time course mRNA expression levels for pairs of regulators and their predicted targets. Lines show smoothed expression
levels and symbols show raw data. Some time points (such as 180 min) have several replicates, which are visually offset by 1 minute to avoid overlap.
(B) Hap4 and putative target Potl (a member of clusters #124 and #261) mRNA expression profiles shows a possible delayed regulation where the
Hap4 increase precedes Potl increase. (C) Cat8 and putative target Pot] mRNA expression profiles show a similar delayed regulation where the Cat8
increase precedes Potl increase. (D) Pho88 and putative target Potl are mRNA expression profiles anti-correlated, possibly indicating regulation that
occurs at time scales finer than the sampling rate for the experiments making unclear if Pho88 expression levels precede Potl levels. Pho88 is not a
known TF, but rather is a poorly studied putative phosphate transport protein.

(P<10~* with 16 of 29 and 8 of 20 genes, respectively),
are coherent under all conditions.

The mRNA level changes of putative regulators inform
regression-based inference of the regulatory network for
corresponding expression changes of genes within the
biclusters. The 53 putative regulators suggest one of
several possible regulatory mechanisms. The regulators
could be part of larger complexes, they could have com-
petitive or cooperative functions, they could interact with
‘exclusive or’ logic, they could represent a cascade of
events where some regulators act indirectly through inter-
mediate factors (including some that are in this network
diagram) or they could be downstream targets that are
activated along with peroxisome-related genes. Similarly,
the yeast EGRIN does not have prior knowledge of a
regulator’s preferred role as activator or repressor and it
may incorrectly identify a repressor as an activator (or

vice versa) if the expression levels of both regulator and
target are rising (or falling). Thus additional data are ne-
cessary to differentiate between these different
possibilities. Nonetheless, the Level 2 network has
helped to significantly constrain these follow-up studies
to a manageable number of regulators (53 out of 4006) in
a ranked list and target genes that are specifically
associated with oleate response.

As shown in Table 2: Cat8p, Mbrlp, Gal3p, Sps18p and
Hap4p were the top five predicted TF regulators of
clusters enriched for peroxisome-related genes. We per-
formed gene deletion assays on the five genes encoding
these proteins. Additionally, we focused on Cat8p and
Hap4p for binding studies because deletion mutants,
cat8 and hap4, have reported defects of fatty acid utiliza-
tion (19). In those experiments, in addition to fatty acid
exposure, they showed defects in growth on acetate,
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Table 2. Top predicted regulators of peroxisomes

Regulator ~ Total  Type Complex Notes Total  Type Complex  Notes

score score
CATS 173 TF RAD14 77 DNA
MBR1 159 TF Suppresses Hap 2-4 deletion RAD2 47 DNA
GAL3 52 TF RAD4 29 DNA RAD23
SPS18 52 TE? Putative RADS55 21 DNA RADS7
HAP4 48 TF HAP 2-5 CBF5 12 DNA Centromere binding factor
FZF1 43 TF RADI18 10 DNA RADG6
MIG1 41 TF Regulated by SNF1 and GLC7  PHOS88 74 Other Membrane phosphate transport
RME1 36 TF IME1 Cell cycle MGA2 8 Other Membrane OLE] transcription
MSN4 30 TF Stress response SAS10 8 Other Makes 18S rRNA
PIP2 29 TF ATG16 8 Other Authophagy
XBP1 27 TF Repressor HTB2 50 Histone
SEF1 26 TF Putative STB2 47 Histone  SIN3 Maybe TF or deacetylase
WTM1 26 TF Ribosome HTA2 22 Histone
RIM101 21 TF Repressor HAT1 9 Histone  HAT?2
RGT1 17 TF Activator and repressor HHF1 6 Histone = HHF2 Telomeric silencing
SOK2 17 TF Kinase regulator RPO31 21 RNA C160 RNA polymerase III
HMS1 14 TF RPA135 16 RNA Al135 RNA polymerase I
RGM1 14 TF Putative RPC31 12 RNA C31 RNA polymerase ITT
RPN4 12 TF Proteasome activator RPA43 10 RNA A43 RNA polymerase I
DALS0 8 TF RPO26 10 RNA ABC23 RNA polymerase LILIII
SUA7 8 TF General transcription RPA190 9 RNA A190 RNA polymerase I
TEA1 6 TF Tyl enhancer activator SRB5 8 RNA RNA polymerase II
SIP2 161 Kinome  SNFI RPC82 8 RNA C82 RNA polymerase III
PCL10 79 Kinome  PHOS85 RPC53 7 RNA C53 RNA polymerase I11
PCLS8 24 Kinome  PHOS85 RPA12 7 RNA Al2.2 RNA polymerase I
PCL7 22 Kinome  PHOS85 RPA49 6 RNA A49 RNA polymerase I
PCL5 6 Kinome  PHOS85

Type refers to the type of regulator: TF, a transcription factor; Kinome, a member of a Phophatase or Kinase complex; Histone, a histone
modification protein; DNA, a DNA repair protein. Sps18 is labeled “TF?’ to emphasize that it is not proven to be a TF. Complex shows some

known interaction partners.

consistent with their previously reported roles in
regulating genes involved in respiration (60). Therefore
we generated protein—-DNA interaction maps by
ChIP-Chip for both TFs (Supplementary Tables S4-S6).
All experiments (interactions and expression profiles) were
performed in LS, EO and LO conditions.

Level 3: Gene level analysis

The Level 2 experimental results facilitate the transition
from a bicluster-level analysis to a gene-level analysis.
While the regulatory influences predicted in the yeast
EGRIN are helpful, we expect some of these influences
are indirect and therefore additional streams of evidence
are necessary to reveal the underlying mechanisms. For
example, a physical map of protein—-DNA interactions
would be useful to determine which of the predicted regu-
latory influences are due to direct binding of a TF to the
promoter of regulated gene(s). At Level 3, we only
consider those regulatory relationships that are reinforced
by two or more streams of evidence (including expression
time course data, TF deletion data, ChIP-CHIP data and
TF binding motif data). Furthermore, if the co-expression
of genes in a bicluster is disrupted when a putative regu-
lator is deleted (i.e. ‘bicluster shattering’), this is evidence
that the putative regulator does indeed regulate the genes
in the disrupted bicluster. (See Materials and Methods for
more details about these steps.)

Figure 4 shows the five factors selected by the EGRIN
and the 4 AOPY proteins with regulatory interactions that
are reinforced by two or more streams of evidence. As

shown, all five factors are significant regulators of peroxi-
some-annotated genes. Furthermore, Hap4p regulates
most of the other factors as well as the downstream per-
oxisome genes, but is only being potentially regulated by
Cat8p. Taken as a whole, this diagram suggests several
regulatory circuits that would expand the core AOPY
motif. See Supplementary Data S5 for the Cytoscape visu-
alization of these data, which includes more details about
the streams of evidence that informs each of the edges.

Interestingly, if we had selected only the top regulator
from Table 2, Cat8p, it could have naturally led us to
Mbrlp, Gal3p, and Hap4p as follows: Protein-DNA
interactions of Cat8p mapped with ChIP-chip binding
assays reveal a significant binding event in the promoter
of HAP4. This interaction is further reinforced by the
presence of a Cat8p binding motif in the promoter of
HAP4. Hap4p would be predicted to regulate GAL3 due
to the presence of a Hap4p binding motif in the GAL3
promoter region and a significant change in GAL3
expression in the hap4 mutant. Similarly, Hap4p would
be predicted to regulate MBR1 due the shattering of a
bicluster containing MBRI1 in hap4 mutants and weak
evidence for a binding motif and a protein—-DNA
binding event. Thus, the interactions within EGRIN
captured causal and biologically meaningful regulatory
relationships that not only make accurate predictions of
how yeast respond to new environmental perturbations
but they also provide specific hypotheses regarding
underlying mechanisms that can be validated by further
experimentation.
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wild-type genetic background at LS, EO and LO conditions.

Feedback to Level 1

Guided by the yeast EGRIN, novel regulators of peroxi-
some-related genes were identified. These predictions were
verified by targeted ChIP-chip and microarrays of selected
deletion mutants. These results can then be used to itera-
tively improve the global EGRIN model for future ana-
lyses—for specific extension of the peroxisome-induction
network, and for other gene regulatory networks of
interest to the community. We therefore added the micro-
array time series and deletion experiments back into the
compendium data set to increase the number of experi-
ments in the training set. We tested the resulting model
on 26 S. cerevisiae data sets taken from GEO that were
not specifically related to oleate-mediated induction of
peroxisomes or in the compendium data set, and this led
to a significant increase in predictive accuracy [P <107,
n = 26 (Supplementary Table S1)].

Prediction accuracy

If EGRIN correctly predicts that a regulator is an activa-
tor or repressor of a gene, then the expression of that gene
should be significantly reduced or increased (respectively)
if the regulator in question is deleted. For TFs Cat8p,
Hap4p, Mbrlp and Gal3p, EGRIN predictions were stat-
istically significantly correlated (P < 0.05) with mRNA
expression profiles generated from yeast strains lacking
each TF in LS, EO and LO conditions (Supplementary
Table S2). We suspect that these results could be further
improved if we accounted for the different metabolic
states between gene deletion strains and the wild-type
controls. For example, it is known that hap4 deletion
causes a decreased carbon source utilization phenotype
(61,62). Thus, it may be more appropriate to compare a
LO hap4 culture with a wild-type culture consuming nu-
trients at a rate more similar to a LO wild-type culture.
Predictions for Sps18p were less accurate than for other
regulators when Sps18p influences were analysed in isola-
tion (although they were significantly accurate when

influences of other factors were also considered). This
may reflect the fact that SPS18 mRNA changes were gen-
erally lower than other TFs (relative mRNA changes of
SPS18 were <8% of CATS, 4% of HAP4 and 17% of
MBRI1, although they were much higher than GAL3),
making it more difficult for EGRIN to detect and make
associated predictions.

To determine if the regulators selected by our method
were particularly targeted toward peroxisome genes or if
any stress response genes would have a similar effect on
yeast in oleic acid, we chose three proteins not predicted
to be regulators (Pprlp, Tealp and Uga3p) as negative
controls. All of the genes encoding these proteins scored
poorly on Table 2 (only TEA1 had any score at all) and
had been identified as stress response factors (58,63). We
used gene deletion studies to compare these negative
controls with the top five TFs predicted to be regulators
(Table 2) and a positive control, the known peroxisome
regulating AOPY motif. We considered peroxisome-
annotated genes that significantly changed in expression
(P < 0.05) when each of the TFs was deleted. The results
shown in Figure 5 reflect that the top predicted regulators
significantly affect 34% of the 87 peroxisome-annotated
genes across all conditions, the positive control affects
11% of the peroxisome genes, and those factors not pre-
dicted to be regulators affect 3% of the peroxisome genes
(all two-tailed binomial P < 10~'#). Figure 6 shows how
the top five predicted regulators interact and regulate per-
oxisomes based on these gene deletion microarrays. See
Supplementary Data S5 for an annotated Cytoscape visu-
alization and Supplementary Data S8 for a file containing
all regulatory relationships.

Classifier stability across multiple data sets

To test different aspects of classifier stability, we trained
Inferelator on 16 different data/parameter sets and
cMonkey on 4 (Supplementary Data S1). By aggregating
the ranked predictions across all 64 combinations, we
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determined that the five factors selected by our model were
consistently selected across all models: Mbrlp, Cat8p,
Hap4p, Gal3p and Spsl8p are ranked 1st, 2nd, 4th, 6th,
and 11th, respectively. These experiments also reveal the
relative contributions of the compendium and oleate-
specific data. In particular, the compendium data alone
did not have the signals to identify Spsl18p, while the
Oleate-specific did not identify Hap4p. Had we
combined the compendium and oleate-specific data
before building the linear model, the top five factors

would have been the same as the compendium data but
with Pip2p (a known peroxisome regulator) substituted
for Gal3p. If we had trained on all available ~3000
publically available experiments, Imelp and Sip4p would
have been in the top five along with Cat8p, Mbrlp
and Pip2p (lists of selected peroxisome regulators for dif-
ferent combination of data sets are included with the
software package). Thus we demonstrate the overall sta-
bility of our approach regardless of minor variations in
the method.
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Comparison with previous methods

Since the original cMonkey/Inferelator-based EGRIN
(25,26), the gene regulatory network prediction commu-
nity has tended to focus on gene-level rather than cluster-
level predictions (64). To test if aggregating predicted gene
regulation across biclusters improves the ability of the
classifier to correctly predict gene targets, we used the
gene deletion experiments to evaluate the models
generated by Inferelator. We aggregated the 16
Inferelator runs through the four different cMonkey
cluster sets to determine if the classifier is better at iden-
tifying genes that will significantly change in expression
when the regulator is deleted, or clusters that will be
enriched for genes that will significantly change in expres-
sion when the regulator is deleted. We evaluated these 16
gene level predictions and 64 cluster level predictions using
the MCC, F1 and area under the ROC curve metrics (65).
As shown in Table 3, the cluster-level predictions scored
significantly better (P < 2 x 1077) across all three metrics.
Similarly, we tested to see if the aggregate predictions were
better than inferred regulation based on the mean cluster
signal (as was done in the original EGRIN, i.e. the Old
Cluster method). We trained seven different data sets
generated from combinations of the 1516 experiment com-
pendium data set (49), the 70-experiment oleate-specific
data set, and a new data set containing all experiments
taken from GEO (Supplementary Table S1) on mean ex-
pression levels for clusters in the four different cMonkey
cluster sets. As shown in Table 3, the aggregate cluster
predictions also scored significantly better than the old
style mean cluster predictions (P < 6 x 10™%) across all
three metrics.

Comparison with other methods

Our method uses evidence of indirect regulation to
identify novel regulators to test for evidence of direct regu-
lation. For comparison, we identified two tools that

combine mRNA expression data with existing interaction
data to infer direct regulation without intermediate steps.
Specifically, MEDUSA (9,66) and PMN (10) infer regula-
tory networks by correlating mRNA profiles to known or
putative protein-DNA or protein—protein interactions
(more details about MEDUSA and PMN are available
in Supplementary Data S2 and S3). Because these algo-
rithms were relatively slow and memory intensive, we
limited the training set to the 70-experiment yeast-in-
oleate data. As these algorithms build on evidence for
direct regulation and work best with dramatic changes
(such as from systematic deletion assays), they made few
accurate predictions of TFs responsible for oleate-induced
transcriptional changes. Of the five TFs highlighted in this
study, MEDUSA only made predictions for Cat8p,
Hap4p and Spsl8p, and only those predictions for
Hap4p were significantly correlated with the gene
deletion experiments. Importantly, none of the five
factors were predicted to regulate a statistically significant
number of peroxisome annotated genes (P < 0.05). PMN
did not make any predictions on the five TFs. For com-
parison, as shown in Supplementary Data S4, we ran
Inferelator on the same data. It made significantly
correlated predictions for all five factors, and predicted
all but Hapd4p to regulate a statistically significant
number of peroxisome-annotated genes.

DISCUSSION

Systems biology allows the construction of comprehen-
sive, predictive regulatory networks. However, there are
an infinite number of possible cellular conditions and typ-
ically large-scale gene regulatory network inference
approaches fail to reveal direct, dynamic and actionable
mechanisms underlying cellular regulatory responses.
Here, we present a rational approach for using extant
data to generate a comprehensive gene regulatory
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Table 3. Cluster level aggregation improves common machine learning metrics

Metric Cluster Gene Gene P-values Old cluster Old cluster P-values
MCC 0.14 0.06 <3x107% 0.06 <2x 10712
F1 0.18 0.12 <2x 107 0.14 <6x107%
Area under curve 0.57 0.52 <5%x 107 0.53 <2x107%

P-values are calculated by using a Mann—Whitney test comparing the 16 ‘Gene’-level predictions and 28 ‘Old Cluster’-level predictions with 64
‘Cluster’-level predictions. ‘MCC’ refers to a Matthews Correlation Coefficient, ‘F1’ to the F1 score and ‘Area under curve’ refers to the area under

the receiver operating characteristic (ROC) curve.

network model of relatively low granularity, which is used
to guide prediction and further experimentation that itera-
tively improves the model. Importantly these experiments
not only inform the specific mechanisms under focus, but
also improve the predictive value of the global model and
inform cellular responses to other perturbations. This was
accomplished by building upon methods originally de-
veloped for relatively simple prokaryotes (archaca)
applying them to the eukaryote, yeast.

During this study we, observed a complementarity
between the regulatory network build from compendium
data and the network build from condition-specific data.
In particular the condition-specific data did not identify
Hap4p as a regulator of peroxisomes and the compendium
data did not identify Spsl18p, even though both factors
were later confirmed by targeted experiments. We hy-
pothesize that Sps18p’s activity is peculiar to the oleate
response and thus not included in any anticipatory re-
sponses found in the compendium data set. Conversely,
we hypothesize that Hap4 is part of a more general high-
level response that only becomes prominent when
comparing peroxisome gene response across multiple con-
ditions. We propose that this work combining
compendium with condition-specific data establishes a
foundation for researchers to, with greater predictive
accuracy, explore regulatory networks specific to their
areas of interest. In our specific interest, peroxisome bio-
genesis, the network correctly predicted several factors
that influence the expression of peroxisome-related
genes. It led to new players and new dynamic interactions
that expand our knowledge of peroxisome-related gene
induction. This analysis provides a basis for kinetic
modeling and new hypotheses of the dynamic interplay
controlling the cellular response. Thus we demonstrate
that the regulatory hypotheses provided by a eukaryotic
EGRIN can provide valuable guidance for biological
experimentation and for discovering novel direct
regulatory influences critical for rational intervention
into cellular networks.

It is important to emphasize that there was sufficient
information in the publically available experimental data
set to predict condition-specific regulation under condi-
tions not intentionally explored when that data was
generated. Predictability under these conditions is likely
due to coupled or anticipatory behavior of cellular regu-
latory networks, and this is a significant advantage for
systems biology. Often condition-specific data are difficult
to obtain, for example, in the case of a pathogen within its
(human) host. In such a case, as we show here for the

response to oleate, we would predict that compendium
data would make it possible to generate a sufficiently
accurate host (and pathogen) regulatory response model
that would require relatively few follow-up experiments to
elucidate specific mechanisms of regulation. Furthermore,
the methods outlined here could, in principle, have been
performed using any number of clustering and regulatory
inference software packages (64,67). Thus, these methods
represent an important practical advance in applying
computer models to improve the pace of experimental
biology.

MBR1 and GALS3 activity reverse of predicted

As shown in Figure 5, the EGRIN predictions for Mbrlp
and Gal3p were significantly anti-correlated with the
behavior revealed by the mbrl and gal3 microarray
deletion. However, Mbrlp and Gal3p and levels are
correlated  with the target gene POTI1 (See
Supplementary Figure S1). Therefore the predictions are
consistent with microarray time course data, and the
target genes are well identified; however, these TFs are
incorrectly identified as activators when they are really
repressors. We suspect this is due to feedback inhibition
in the yeast regulatory networks, and such regulation
would be difficult to properly detect using the existing
Inferelator framework. As ~66% of the regulation pre-
dicted by Inferelator on our data is activation, we
suspect this is a widespread problem. One solution may
be use existing information about whether a TF is a
known activator or repressor to improve the predictions.

Expansion from the core regulatory network model of
oleate-induced peroxisome protein expression

In S. cerevisiae, peroxisomes are induced in response to
oleic acid, and the transcription of many peroxisomal
proteins is controlled by oleate response elements, which
are recognized by the fatty acid-bound heterodimer Oafl-
Pip2. This heterodimer operates within the context of a
feed-forward transcriptional network involving four core
TFs: Adrlp, Oaflp, Pip2p and Oaf3p (AOPY).
Constitutively expressed Oaflp forms a heterodimer with
Pip2p, which feeds back on the expression of Pip2p in an
ASymmetric  Self-Up-REgulating (ASSURE) motif
(18,68—70). PIP2 and genes encoding many oleate-respon-
sive peroxisomal proteins are also induced by Adrlp, thus
forming a coherent type 1 (71) feed-forward loop (FFL)
(18,72,73). Oaf3p drives a coherent type 2 (71) FFL
modulating expression of oleate-responsive genes (18).
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Figure 7. Model of possible Hap4-dependent phosphorylation in oleate. (A) The four regulators surrounded by the dotted red line were identified by
the yeast EGRIN in Level 2 as shown in Table 2. The four regulators surrounded by the dotted black line are the well-studied AOPY peroxisome
regulatory motif (18,73). The microscopy phenotypes are peroxisome growth observation taken from (17) and (75). The interactions between Snfl
and Gel7, which promote phosphorylation of Adrl and induction of peroxisomal genes through the AOPY motif, are discussed in (76,77) and are
indicated by the starred green circle. The feedback is discussed in the text. (B) The evidence for the Hap4p and Cat8p regulation. Motif, ChIP-chip
and Shatter show estimated P-values as detailed. P < 0.05 may be considered strong evidence, 0.05 < P < 1.00 may be considered weak evidence and
P =1 are labeled ‘—’and are considered no evidence. The A Log2 Ratio is the change in log, expression ratio versus wild type at the appropriate
time point when CATS8 or HAP4 is deleted. (C) Shows the log, expression ratios versus LS wild type in oleate induction batch culture experiments.

The behavior of this network has been extensively
modeled (73,74), but this network operates in the
context of the larger genome. The EGRIN-based model
enables expansion of the regulatory network from the core
toward the entirety of the regulatory dynamics. However,
as shown in Figure 4, the yeast EGRIN misidentifies
Oaf3p as an activator of PIP2, pointing to the necessity
of detailed follow-up experiments to determine specific
regulatory mechanisms. Figure 7 shows a model
(inspired by Table 2 and other evidence taken from the
literature) ripe for such additional experimentation.

In addition to the known AOPY activity, this study
revealed peroxisomal regulation by five TFs: Cat8p,
Mbrlp, Gal3p, Spsl8p and Hap4p. By considering the
targets of these TFs that were reinforced by at least two
complementary and reliable streams of evidence, we were
able to determine that these TFs regulate 69 of 87 genes
encoding for peroxisome or peroxisome organization—
annotated proteins (Supplementary Table S8). Perhaps
more interestingly, we found evidence that Hap4p
regulated AOPY through a method other than just
direct transcriptional regulation. Adrlp is a major com-
ponent of the AOPY motif, and its activity is regulated

through phosphorylation. However, the mechanism of its
phosphorylation is not entirely understood (76,77). We
were able to combine our EGRIN with previously uncon-
nected phenomena appearing in the literature to shed light
on the phosphorylation of Adrlp.

Thus, we propose additional activities for Hap4p. Based
on our gene deletion and ChIP-chip experiments, we
propose that Hap4p regulates the expression of two of
the genes encoding ‘kinome’ proteins presented in
Table 2: Sip2p and Pcl7p. This is particularly interesting,
as these ‘kinome’ proteins are known to regulate Adrlp, as
described below. As shown in Figure 7A, Sip2p is a beta
subunit of the Snflp kinase complex, a known regulator of
both Cat8p and Adrlp by phosphorylation in response to
glucose depletion. Cat8p is directly phosphorylated by
Snflp, but Adrlp is activated by Snflp-dependent
dephosphorylation at Ser-230 (76,77). Pcl7p is one of the
subunits for the PHOSS5 kinase complex and one of two
(along with Pcl6p) that are the usual activators of Glc8p
(Pcl8p and 10 p are less frequent activators). Glc8p, along
with Reglp, is a member of the Glc7p phosphatase
complex. The specific evidence for Hap4p and Cat8p regu-
lation is shown in Figure 7B and C. The Ser-230
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dephosphorylation of Adrlp (marked in the center of
Figure 7A with an asterisk surrounded by a green and
orange circle) is not entirely understood; however, it
does involve interaction between Snflp and the Glc7p
phosphatase complex (78-80).

Integration with additional experiments

Included in Figure 7A are phenotypes revealed by
confocal fluorescence microscopy designed to assess per-
oxisome morphology in a battery of yeast mutants (75).
Confocal fluorescence microscopy assays revealed no
abnormal peroxisomal phenotype when cat8 or hap4 was
deleted; however, these experiments examined a late time
point, after a compensatory mechanism might have been
engaged. Analysis of Adrlp targets revealed that Adrlp
regulates PHOS8, PHOS85 (and PCLS), as well as CATS,
possibly pointing to a feedback mechanism whereby
Adrlp in turn regulates CATS8. While abnormal peroxi-
somes have not been observed for cat8, hap4 or spsi§
deletions, they have been for several ‘kinome’ genes in
Table 2 (17,80). The two genes encoding kinases (SNF1
and PHOB85) are known to have major effects on peroxi-
some biogenesis. Abnormal peroxisomal phenotypes are
particularly pronounced in deletions of genes downstream
of and including pc/7. This is especially significant as few
related factors that were tested by confocal microscopy
have phenotypes (P < 8 x 107°).

CONCLUSION

Systems biology promises to broaden and deepen our
understanding of complex biological phenomena
through the analysis of high-throughput data integrated
with existing scientific knowledge. It provides models of
biological activity for specialists, such as molecular biolo-
gists, to test with detailed experiments. Here we demon-
strate that global compendium data compiled from public
databases can be used to construct a network that cor-
rectly predicts gene expression under novel conditions by
spanning the hierarchy of regulation—from signaling
to transcription. The integrated network perspective
provides a road map to traverse the multiple scales
within this hierarchy and addresses a major challenge in
systems biology that is critical to understanding regula-
tion. The specific framework we developed for this study
is modular in terms of the specific algorithms that can be
deployed and extensible in terms of the data types that can
be analysed. These results establish a condition-specific
oleic acid network that makes numerous predictions for
experimentation to further our understanding of peroxi-
some regulation. The globally predictive aspect of our
yeast EGRIN should be helpful to anyone studying
yeast regulation, but most importantly, we have
demonstrated a general framework applicable to other or-
ganisms and other data types—making it possible to apply
EGRINSs to ever more important biomedical challenges.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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