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Abstract

Due to the important role of arbuscular mycorrhizal fungi (AMF) in ecosystem functioning, determination of the effect of
management practices on the AMF diversity in agricultural soils is essential for the sustainability of these agro-ecosystems.
The objective of this study was to compare the AMF diversity in Prunus persica roots under two types of fertilisation
(inorganic, with or without manure) combined with integrated or chemical pest management in a Venezuelan agro-
ecosystem. The AM fungal small-subunit (SSU) rRNA genes were subjected to PCR, cloning, sequencing and phylogenetic
analyses. Twenty-one different phylotypes were identified: 15 belonged to the genus Glomus, one to Claroideoglomus, two
to Paraglomus, one to Acaulospora, one to Scutellospora and one to Archaeospora. The distribution of the AMF community
composition differed as a consequence of the treatment effects. The treatment combining organic and inorganic
fertilisation with chemical pest control had the highest AMF richness and the treatment combining inorganic fertilisation
with chemical pest had the lowest. The real causes and effects of these differences in the AMF community are very difficult
to establish, since the crop management regimes tested were composed of several interacting factors. In conclusion, the
crop management practices can exert a significant influence on the populations of AMF. The treatment combining organic
and inorganic fertilisation with chemical pest control appears to be the most suitable agricultural management strategy
with respect to improving the AMF diversity in this crop under tropical conditions, and thus for maintaining the agricultural
and environmental sustainability of this agro-ecosystem.
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Introduction

The soil is a complex matrix containing microorganisms that

play a key role in the functioning of terrestrial ecosystems. They

mediate many processes, including nutrient cycles, organic matter

decomposition, soil aggregate formation and plant performance.

Arbuscular mycorrhizal fungi (AMF) are among the most-

important soil microorganisms, being obligate symbionts in the

roots of most land plants in both natural and agricultural

ecosystems, where they increase plant uptake of mineral nutrients,

especially phosphorus [1]. Other beneficial effects of AMF are

plant growth promotion [2], increased tolerance of drought [3],

heavy metals [4] and plant protection agents [5]. In fact, in a

previous study carried out at the site that is also the subject of the

current work [6], it was found that galls produced in Prunus persica

roots due to infection with Meloidogyne incognita were extensively

colonized by AMF, whose function might be to act as protection

agents against opportunistic pathogens. Furthermore, the diversity

of AMF influences a number of important ecosystem processes,

including plant productivity, plant diversity and soil structure

[7,8,9].

Due to the important role of AMF in ecosystem functioning,

knowledge of the diversity of the AMF colonising the roots of crop

plants in agricultural soils is essential for sustainable management

of these agro-ecosystems. Fertilisation is a common practice used

to increase the nutrient availability to crops and hence their yields.

Studies carried out in recent years have considered the effect of

different fertilisation treatments and cropping systems on AMF

diversity. Thus, a general decrease in AMF diversity has been

found with the use of mineral fertilisers [10,11,12,13,14], although

not in all cases [15]. Others studies showed that fertilisation with

manures stimulated the AMF populations [13,16,17], but studies

on the species composition of the AMF community colonising crop

roots in response to other management practices are scarce

[18,19,20,21].

Prunus persica (L.) Batsch. (peach) is a fruit tree, native to Asia,

introduced into Venezuela. Peach production in Venezuela is an

activity that generates steady employment and is aimed primarily

at the domestic market [22]. At present, there are 2,500 hectares

that can produce more than 15,000 metric tons of fruit. Peach

production in Venezuela is a cropping system in which fertilisers
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and pest control are combined in order to maximise yields while

maintaining a suitable soil nutrient content.

Due to the economic importance of this fruit crop, the

elucidation of whether there is a fertiliser/pest management

combination that can maintain or increase the AMF diversity

colonising the roots is an important step towards sustainable soil

use and therefore protection of biodiversity. Therefore, the

objective of this study was to compare the AMF diversity in P.

persica roots under two fertilisation treatments (inorganic, with or

without manure) combined with integrated or chemical pest

management.

Materials and Methods

Ethics Statement
No specific permits were required for the described field studies

since these locations are not privately-owned or protected in any

way. Field studies did not involve endangered or protected species.

Study site and Sampling
The study was conducted in a P. persica orchard located at the

‘‘Colonia Tovar’’ Aragua State, in the north of Venezuela (latitude

10u 29’ N, longitude 67u 07’ W, 1790 msl). The climate is tropical

temperate (mean annual temperature of 16.8 uC, annual average

rainfall of 1271 mm). The soil was classified as a sandy loam

Inceptisol [23]. The soil characteristics were: pH of 5.18, 5.75%

clay, 40.5% silt, 53.75% sand, 6.46 cmol kg21 of cationic

exchange capacity, Total N 2.7 g kg21, Available P 32 mg g21,

5.9% organic matter and bulk density 1.29 g cm23

The plants used in this survey were 13-year old peach (Prunus

persica (L). Batsch cv. Criollo Amarillo). The experimental

sampling was a randomised block design with two factors and

four replication blocks (100 m2 each) in an experimental area of

approximately 1000 m2. The first factor consisted of two types of

fertilization and the second factor was two different procedures of

pest control. Four treatments were established in the sampling

design. The treatments were selected in order to provide more

sustainable practices to producers, since the regular management

practices are limited to exclusively use of inorganic fertilization

and an excessive use of pesticides

T1: Combination of organic and inorganic fertilization

(ComFert) and integrated pest management (IntM).

T2: Inorganic fertilization (InorgFert) and integrated pest

management (IntM).

T3: Inorganic fertilization (InorgFert) and chemical pest control

(ChemM).

T4: Combination of organic and inorganic fertilization

(ComFert) and chemical pest control (ChemM).

-ComFert consisted of application of chicken manure (1400 kg

ha21), urea (140 kg ha21), complex fertilizer (NPK) 12-12-17

(280 kg ha21), and potassium sulfate (40 kg ha21).

-InorgFert consisted of application of urea (140 kg ha21),

complex fertilizer (NPK) 12-12-17 (400 kg ha21) and potassium

sulfate (70 kgha21).

-IntM consisted of weekly applications of Beauveria bassiana

(300 g spores ha21) for one month, subsequently weekly applica-

tions for two months of Trichoderma harzianum (300 g spores ha21)

and lastly applications every 15 days for two more months of

Trichoderma harzianum (300 g spores ha21). We applied these

products as biocontrol agents against fungal diseases.

-ChemM consisted of applications of different chemicals from

the beginning of flowering aimed at insect pests control and

subsequently the incidence of foliar diseases. Thus, weekly

applications for six weeks of Profenofos 0.6 kg a.i. ha21 (Curacron

H) + Mancozeb 8 kg i.a. ha21 (Dithane H) were made. For control

of Oidium leucoconium, was applied twice the mixture Urea 10 kg

ha21 + Flusilazol 0.4 kg a.i. ha21 (Punch H) + Mancozeb 4 kg a.i.

ha21 (Dithane H), then weekly applications of Mancozeb 4 kg a.i.

ha21 (Dithane H) + Profenofos 0.6 kg a.i. ha21 (Curacron H) +
Endosulfuran 2.8 kg a.i. ha21 (Thionil). For control of Monilia

cinerea were performed four weekly applications of Carbendazin

2 kg a.i. ha21 (Bavistin H).

The treatments were applied for one year and sampling was

conducted after fruit harvest (February 2011). Four plants (one per

block) of each treatment were sampled providing 16 samples in

total. The roots were sampled using three soil cores from three

points/single tree/block.

Root DNA extraction and PCR
All PCR experiments were run using DNA preparations

consisting of pooled roots of individual plants. DNA extractions

from 16 root samples were carried out.

For each sample (total 16), total DNA was extracted from (0.1 g)

fine root material using a DNeasy plant mini Kit following the

manufacturer’s recommendations (Qiagen). The roots samples

were placed into a 2-ml screw-cap propylene tube together with

two tungsten carbide balls (3 mm) and beaten (3 min, 13000

r.p.m.) using a mixer mill (MM 400, Retsch, Haan, Germany).

The extracted DNA was resuspended in 20 ml of water. Several

dilutions of extracted DNA (1/10, 1/50, 1/100) were prepared

and 2 ml were used as template. Partial small-subunit (SSU)

ribosomal RNA gene fragments were amplified using nested PCR

with the universal eukaryotic primers NS1 and NS4 [24]. PCR

was carried out in a final volume of 25 ml using the ‘‘ready to go’’

PCR beads (Amersham Pharmacia Biotech, Piscataway, N.J.),

0.2 mM dNTPs and 0.5 mM of each primer (PCR conditions: 94

uC for 3 min, then 30 cycles at 94 uC for 30 s, 40 uC for 1 min, 72

uC for 1 min, followed by a final extension period at 72 uC for 10

min). Two ml of several dilutions (1/10, 1/20, 1/50 and 1/100)

from the first PCR were used as template DNA in a second PCR

reaction performed using the specific primers AML1 and AML2

[44]. PCR reactions were carried out in a final volume of 25 ml

using the ‘‘ready to go’’ PCR beads (Amersham Pharmacia

Biotech, Piscataway, N.J.), 0.2 mM dNTPs and 0.5 mM of each

primer (PCR conditions: 94 uC for 3 min, then 30 cycles of 1 min

denaturation at 94 uC, 1 min primer annealing at 50 uC and 1 min

extension at 72 uC, followed by a final extension period of 10 min

at 72 uC). Positive and negative controls using PCR positive

products and sterile water respectively were also included in all

amplifications. All the PCR reactions were run on a Perkin Elmer

Cetus DNA Thermal Cycler. Reactions yields were estimated by

using a 1.2% agarose gel containing GelRedTM (Biotium).

Cloning and sequencing
The PCR products were purified using a Gel extraction Kit

(Qiagen) cloned into pGEM-T Easy (Promega) and transformed

into Escherichia coli (XL2-Blue). Thirty two positive transformants

were screened in each resulting SSU rRNA gene library, using 0.8

units of RedTaq DNA polymerase (Sigma) and a re-amplification

with AML1 and AML2 primers with the same conditions

described above. Product quality and size were checked in agarose

gels as described above. All clones having inserts of the correct size

in each library were sequenced.

Clones were grown in liquid culture and the plasmid extracted

using the QIAprep Spin Miniprep Kit (Qiagen). The sequencing

was done by Laboratory of Sistemas Genómicos (Valencia, Spain)

using the universal primers SP6 and T7. Sequence editing was

done using the program Sequencher version 4.1.4 (Gene Codes
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Corporation). Unique sequences of the clones generated in this

study have been deposited at the National Centre for Biotechnol-

ogy Information (NCBI) GenBank (http://www.ncbi.nlm.nih.gov)

under the accession numbers HE613450 to HE613504.

Phylogenetical analysis
Sequence similarities were determined using the Basic Local

Alignment Search Tool (BLASTn) sequence similarity search tool

[25] provided by GenBank.

Phylogenetic analysis was carried out on the sequences obtained

in this study and those corresponding to the closest matches from

GenBank as well as sequences from cultured AMF taxa including

representatives of the major taxonomical groups described by

Schüßler et al. [26]. Sequences were aligned using the program

ClustalX [27] and the alignment was adjusted manually in

GeneDoc [28]. Neighbour-joining (NJ) [29] and maximum

likelihood (ML) phylogenetic analyses were performed with the

programs PAUP4.08b [30] and RAxML v.7.0.4 [31], respectively.

The evolutionary distances for the NJ tree were computed using

the maximum composite likelihood method with 1000 bootstrap

replicates. For the ML analysis, a GTR-GAMMA model of

evolution was used. The ML bootstrap values were calculated with

1000 replicates using the same substitution model. Endogone

pisiformis Link and Mortierella polycephala Coem, were used as the

out-groups.

Statistical analysis
Treatments effects on the number of phylotypes per root sample

were compared using analysis of variance and comparisons among

means were made using the Duncan’s test calculated at P,0.05.

The effect of two factors: types of fertilizer and pest management

on AMF community composition were tested using a two-way

analysis of variance, The statistical procedures were carried out

with the software package SPSS 19.0 for Windows.

Canonical-correspondence analysis (CCA) with the relative

abundance of clones per AMF sequence types found in P. persica

roots under different treatments was performed. The results were

summarized in an ordination diagram conducted in CANOCO

for Windows v. 4.5 [32]. CCA is a multivariate statistical method

that allows comparisons of AM fungal community compositions

between four treatments.

The Shannon-Weaver (H’) index was calculated as an

additional measure of diversity, as it combines two components

of diversity, i.e., species richness and evenness. It is calculated from

Figure 1. Phylogenetic tree of AMF sequences isolated from the Prunus persica roots under different treatments (T1: Combination of
organic and inorganic fertilization and integrated pest management; T2: Inorganic fertilization and integrated pest management;
T3: Inorganic fertilization and chemical pest control; T4: Combination of organic and inorganic fertilization and chemical pest
control), reference sequences corresponding to the closest matches from GeneBank as well as sequences from cultured AMF taxa
including representatives of the major taxonomical groups. Numbers above branches indicate the bootstrap values determined for
Neighbour-Joining (NJ) analysis; bold numbers below branches indicate the bootstrap values of the maximum likelihood analysis. Sequences are
labelled with the number of treatment from which they were obtained (T1, T2, T3, T4) and the clone identity number, Group identifiers (for example
Glo 1) are AM fungal sequences types found in our study. Since identical sequences were detected, the clones producing the same sequence for each
treatment were represented once in the alignment for clarity (Table S1 in File S1 material show a detailed description of the total number of clones of
each AMF phylotype that were recovered from each treatment).
doi:10.1371/journal.pone.0088454.g001

Figure 2. Sampling effort curves for Prunus persica roots under different treatments analysed. T1: Combination of organic and inorganic
fertilization and integrated pest management; T2: Inorganic fertilization and integrated pest management; T3: Inorganic fertilization and chemical
pest control; T4: Combination of organic and inorganic fertilization and chemical pest control. The number of clones for each AMF phylotypes in each
root sample was used to construct the sampling effort curves (with 95% confidence intervals) using the software EstimateS 8.00 (Colwell, [33]). The
sample order was randomized by 100 replications.
doi:10.1371/journal.pone.0088454.g002
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the equation H’ = 2 gpi(ln pi), where pi is the proportion of

individuals found in the ith species (in a sample, the true value of pi

is unknown but is estimated as ni/N, [here and throughout, ni is the

number of individuals in the ith species; N is the total number of

individuals of all species]).

The number of clones for each AMF phylotypes in each soil

sample was used to construct the sampling effort curves (with 95%

confidence intervals) using the software EstimateS 8.00 [33]. The

sample order was randomized by 100 replications.

Results

Sequence identity and phylogenetic analysis
In our study, 16 root samples (four repetitions per treatment)

that were subjected to DNA extraction produced clonable PCR

products of the expected size (about 795 bp). Overall, 512 clones

from 16 clone libraries were screened by PCR; out of these, 449

contained the small-subunit rRNA gene fragment and an average

of 15 clones per root sample were sequenced (in total, 242

sequences). According to the BLAST search in GenBank,

sequences with a high degree of similarity (98299%) to taxa

belonging to the phylum Glomeromycota were produced by 227

clones. The remaining 15 clones produced incomplete sequences.

The 227 sequences were grouped in 21 different AMF sequence

types or phylotypes, with sequence similarities varying from 97 to

100% and bootstrap values $ 80% (Fig. 1). These phylotypes were

grouped in five families: the Glomeraceae, Paraglomeraceae,

Acaulosporaceae, Gigasporaceae and Archaeosporaceae. Sixteen

of these sequence groups belonged to the genus Glomus, two to the

genus Paraglomus, one to the genus Acaulospora, one to the genus

Scutellospora and one to the genus Archaeospora.

For the number of clones sequenced, the sampling effort curves

showed a decreasing rate of accumulation of phylotypes, reaching

the asymptote (Fig. 2). This pattern indicates that the clones

analysed covered the AMF diversity colonising the P. persica roots

under the four treatments. Therefore, no more clones were

sequenced.

Nine phylotypes corresponded to morphologically-defined

species: six were related to sequences from single, morphological-

ly-described species (Para 1 to Paraglomus laccatum, Glo 5 to

Sclerocystis sinuosa, Glo 8 to Glomus iranicum, Glo G12 to Glomus

indicum, Glo 14 to Funneliformis mosseae and Arch 1 to Archaeospora

trappei) and three were related to sequences belonging to two or

three different, morphologically-described species (Glo 3 was

related to a species group including Rhizophagus intraradices/

irregularis/fasciculatus, Aca 1 to an Acaulospora cavernata/laevis group

and Scu 1 to a Scutellospora cerradensis/reticulata group). Eight

phylotypes were related to uncultured glomalean species that have

not been characterised morphologically (Glo 1, Glo 4, Glo 6, Glo

7, Glo 9, Glo 11, Glo 13 and Glo 16) and the remaining four

phylotypes were not related to any sequences of AMF in the

database (Glo 2, Glo 10, Glo 15 and Para 2) (Fig. 1).

The AMF community composition

There were significant differences in the AMF taxon richness.

The ComFert+ChemM treatment harboured the highest mean

number of AMF phylotypes per root sample (8.00), which was

significantly different from the value for the InorgFert+ChemM

treatment (4.25) according to Duncans multiple-comparison test.

The mean number of AMF phylotypes detected in the tree roots

receiving the ComFert+IntM or InorgFert+IntM treatments was

the same (5.75 ) and no significant differences between these and

either of the treatments mentioned above were found.

The factorial analysis showed that both factors: fertilization and

pest management had a significant effect on the AMF community

composition (p = 0.002, F = 9.734 and p = 0.007, F = 7.412,

respectively) The interaction between these factors was not

significant (p = 0.906, F = 0.014).

The AMF communities of tree roots in the InorgFert+ChemM

treatment had the lowest diversity (H = 1.78), with the lowest total

number of AMF sequence types (9). The trees from the ComFert+
IntM and InorgFert+IntM treatments had similar AMF diversity

(H<2.0), while the treatment ComFert+ChemM yielded the

highest number of different AMF sequence types (17) and showed

the highest diversity index (H = 2.69). In the CCA diagram (Fig. 3),

the different distributions of the AMF phylotypes, as a conse-

quence of the treatments, can be observed. The symbols

representing different treatments are distant to each other, which

demonstrates that the treatments had a significant effect on the

AMF community composition, with the different treatments

hosting distinct phylotypes. This diagram also shows the AMF

phylotypes found exclusively in each treatment.

Discussion

In this study we compared the diversity of AMF in Prunus persica

roots under two types of fertilisation (inorganic, with or without

manure) combined with integrated or chemical pest management

in a tropical agro-ecosystem.

It is worth noting the high number of phylotypes found in this

study (twenty-one) in comparison with other studies carried out

also in agricultural soils. Daniell et al. [34] and Helgason et al. [35]

found 10 phylotypes in arable soils around North Yorkshire, U.K.

Toljander et al. [36] found eight phylotypes, all belonging to the

Figure 3. Canonical Correspondence analysis (CCA) of the AM
fungal community composition found in the roots of P. persica
under different treatments (T1: Combination of organic and
inorganic fertilization and integrated pest management; T2:
Inorganic fertilization and integrated pest management; T3:
Inorganic fertilization and chemical pest control; T4: Combi-
nation of organic and inorganic fertilization and chemical pest
control). Full triangles represent the treatments and the open triangles
the AMF phylotypes. Open circles represent the AMF phylotypes
exclusively found in individual treatments.
doi:10.1371/journal.pone.0088454.g003
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genus Glomus, in a field experiment using different organic and

mineral fertilisers, while Hijri et al. [37] found 10 phylotypes in a

conventional maize field in Germany. Also Verbruggen et al. [38]

found that arbuscular mycorrhizal fungi richness varied from one

to 11 phylotypes among organically and conventionally managed

fields in the Netherlands. Alguacil et al. [39] found nine phylotypes

in a study carried out in tropical savanna soils planted with

leguminous forage under different doses of phosphorus fertiliser.

We observed different AMF community composition between

treatments. Some studies have pointed out that soil physical-

chemical properties, such as pH and nutrient content, are the

factors influencing the structure of AMF communities in

agricultural systems [17,36,40,41,42,43,44]. In our study, we did

not find significant differences in soil characteristics among

treatments (Table S2 in File S1), so the observed differences in

the number of AMF phylotypes or AMF richness can be attributed

to the different treatments applied. It has been reported that the

AMF diversity is higher in soils amended with different organic

substrates (or that the AMF diversity increases in organically-

managed soils) [13,17,36,45,46]. Moreover, the addition of

chemical pest-control products could have prevented the coloni-

sation by non-AM fungi inside the roots, favouring the most-

tolerant AMF species.

In contrast to some studies which indicated that species of the

Paraglomeraceae appear to be rare or poor in agricultural soils

[37,47,48], we found that Para 1 was one of the most-abundant

groups in our study (12.8% of the AMF clones analysed), together

with Glo 1 (15.9%) and Glo 3 (17.6%) (Table 1); Glo 6 and Glo 15

were found in all treatments, but their occurrence frequency was

low (,6.2% of clones). The presence of the genus Paraglomus has

been observed also in other agricultural management studies using

group-specific primers [37,49] or the same pair of primers as

ourselves [50]. In the case of Glo 3 (related to the R. intraradices/

irregularis species complex group), our results are in accordance

with several studies carried out in agricultural soils where this

AMF taxon showed the highest representation in the clone

libraries [36,37,50,51,52]. On the other hand, this species also

showed the highest abundance of clones in P. persica roots when

integrated pest management treatments (ComFert+IntM and

InorgFert+IntM ) were applied (Table 1). Several studies have

shown that the presence of Trichoderma harzianum significantly

increases root colonisation by Rhizophagus intraradices in melon

crops [53,54], R. intraradices being the only taxon that increased the

T. harzianum populations [53]. Therefore, a synergistic relationship

between T. harzianum and R. intraradices could have existed in P.

persica roots under the ComFert+IntM and InorgFert+IntM

treatments, increasing their respective abundances.

Interestingly, in contrast to Lee et al. [55] who reported that the

AML1/AML2 primer pairs do not amplify sequences belonging to

the family Archaeosporaceae, we detected the Arch 1 phylotype,

which showed 99% homology with sequences related to Archae-

ospora trappei.

There were phylotypes that occurred exclusively in some

treatments; for example, Glo 2, Glo 5, Glo 16, Aca 1, Scu 1

and Arch 1 seemed to be specific for trees treated with ComFert+
ChemM. The low abundance and specificity found for these

Table 1. Relative abundance of the different AMF sequence types observed in Prunus persica roots under the different treatments
analysed.

Treatments

Phylotypes ComFert+IntM (n = 60) InorgFert+IntM(n = 55) InorgFert+ChemM (n = 49) ComFert+ChemM (n = 63)

Para 1 13.3 14.6 12.2 11.1

Para 2 3.3 0 4.1 3.2

Glo1 23.3 10.9 8.2 19.1

Glo2 0 0 0 3.2

Glo3 26.7 25.5 16.3 3.2

Glo4 3.3 0 0 0

Glo5 0 0 0 4.8

Glo6 8.3 5.5 6.1 4.8

Glo7 10.0 0 28.6 3.2

Glo8 0 3.6 0 0

Glo9 3.3 0 0 3.2

Glo10 0 9.1 4.1 0

Glo11 0 10.9 0 0

Glo12 0 3.6 16.3 11.1

Glo13 5.0 9.1 0 7.9

Glo14 0 3.6 0 3.2

Glo15 3.3 3.6 4.1 9.5

Glo16 0 0 0 3.2

Aca 1 0 0 0 3.2

Scu 1 0 0 0 3.2

Arch 1 0 0 0 3.2

ComFert: Combination of organic and inorganic fertilization; IntM: Integrated pest management; InorgFert: Inorganic fertilization; ChemM: Chemical pest control.
doi:10.1371/journal.pone.0088454.t001
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phylotypes could be attributable to different colonisation strategies

by these different phylogenetic groups. For example, it has been

reported that mycelia of Acaulospora species have low root and soil

colonisation levels [56]

Phylotypes Glo 8 and Glo 11 only appeared in the roots of trees

receiving the InorgFert+IntM treatment and Glo 4 occurred

exclusively with the ComFert+IntM treatment. The remaining

phylotypes did not have a clear distribution, occurring haphaz-

ardly in two or three treatments, as in the case of Glo 14, related to

sequences belonging to Funneliformis mosseae. Although in our study

this phylotype was of low abundance (6.81%), this taxon appears

to be one of the most-typical and dominant taxa in many

agricultural fields [34,35,37,47,57]. Together with R. intraradices,

these taxa are sometimes called the ‘‘typical AMF of arable lands’’

[47].

Conclusions

The real causes and effects of these differences in the AMF

community composition observed among treatments are very

difficult to establish, bearing in mind that the different crop

management regimes studied consist of several influencing

parameters. In fact, the ComFert+ChemM - which produced

the highest diversity of AMF - included the highest number of

parameters. Further investigation of AMF diversity, including

analysis of each factor separately and subsequently their interac-

tions, could help to ascertain the cause of the effects reported here.

Different crop management strategies can exert a clear

influence on the populations of AMF. The treatment including a

combination of organic and inorganic fertilisation together with

chemical pest control appears to be the most-suitable with respect

to improve of the AMF diversity in this crop under tropical

conditions, thus improving the agricultural and environmental

sustainability of this agro-ecosystem.
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WFM (2012) Community assembly, species richness and nestedness of

arbuscular mycorrhizal fungi in agricultural soils. Mol Ecol 21: 234122353.

39. Alguacil MM, Lozano Z, Campoy M, Roldán A (2010) Phosphorus fertilisation
management modifies the biodiversity of AM fungi in a tropical savanna forage

system. Soil Biol Biochem 42: 111421122.
40. Gosling P, Hodge A, Goodlass G, Bending GD (2006) Arbuscular mycorrhizal

fungi and organic farming. Agric Ecosyst Environ 113: 17235.

41. Helgason T, Fitter AH (2009) Natural selection and the evolutionary ecology of
the arbuscular mycorrhizal fungi (Phylum Glomeromycota). J Exp Bot 60:

246522480.
42. Schreiner RP, Mihara KL (2009) The diversity of arbuscular mycorrhizal fungi

amplified from grapevine roots (Vitis vinifera L.) in Oregon vineyards is seasonally
stable and influenced by soil and vine age. Mycologia 101: 5992611.

43. Balestrini R, Magurno F, Walker C, Lumini E, Bianciotto V (2010) Cohorts of

arbuscular mycorrhizal fungi (AMF) in Vitis vinifera, a typical Mediterranean fruit
crop. Env Microbiol Rep 2: 5942604.

44. Oehl F, Laczko E, Bogenrieder A, Stahr K, Bösch R, et al. (2010) Soil type and
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