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Abstract: The overall goal of this work is to demonstrate how resting state functional magnetic reso-
nance imaging (fMRI) signals may be used to objectively parcellate functionally heterogeneous subre-
gions of the human amygdala into structures characterized by similar patterns of functional
connectivity. We hypothesize that similarity of functional connectivity of subregions with other parts
of the brain can be a potential basis to segment and cluster voxels using data driven approaches. In
this work, self-organizing map (SOM) was implemented to cluster the connectivity maps associated
with each voxel of the human amygdala, thereby defining distinct subregions. The functional separa-
tion was optimized by evaluating the overall differences in functional connectivity between the subre-
gions at group level. Analysis of 25 resting state fMRI data sets suggests that SOM can successfully
identify functionally independent nuclei based on differences in their inter subregional functional con-
nectivity, evaluated statistically at various confidence levels. Although amygdala contains several
nuclei whose distinct roles are implicated in various functions, our objective approach discerns at least
two functionally distinct volumes comparable to previous parcellation results obtained using probabil-
istic tractography and cytoarchitectonic analysis. Association of these nuclei with various known func-
tions and a quantitative evaluation of their differences in overall functional connectivity with lateral
orbital frontal cortex and temporal pole confirms the functional diversity of amygdala. The data driven
approach adopted here may be used as a powerful indicator of structure–function relationships in the
amygdala and other functionally heterogeneous structures as well. Hum Brain Mapp 35:1247–1260,
2014. VC 2013 Wiley Periodicals, Inc.

Key words: functional connectivity; self-organized mapping; connectivity-based parcellation

r r

Contract grant sponsor: NIH (JCG); Contract grant number:
EB000461.

*Correspondence to: Arabinda Mishra, Vanderbilt University Insti-
tute of Imaging Science, MCN AA1105, 1161 21st Ave S., Vander-
bilt University, Nashville, TN 37232, USA. E-mail: arabinda.
mishra@vanderbilt.edu

Received for publication 26 July 2012; Revised 22 October 2012;
Accepted 3 December 2012

DOI: 10.1002/hbm.22249
Published online 18 February 2013 in Wiley Online Library
(wileyonlinelibrary.com).

VC 2013 Wiley Periodicals, Inc.



INTRODUCTION

The human amygdala is a complex structure implicated
in a wide variety of brain activities such as emotional regu-
lation [Baxter and Murray, 2000; Kelley, 2004] and other
cognitive functions [Aggleton, 2000; LeDoux, 2003]. The
most established functions are probably the storage of con-
ditioned stimulus–unconditioned stimulus associations in
fear conditioning, and its role in relevance detection [Sander
et al., 2003]. Based on cytoarchitectonic, chemoarchitectonic,
and white-matter fiber architectures [Amunts et al., 2005;
Ball et al., 2007; Swanson and Petrovich, 1998] human
amygdala is typically divided into three subregions;
namely, the basolateral, centromedial, and cortical nuclei,
although histological studies also suggest that it may
possess at least 20 anatomically distinct nuclei [Freese and
Amaral, 2009]. The centromedial and cortical nuclei are
broadly classified as the superficial groups, whereas the
basal and lateral nuclei are considered as the deeper group.
The deeper group of nuclei apparently facilitates associative
learning [Phelps and LeDoux, 2005] while the superficial
group plays an important role in generating behavioral
responses [LeDoux, 2003]. These different functional charac-
teristics and their changes in various neuropsychiatric dis-
orders [Ball et al., 2009; Boccardi et al., 2009; Floresco and
Ghods-Sharifi, 2007; Garcia-Marti et al., 2008] including
schizophrenia [Benedetti et al., 2011; Goghari et al., 2010;
Salvador et al., 2010] strongly suggest that amygdala should
be considered as a functionally heterogeneous structure.

Noninvasive MRI such as diffusion weighted and struc-
tural (T1 and T2 weighted) studies have attempted to iden-
tify major amygdala nuclei by clustering voxels according
to their principal diffusion directions [Solano et al., 2010],
and gray-matter contrast [Solano et al., 2011] at high field
(7T). Similarly, probabilistic tractography-based anatomic
connectivity measures subdivide amygdala into various
subregions [Bach et al., 2011; Saygin et al., 2011] wherein
gross similarity between prominent nuclei and the seg-
mented subregions was observed. In an initial attempt to
demonstrate the functional diversity of the amygdala, three
manually outlined subregions/nuclei were reported to have
an overall difference in functional connectivity with the rest
of the brain using resting state functional magnetic reso-
nance imaging (fMRI) data [Roy et al., 2009].

Correlations between low-frequency fluctuations of mag-
netic resonance imaging (MRI) signals in the absence of any
specific stimulus (resting state) are widely accepted as evi-
dence of functional connectivity between regions. Studies
suggest that strong correlations between resting state low-fre-
quency MRI signals may exist across a widely distributed
network [Biswal et al., 1995]. Spatial mapping of these interre-
gional correlations across distributed brain regions has been
widely used to delineate and describe various neural circuits
and assess the manner in which distributed brain regions
work together. More importantly, altered resting state func-
tional connectivity, particularly in the default mode networks,
in several disorders [e.g., Bassett et al., 2012; Liemburg et al.,

2012; Weng et al., 2010; Wiggins et al., 2011; Wu et al., 2011]
suggests that these functional networks are crucial for the
execution and maintenance of a variety of brain functions.
Novel findings from anesthetized animals [Chen et al., 2011]
further support the concept that resting state signal fluctua-
tions reflect a fundamental level of functional organization in
the brain. Therefore, as different subregions of the amygdala
are known to be involved in distinct brain functions [Gamer
et al., 2010; Vizueta et al., 2012], it is plausible that distinct
functional networks should be associated with these subre-
gions. In this case, efficient data-driven approaches should be
able to parcellate these functional subregions objectively
based on resting state connectivity measures.

There have been many previous reports of attempts to
detect and delineate functionally connected regions for the
assessment of inter- or intraregional functional connectiv-
ity using a variety of analytical methods. The method
used most commonly is based on analyzing correlations
between regions of interest (ROIs), but subjective selection
of the ROIs and/or stimulus-driven activation maps are
then a prerequisite for the analysis. Alternatively, data
driven analyses such as independent component analysis
and self-organizing maps (SOMs) offer ways to delineate
functionally homogeneous subregions objectively. We
postulated that an appropriate parcellation technique may
be used to identify amygdala nuclei associated with simi-
lar patterns of functional connectivity measures. Here we
report the development of a robust data driven approach
using SOM to segment amygdala in both hemispheres.
SOM is a relatively new artificial intelligence technique
[Kohonen, 1997], which has enjoyed only limited applica-
tion in fMRI data analyses [Liao et al., 2008; Peltier et al.,
2003; Wiggins et al., 2011; Wismuller et al., 2004]. As a
model-free clustering technique, SOM can learn to detect
regularities and correlations of the input data and adapt
future responses. Based on a comparison of its perform-
ance with a conventional clustering approach in fMRI
[Mishra et al, 2010; Ngan and Hu, 1999] and other fields
[Mangiameli et al., 1996] we selected SOM over more con-
ventional segmentation methods. The resulting function-
ally distinct subregions of amygdala are compared with
parcellation results using probabilistic tractography [Bach
et al., 2011] and cychoarchitectonics [Amunts et al., 2005].
The overall association of these major subdivisions with
known amygdala functions, and comparisons of their
functional connectivity with orbital frontal cortex (OFC)
and temporal pole (TP), confirm the plausibility of the
resulting segmentation of the amygdala.

METHODS

Data Acquisition and Preprocessing

Publicly available resting state fMRI data acquired in
two sessions on 25 healthy subjects (10M/15F, aged 22–49)
were used for these analyses [www.nitrc.org/projects/
nyu_trt, Shehzad et al., 2009]. All subjects were physically
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sound with no history of psychiatric disorder or head
injury. The data were acquired using a Siemens Allegra
3.0 T scanner. Each scan consisted of 197 contiguous
echo-planar imaging functional volumes (time of repeti-
tion ¼ 2,000 ms; time of echo ¼ 25 ms; flip angle ¼ 90�,
39 slices, matrix ¼ 64 � 64; field of view ¼ 192 mm; voxel
size ¼ 3 mm, isotropic). High–resolution T1 weighted
anatomic images were also acquired with the same imag-
ing geometry, with an imaging matrix of 256 � 256 � 144
(0.938 mm � 0.938 mm � 1 mm). Slice timing correction
for each subject was performed following three-dimen-
sional (3D) motion correction. Six translation and rotation
parameters along with the global signal were used to
regress out temporal variations caused by motion and
drift. Spatial smoothing of the data was then performed
using a Gaussian kernel with full width at half maximum
¼ 6 mm (Set 1). Although spatial smoothing helps
improve the signal-to-noise ratio (SNR), considering the
physical size of the amygdala (�2,000 mm3 in each hemi-
sphere), we performed a separate analysis without
smoothing the data. The white matter and cerebrospinal
fluid (CSF) time course were included as additional
regressors to reduce the effect of physiological noise in
this analysis [Weissenbacher et al., 2009]. However, the
global signal was not considered as a regressor due to
the risk of adding artificial negative correlation [Murphy
et al., 2009], including the motion parameters as in the
former set of data (Set 2). Temporal band pass filtration
with cutoff frequencies at 0.008 and 0.08 Hz (using a Che-
byshev Type II filter) was performed to suppress the fre-
quency contents outside this range for both sets of data.
The amygdala (ROI) in both hemispheres was outlined
using the Harvard-Oxford atlas [Desikan et al., 2006]. The
data were then transformed into Montreal Neurologic
Institute (MNI) template space with the help of a linear
affine transformation. From here onward, the separately
preprocessed data sets will be referred as Set 1 or 2 or
smoothed/unsmoothed data.

Functional Connectivity Estimation

The resting state functional connectivity between a partic-
ular seed ROI and the rest of the brain was estimated by
implementing a general linear model. The time course asso-
ciated with individual voxels within the ROI is considered
as a regressor. The functional connectivity estimator uses
the scaled time course of the voxels as covariates similar to
the estimation of effective connectivity under stimulus
driven conditions [Rissman et al., 2004; Weeda et al., 2011].
This analysis results in similar findings to that using corre-
lation analysis as described in [Chen et al., 2011; Mishra
et al., 2010]. Use of connectivity maps rather than raw time
courses can eliminate weakly connected regions by thresh-
olding, and reduces the bias due to poorly connected areas
in segmentation. Elimination of poorly connected areas may
benefit the parcellation, particularly when the SNR is low.

The estimated b (beta) values for each voxel in the ROI are
converted into a 1D vector with coefficients as many as the
number of voxels in the rest of the brain. These vectors are
the inputs to the SOM algorithm, which are clustered into a
user defined number of groups. Voxel-based connectivity
maps associated with subregions can be reconstructed using
these coefficients, and maps indexed with the assigned clus-
ters are stored separately for group analysis. Preprocessing
the data, generation of the connectivity maps and SOM-
based segmentation was performed using a software we
developed. The Matlab code was customized to be used as
an independent tool box for SPM5–8.

Implementation of SOM

SOM clusters the connectivity maps and classifies the
voxels within the amgydala into a user defined number of
clusters similar to most segmentation methods. Unlike
conventional unsupervised learning in neural networks,
SOM does not have a target vector as it clusters the inputs
based on similarity within the groups. A modified SOM,
also called self-organizing feature map (SOFM) however,
learns both the distribution and topology of the input vec-
tors [Heskes, 2001; Kohonen and Somervuo, 2002]. Instead
of updating the winning neurons alone, a portion of the
neurons within a predefined neighborhood are updated
for an improved realization of high-dimensional data in
lower dimension. We implemented SOFM to explore the
benefit of clustering the data into 2D topologically distrib-
uted output neurons while varying the number of clusters
from two to eight. The voxels associated with the connec-
tivity maps belonging to a particular cluster are thus
defined as functionally independent compartments (nuclei)
in the amygdala. However, until recently there is no con-
sensus about the number of specific functional subdivi-
sions in amygdala to guide the selection. In such a
situation, implementing a segmentation method that needs
user definition for the number of subregions depends on
careful evaluation of overall distance and other statistics
between the clusters in the parametric space.

To reduce the computational burden, of SOFM, the time
courses associated with each ROI and the rest of the brain
were stored separately at two different resolutions. The
rest of the brain excluding the amygdala volumes was up-
sampled to 5 mm isotropic resolution in the MNI space.
Up-sampling the rest of the brain will substantially reduce
the size of the connectivity maps (data vector input) for
the SOM, making it computationally less intensive. The
input to the SOFM is a set of linearized b coefficients, as
many as the number of voxels in the amygdala, typically
�72 voxels (3 mm � 3 mm � 3 mm) in the left and right
hemisphere. The SOFM divides these data into predefined
number of clusters as we progressively increase the num-
ber of subregions from 2 to 8. Due to limited number of
clusters the topology of neurons was a rectangular/ran-
dom grid in case the number of clusters was even or odd.
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Using the Kohonen learning rule, the neighborhood is
updated in two phases. Thus, when a vector p (1D connec-
tivity map) is presented, the weights of the winning neu-
ron and those present in the close neighborhood move
toward p by updating the values as specified in Eq. (1).
The change in weight of the neurons depends on their
learning rate and the differences between their values in
the previous iteration.

wiðqÞ ¼ wiðq� 1Þ þ a pðqÞ � wiðq� 1Þð Þ
) wiðqÞ ¼ ð1� aÞwiðq� 1Þ þ apðqÞ

(1)

where w is the weight of the winning neuron and a is the
learning rate.

The ordering and tuning phases last for 200 iterations
each as the neighborhood shrinks from 2 to 1 based on the
topology. However, since our analysis start with two clus-
ters, the shrinking of neighborhood from ordering to tun-
ing phase is void initially and SOFM performs as SOM in
the beginning. The learning rate a changes from 0.1 to 0.01
in the ordering and tuning phase, respectively.

Defining the Subregions in the Common Space

Amygdala subregions for each subject comprise voxels
associated with connectivity maps clustered into various
groups in the MNI space. The subregions can be precisely
defined by determining the base frequency of occurrence
for voxels in each group. A subregion has a base fre-
quency of 10 when all voxels belong to that group in at
least 10 subjects. As SOM labels the subregions arbitrarily,
we implemented the following procedure to uniformly
label them on the basis of maximum cumulative percent-
age overlap. Cumulative percentage overlap is estimated
by relabeling the segmented subregions with all possible
combinations. For example, if the amygdala is divided
into three clusters, for a reference subject the subregions of
the remaining subjects should be labeled in six possible
ways to calculate the cumulative percentage overlap. The
clusters with combined maximum overlap are added and
referred as the overlap index for that particular subject. The
procedure is then repeated for all subjects in the group
and the subject with maximum overlap index is finally used
to relabel the entire set. The base frequency is stored for
each voxel in the amygdala to visualize the probabilistic
subregions at various confidence levels in the group space.

Optimizing the Number of Clusters

The clustering efficiency for a particular method is nor-
mally measured by the sum-squared error (SSE), which is a
measure of compactness of the clusters in terms of the Eu-
clidean distance between the centroid and the members of
each cluster. SSE however, is not sensitive to the overlap-
ping of segmented regions as it is measured within the clus-

tered groups. The Silhouette distance (SD) on the other hand
is a function of intercluster distance in addition to the com-
pactness of the members within the group [Rousseeuw,
1987]. SD is defined as the ratio of measure of compactness
of members within a group to the distance between them in
parametric space. In this work we quantified the efficiency
of SOFM in terms of the average SD, based on Eq. (2). The
term s(i) measures the distance for each member in the clus-
ter where ai is the mean distance between the linearized
connectivity map associated with the voxel i and other vox-
els in the same cluster. Similarly, bi,k is the average distance
between i and each member of the other cluster k. The
mean value of SD can theoretically vary between �1 and 1,
specifying a complete overlapping of clusters through well
isolated ones with compactly supported members.

sðiÞ ¼
min

k
ðbi;kÞ � ai

max ai;min
k
ðbi;kÞ

8
>:

9
>;

(2)
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1

Mi

XMi
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(3)
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1

Mk

XMk

j¼1

Dist ai; bj

� �
or 1� Corr ai; bj
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(4)

Conventionally, the Euclidean distance between the mem-
bers within and outside the cluster is measured to evaluate
the SD. However, we also calculated a correlation-based
SD in a similar manner so that the shape similarity of con-
nectivity maps can also be taken into consideration instead
of just the Euclidean distance. Simply substituting the dis-
tance function Dist(ai,bj) with (1 2 Corr(ai,bj)) where Corr
is the correlation coefficient, the SD can be estimated [Eqs.
(3) and (4)]. Although quantitative evaluation of clustering
efficiency is subjective and preferably done by measuring
the average distance between clusters in the parametric
space, its absolute maximum value may not always guar-
antee the optimal separation of clusters [Goutte et al.,
1999]. Therefore, assessment of functional parcellation is a
tradeoff between mean SD, consistency in group level sep-
aration of the subregions, and statistical difference in func-
tional connectivity with other parts of the brain regions as
the number of clusters vary in the analysis.

RESULTS AND DISCUSSION

Identification of Amygdala Functional

Heterogeneity Using SD Statistics and

Consistency of Subregions in the MNI Space

The mean SD between the clusters in the parametric
space was measured as a function of number of clusters
into which the amygdala was parcellated. In addition to
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the SD, the statistical difference between the connectivity
maps associated with the voxels comprising the subre-
gions is also important to determine the optimal number
of nuclei. Figure 1a shows the 3D view of the left amyg-
dala in the case of a two cluster analysis for a representa-
tive subject where the superior (red) and inferior (green)
part of the amygdala are separated into two halves using
the smoothed data (Set 1). The enlarged view of the amyg-
dala divided along hippocamapal axis is shown below.
The mean voxel-based connectivity map of the superior
compartment (red), linearized as a 1D vector, is shown in
Figure 1b. Figure 2a,b demonstrates the group variation of
SD as a function of the number of clusters (2–8), for data
Set 1. The median values of SD for two and three cluster

analyses are significantly higher compared to others in
case of correlation and Euclidean distance-based measures.
The unsmoothed data incorporating the white matter and
CSF signal as nuisance parameters without the global sig-
nal (Set 2) shows very similar statistical variation of SD
when measured using both methods. A closer observation
reveals that the median value for three cluster analysis,
particularly in case of Euclidean distance-based analysis, is
higher than what we observed in the case of two clusters.
However, the variance associated is also bigger making
the optimal subdivision unreliable based on the mean or
median value of SD alone.

The 3D views of amygdala subregions in the common
space in case of two and three cluster analyses are shown
as compact volumes in Figure 3. The numbers in the mid-
dle show the base frequency, indicating that the probabil-
istic subvolumes are at least shared by that many subjects
out of the total population of 25. While visualizing the
data, isolated voxels or scattered volumes may be expected

Figure 2.

Box plots showing the median value (red) of the Silhouette dis-

tance (SD) and its second order polynomial fit (bold line) as a

function of the number of clusters. The correlation and dis-

tance-based SD for the smoothed data (Set 1) are plotted in (a)

and (b). The upper and lower edges represent the 75th and

25th percentiles (scattered red dots are the outliers). [Color fig-

ure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Figure 1.

(a) 3D view of the segmented left amygdala using two cluster analy-

sis for a representative subject, overlaid on T1 maps in MNI space.

(b) Mean connectivity pattern (normalized) associated with superfi-

cial amygdala nuclei (linearized vector). [Color figure can be viewed

in the online issue, which is available at wileyonlinelibrary.com.]
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in case the subregions in the individual subject space are
not in good agreement with others. Although large dis-
agreement was not observed, particularly in two and three
cluster analyses, a consistent reduction of shared volumes
was seen as the population sharing the subregions (base
frequency) was varied between 12 and 22 in discrete steps
of 2 (Fig. 4). In the case of three cluster analysis, the medial
region disappears as the population sharing the volume
increases (subjects � 18) for the smoothed data (Set 1). Pre-
sumably because the volume is smaller and the smoothing
effect is more as the size of the smoothing kernel is bigger
than the size of the medial region. However, the superior
and inferior halves of the amygdala structure are prominent
and quite similar in both two and three cluster analyses.
Figure 4a,b shows variation of clustered subvolumes (mm3)
as a function of the base frequency. Interestingly the vol-
umes of the superior and inferior part of the amygdala are
slightly bigger in unsmoothed data (dotted lines) and
appear very close in orientation and shape when compared
with the superficial (centromedial and cortical, red) and
deep amygdala nuclei (basolateral and others, green). These
subregions are very similar to previous parcellation results
using probabilistic tractography [Bach et al., 2011] and
cychoarchitectonics [Amunts et al., 2005].

Two versus Three Cluster Analysis

Figure 5a shows the 3D view of the segmented regions in
the case of a two cluster analysis where both subregions
were shared by 13 subjects (>50% of population) using the
smoothed data set. A clear separation between the two sub-
regions as seen on the sagittal and axial plane suggests that
the medial region is not consistently present in either half.
The two (1 and 3), three (2 and 5), and four (3 and 6) cluster
analysis in Figure 5b shows the segmented compartments
overlaid on a representative sagittal slice of an anatomic
template (T1 weighted). The upper row (1, 2, and 3) contains
the segmented compartments generated using the

smoothed data whereas the lower row (4, 5, and 6) are the
outcomes of the second set of data. An enlarged view in Fig-
ure 5c suggests that the medial region (2 and 5) is classified
into the third cluster keeping the superior and inferior sub-
regions almost intact. The four cluster analysis subdivides
the medial region further into two clusters (3 and 6: yellow
and blue), changing the superior and inferior half of the
amygdala. Hypothetically SOM allows subregions to com-
pete within it in case the number of clusters is over esti-
mated. Clusters may be further classified into additional
groups taking finer details of connectivity patterns into
account, which is evident in Figure 5b,c (2, 5 and 3, 6, yellow
cluster can be seen fully contained within blue cluster). An
anatomic separation between subregions may be classified
as a cluster with no meaningful functional connection with
other parts of the brain. Our observation of the medial
region, that is, the way it is shared by subjects in the com-
mon space, and the variability associated with the SD in a
three cluster analysis, suggest that the medial subregion
could either be a part of the two major clusters or a separa-
tion between them. The consistent reduction of SD with
increased number of clusters also justifies the absence of

Figure 4.

Volume of superior (red), inferior (green), and medial subregion

(blue) in cubic mm as a function of base frequency (12–22) for two

(a) and three (b) cluster analysis in the left amygdala. The solid lines

represent the smoothed data (Set 1) and the dotted lines represent

the unsmoothed data (Set 2). [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]

Figure 3.

3D visualization of the segmented volumes using two and three

cluster analysis. The superior (red), inferior (green), and medial

(blue) regions are shown with the base frequency (number in

the middle). The segmented ROIs are generated using cumula-

tive percentage overlap for the smoothed (Set 1) and

unsmoothed (Set 2) data. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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distinct subregions which are shared by a majority of the
population. Based on the above analogy, possibilities of con-
sidering amygdala as a combination of more (�4) function-
ally distinct nuclei were ruled out.

Group Level Functional Connectivity Difference

Detailed evaluation of the difference in functional con-
nectivity with rest of the brain at group level is critical to
generalize the consistency in functional differences
between the subregions and identify functionally inde-
pendent nuclei. A series of paired t-tests between the con-
nectivity maps associated with the superior, inferior, and
medial parts of the left and right amygdala were con-
ducted. To know the way subregions are correlated, anti-
correlated and have a difference in functional connectivity
with the rest of the brain, we used different contrasts in
the SPM analysis. The group connectivity maps associated
with segmented regions are overlaid on T1 maps. Figure

6a shows the regions which are positively connected with
the superior part of the amygdale, that is, the superficial
(centromedial and cortical) nuclei of the left amygdala in a
two cluster analysis for the smoothed data (Set 1). The pre-
central gyrus in the right and left cerebrum (BA-4) and the
medial frontal gyrus (BA-6) are positively correlated with
this subregion. Similarly, Figure 6b shows the regions hav-
ing negative functional connection with the inferior part or
the basolateral and other nuclei (deep nuclei) of the left
amygdala. BA-18 in the occipital lobe, superior temporal
gyrus, right, and left middle frontal gyrus are significantly
anticorrelated with the deep nuclei of the left amygdala (P
< 0.001, uncorrected). The area with significant difference
in connectivity between the segmented regions is also im-
portant to understand the functional heterogeneity within
amygdala. The areas where the superior part or the super-
ficial nuclei have stronger functional connections in com-
parison to deep amygdala nuclei are shown in Figure 6c.
The precentral gyrus (BA-4) and lentiform nucleus in the

Figure 5.

(a) 3D view of the parcellated amygdala using two cluster analy-

sis. (b) Sagittal view of the subregions using two (1 and 4), three

(2 and 5), and four (3 and 6) cluster analysis. (c) Enlarged view

of the superior (red), inferior (green), and medial (blue and yel-

low) regions of the amygdala using data Set 1 (1, 2, and 3) and

data Set 2 (4, 5, and 6). [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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sublobar regions are strongly connected with the superior
part in comparison to the inferior half (Fig. 6c, P < 0.01).
The inferior parietal lobule (BA-40) and right and left mid-
dle frontal gyrus in the frontal lobe possess stronger con-
nectivity with the basolateral and other amygdala nuclei
in comparison to the superior half (Fig. 6d, P < 0.01). Ta-
ble I provides a comprehensive list of the regions which
are functionally connected to the parcellated subregions.

We performed similar analyses of the second set of data
for the same subjects and found similarities in functional
connectivity of the amygdala subregions in both hemi-

spheres. The segmented subregions in the right hemisphere
are shown in Figure 7, where the group connectivity pat-
terns are nearly identical to that observed in the left amyg-
dala. Symmetrically anticorrelated regions with respect to
the inferior part of the amygdala can be seen in Figure 7b
similar to that observed in Figure 6b. To test the consistency
in functional connections, we generated individual voxel-
based connectivity maps using the data in the second ses-
sion based on the segmented subregions from the first ses-
sion. The results obtained from the second session show
similar connectivity patterns both in the cases of two and

Figure 6.

Functional connectivity patterns of the parcellated left amygdala

with rest of the brain, based on two cluster analysis. (a) Positively

correlated regions with superficial (superior) and (b) anticorre-

lated regions with deep (inferior) nuclei (P-value < 0.001). Differ-

ence in functional connectivity [superficial > deep (c) and deep >
superficial (d), P-value < 0.01]. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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Figure 7.

Functional connectivity of the parcellated right amygdala in the second set of data based on two

cluster analysis. (a) Positively correlated regions with superficial nuclei, (b) anticorrelated regions

with deep nuclei (P-value < 0.001). Difference in connectivity between superficial > inferior (c)

and inferior > superficial (d, P-value < 0.01). [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]

TABLE I. Functional relation of superior and inferior part of amygdala with respect to known areas in the brain

Positively correlated Negatively correlated

Superior amygdala Precentral gyrus (BA-4), medial frontal gyrus
(BA-6), and lentiform nucleus

Right/left middle frontal gyrus

Inferior amygdala Inferior parietal lobe (BA-40) Occipital lobe (BA-18), superior temporal gyrus,
and right/left middle frontal gyrus

Superior > inferior Precentral gyrus and lentiform nucleus
Inferior > superior Inferior parietal lobe (BA-40) and right/left middle

frontal gyrus
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Figure 8.

(a) Positively correlated regions with the superficial amygdala, (b) anticorrelated regions with the

deep (inferior) and (c) positively correlated regions with medial part of the amygdala (P-value <
0.001). Difference in connectivity are shown for the contrast (d) superior > inferior, (e) inferior

> medial and medial > superior (P-value < 0.01). [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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three cluster analyses. Figure 8a,b shows the group level
positive and anticorrelated regions with respect to the supe-
rior and inferior parts of the amygdale, respectively. The
positively correlated areas for the medial region are shown
in Figure 8c–f that demonstrate the functional connectivity
differences using following contrast: (i) superior > inferior
(Fig. 8d), (ii) inferior > medial (Fig. 8e), and medial > supe-
rior (Fig. 8f), respectively. Very little difference between the
medial and the superior part of the amygdala can be seen in
Figure 8e. The positively correlated region is confined to the
subregion itself, suggesting that the medial region could ei-
ther be a separation or part of the superficial amygdala
nuclei. Figure 3 apparently suggests that the combined
medial and inferior subregions of amygdala is quite similar
in shape to the inferior or deep nuclei of the amygdala in
the two cluster analysis.

Quantitative Evaluation of Functional

Connectivity of Parcellated Nuclei and Known

Functions

Although voxel-based connectivity measures were the
basis for parcellating the amygdala, overall functional con-
nectivities with known target regions were evaluated for
quantification of differences in functional connectivity
between subregions. Considering the functional diversity
of OFC [Kringelbach, 2005] and the functional relationship
between amygdala, OFC and TP [Bach et al., 2011] we per-
formed a similar experiment to evaluate if there exist com-
parable functional relationship. We used the probabilistic
subvolumes of the amygdala comprising of the segmented
voxels, shared at least by 13 subjects using two cluster
SOM analysis. The mean z-scores [Eq. (5)] were evaluated
as a measure of functional connectivity of the superior and
inferior amygdala with respect to the subregions of the
broader lateral OFC and TP outlined using Pick Atlas-
v.3.0.3, [Lancaster and Woldorff, 2000].

z ¼
ffiffiffiffiffiffiffiffiffiffiffi
n� 3
p

2
ln

1þ r

1� r
(5)

where r is the correlation coefficient. The functionally cor-
related/anticorrelated regions were observed at various
significance levels for the segmented superior and inferior
parts of the amygdala using appropriate contrasts in
SPM8. The subregions of the broader OFC and TP, were
considered as valid target regions, that is, voxels con-
nected with the superior and inferior halves of the amyg-
dala significant at P \ 0.001 (uncorrected). A dissociative
functional relation between OFC and TP was clearly
observed in the group analysis. The z-scores based on the
Fisher transformed correlation coefficient between the seg-
mented amygdala and target regions in both the hemi-
spheres are shown in Figure 9. Each voxel in the
amygdala is represented by the average correlation coeffi-

cient with valid target voxels (P \ 0.001) and the mean of
these values represent the subjectwise functional relation
of the amygdala subregions with OFC and TP. The distri-
bution of the z-scores for the superior (columns 1 and 2)
and inferior (columns 3 and 4) amygdala subregions with
respect to both targets are presented in the left (Fig. 9a)
and right hemisphere (Fig. 9b) using the unsmoothed data
(Set 2). However, the spatially smoothed data shows a
similar trend. In a separate analysis, the functional rela-
tionship of the superior and inferior compartments of the
amygdala was evaluated with respect to each known sub-
region of both the target regions. The subregions of OFC
(orbital frontal inferior, medial and superior cortex) and
TP (TP medial and superior half) in both hemispheres
were analyzed for all possible combination pairs. An
inverse functional relation was observed between the sub-
regions of each target and the superior/inferior amygdala
in most cases. Table II shows the results using data Set 2.

The successful parcellation of two/three compartments
(superior, medial, and inferior) of amygdala is in overall
agreement with the anatomical parcellation of superficial
(corticoid), centromedial, and laterobasal complex based

Figure 9.

Median value (red) and statistical distribution of connectivity

measure (z-scores) for the superior and inferior amygdala nuclei

in the left (a) and right (b) hemisphere. X-Axis represents the

z-scores for the superior � OFC (1) and TP (2), and the infe-

rior � OFC (3) and TP (4). The red stars (*) are the outliers.

[Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]
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on cytoarchitectural features [Amunts et al., 2005; Heimer
et al., 1999] and superior/inferior compartments based in
diffusion tensor imaging fiber tracking features [Bach
et al., 2011]. Furthermore, the difference in functionally
connected regions (both positive and negative) of superior
versus inferior compartments not only emphasizes the
multifunctional role of amygdala but also provides evi-
dence supporting the functional separations of superior
and inferior regions. For instance, the strong connections
of the superior part of amygdala to precentral (BA-4) and
medial frontal gyri are consistent with the known func-
tions in processing of emotion [Morris et al., 1998], fear
[Shin et al., 2005], attachment security [Lemche et al.,
2006], and learning [Phelps et al., 2004]. In contrast, the in-
ferior part of amygdala has strong or differential connec-
tions to the inferior parietal lobe (BA-40) which support its
roles in the perception of biological motion [Bonda et al.,
1996] and sensorimotor integration. Inverse correlations
with superior temporal gyrus may imply the role of infe-
rior part in the perception of form, meaning and experi-
ence [Martin et al., 1997]. Taken together, the differential
connectivity patterns of superior and inferior amygdala to
the rest of the brain support the functional heterogeneity
of these subvolumes within the amygdala and their differ-
ent associations with the rest of the brain.

CONCLUSIONS

Previous functional parcellations of the amygdala have
been performed by outlining specific nuclei based on cer-
tain assumptions, followed by an evaluation of their differ-
ence in connectivity to the rest of the brain. Our data
driven segregation approach achieves this objectively by
segmenting voxel-based connectivity measures and then
identifying the corresponding subregions in the native
space. Interpretation of functional diversity requires criti-
cal assessment of connectivity measures from various
aspects to accurately demarcate the separation between

functionally independent nuclei. Moreover, in the absence
of a consensus about the actual number of functional sub-
divisions, we relied on estimates of the functional hetero-
geneity on three accounts: (i) assessment of distances
between clusters, (ii) evaluating how each segmented
region was shared by a significant portion of the popula-
tion in a group analysis, and (iii) by looking at the group
level similarities and differences in functional connections
between subregions and the rest of the brain. Finally, the
parcellation was validated comparing the functional con-
nectivity measures we obtained with previous structural
relationships between the amygdala subregions and target
areas using probabilistic tractography. The overall similar-
ity in connectivity patterns analyzed using the physical co-
ordinates of the delineated subregions in one set of data
for the other set strongly supports the fact that parcellation
using resting state fMRI data is stable, reproducible and
reliable for better understanding the functional architec-
ture of the amygdala.
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