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Abstract
Cancer can take hundreds of different forms depending on the location, cell of origin and spectrum
of genomic alterations that promote oncogenesis and affect therapeutic response. Although many
genomic events with direct phenotypic impact have been identified, much of the complex
molecular landscape remains incompletely charted for most cancer lineages. For that reason, The
Cancer Genome Atlas (TCGA) Research Network has profiled and analyzed large numbers of
human tumours to discover molecular aberrations at the DNA, RNA, protein, and epigenetic
levels. The resulting rich data provide a major opportunity to develop an integrated picture of
commonalities, differences, and emergent themes across tumour lineages. The Pan-Cancer
initiative compares the first twelve tumour types profiled by TCGA. Analysis of the molecular
aberrations and their functional roles across tumour types will teach us how to extend therapies
effective in one cancer type to others with a similar genomic profile.

Molecular Profiling of Single Tumour Types
That cancer is fundamentally a genomic disease is now well established. Early on, large
numbers of oncogenes were identified using functional assays on genetic material from
tumours in positive selection systems1-3, and a subset of tumour suppressor genes were
identified by analyzing loss of heterozygosity4. More recently, systematic cancer genomics
projects have applied emerging technologies to the analysis of specific tumour types
including the Cancer Genome Atlas Project (TCGA; Box 1). That disease-specific focus has
identified novel oncogenic drivers, those genes contributing to functional change5-7,
established molecular subtypes8-13 and identified new biomarkers based on genomic,
transcriptomic and proteomic alterations. Some of those biomarkers have clinical
implications14,15. For example, we now view ductal breast cancer as a collection of distinct
diseases whose major subtypes (e.g. luminal A, luminal B, HER2, basal-like) are managed
differently in the clinic; the outcomes for metastatic melanoma have changed as a result of
therapeutic targeting of BRAFV600 mutations16; and the fraction of lung cancers treated with
targeted agents is increasing with the discovery of likely driver aberrations in most lung
tumours17,18. Large-scale processes that shape cancer genomes have similarly been
identified. Chromothripsis19 and chromoplexy20, which involve breakage and rearrangement
of chromosomes at multiple loci, kataegis21, which describes hypermutational processes
associated with genomic rearrangements, are providing insight into tumour evolution (see
Garraway and Lander (2013)22 for a review).

Analysis Across Tumour Types
Increases in the number of tumour sample data sets enhance our ability to detect and analyze
molecular defects in cancers. For example, driver genes can be pinpointed more precisely by
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narrowing amplifications and deletions to smaller regions of the chromosome using
recurrent events across tumour types. Large cohorts have enabled DNA sequencing to
uncover a list of recurrent genomic aberrations (mutations, amplifications, deletions,
translocations, fusions and other structural variants), both known and novel, as common
themes across tumour types23. However, “long tails” in the distributions of aberrations
among samples have also been uncovered24. Indeed, a majority of the TCGA samples have
distinct alterations not shared with others in their cohort. Despite the apparent uniqueness of
each individual tumour in this regard, the set of molecular aberrations often integrate into
known biological pathways that are shared by sets of tumour samples. In other cases, rare
somatic mutations can be implicated as drivers by aggregating events across tumour types to
improve detection of patterns, for example hotspot mutations in protein domains, leading to
identification of potential new drug targets.

Determining whether the rare aberrations are drivers (oncogenic contributors) or just
passengers (clonally propagated with neutral effect), and whether they are clinically
actionable, will require further functional evaluation as well as analysis of additional
tumours to increase power. The identification of more driver aberrations and acquired
vulnerabilities for each individual tumour will undoubtedly boost personalized care.
Developing treatments that target the ~140 drivers23 validated to date, however daunting,
appears possible; devising one-off therapies for the thousands of aberrations in the “long
tail” will be much more challenging.

Although important general principles have emerged from decades of study25,26, until
recently most research on the molecular, pathological and clinical nature of cancers has been
“silo-ed” by tumour type27. One has only to glance at the directory of oncology departments
in any major cancer center to realize that medical and surgical cancer care are, for the most
part, also divided by disease as defined by organ-of-origin. That framework has made sense
for generations, but molecular analysis is now calling this view into question; cancers of
disparate organs reveal many shared features, and, conversely, cancers from the same organ
are often quite distinct.

Important similarities among tumour subtypes from different organs have already been
identified. For example, TP53 mutations drive high-grade serous ovarian, serous
endometrial and basal-like breast carcinomas, all of which share a global transcriptional
signature of activation of similar oncogenic pathways10,28. Similarly, ERBB2/HER2 is
mutated and/or amplified in subsets of glioblastoma, gastric, serous endometrial, bladder
and lung cancers. The result, at least in some cases, is responsiveness to HER2-targeted
therapy analogous to that previously observed for HER2-amplified breast cancer. Other
commonalities across tumour types include inherited and somatic inactivation of the
BRCA1/2 pathway in both serous ovarian and basal-like breast cancer, microsatellite
instability in colorectal and endometrial tumours, and the recently identified POLE-mediated
ultramutator phenotype characterized by extremely high mutations rates, common to both
colon and endometrial cancers12,28,29. Conversely, there are important cases in which the
same genetic aberrations have very different effects depending on the organ within which
they arise. A prime example is NOTCH, which is inactivated in some squamous cell cancers
of the lung, head and neck30, skin31 and cervix32 but activated by mutation in liquid
tumours33.

Such examples illustrate the importance of developing a comprehensive perspective across
tumours, independent of histopathologic diagnosis; shared molecular patterns will enable
etiologic and therapeutic discoveries in one disease that can be applied to another.
Importantly, integrative interpretation of the data will help identify how the consequences of
mutations vary across tissues, with important therapeutic implications. Relatively rare
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cancers, such as the childhood malignancies, particularly stand to benefit from such an
approach.

We know much more about the molecular details of major cancers than we did just a few
years ago, but once a cancer is metastatic it remains incurable, with few exceptions. Only
time will tell whether the integration of molecular characteristics with histology, organ site
and metastatic location will contribute to an improvement in patient outcomes. But the
balance is shifting in that direction. Hence, the goal of the Pan-Cancer Project is to identify
and analyze aberrations in the tumour genome and phenotype that define cancer lineages and
those that transcend them. This report outlines the scope of the project and introduces the
first coordinated set of manuscripts to be published from the enterprise.

The Pan-Cancer Project
To gain analytical breadth – defining commonalities, differences and emergent themes
across cancer types and organs of origin – TCGA launched the Pan-Cancer analysis project
at a meeting held on October 26-27, 2012 in Santa Cruz, California. Pan-Cancer is a
coordinated initiative whose goals are to assemble coherent, consistent TCGA data sets
across tumour types, as well as across platforms, and then to analyze and interpret those data
(Box 2). Within two months of the launch a data “freeze” was declared, based on the first
twelve TCGA tumour types, each profiled using six different genomic, epigenomic,
transcriptional and proteomic platforms (Figure 1). Since that time, the aggregated data sets
have been quality-controlled, analyzed statistically and interpreted by a consortium of
researchers, principally members of the TCGA Research Network.

The Pan-Cancer project lays the framework for an analytic process that, in the future, will
include integration of new tumour types and data from TCGA and other such enterprises.
There are currently major consortial efforts in pediatric cancers (TARGET; Therapeutically
Applicable Research to Generate Effective Treatments) and adult cancers (ICGC; the
International Cancer Genomics Consortium), as well as smaller projects by research teams
around the world. A critical component will be the functional validation of aberrations in
individual genes in team science efforts such as the CTD2 (Cancer Target Discovery and
Development) and elucidation of pathway and network relationships in programs like the
ICBP (Integrative Cancer Biology Program).

A number of major questions in cancer biology that go beyond the single-tumour
perspective are being addressed in the collection of Pan-Cancer manuscripts. For example:

• Can increases in statistical power help new driver mutations be distinguished from
the background of passenger mutations as the sample size is increased by
aggregating the 12 tumour types together? The assembled Pan-Cancer data have, in
fact, enabled the identification of new patterns of genomic drivers. New
computational approaches that leverage cross-tumour principles of replication
timing and gene expression correlates with background mutation rates now enable
the identification of frequently mutated genes while eliminating many false positive
and negative calls made in several single tumour-type projects34. Further, the
power to identify recurrent mutations and mutual exclusivity has strengthened the
ability to distinguish “driver” from “passenger” aberrations (Lopez-Bigas,
Scientific Reports 2013, personal communication).

• What tissue associations underlie the major genomic structural changes in cancer?
Improved methods for the analysis of structural variation of large chromosome
segments have refined the ability to identify genomic and epigenetic regulators in
multiple peak regions seen only by collating data across different cancer types.
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Tissue-associated patterns have now been established for the rate and timing of
whole-genome duplication events35.

• What pathways emerge as critical and potentially actionable when all mutational
events across many tissues are considered together? New classes of mutations such
as those in chromatin remodeling are emerging as pan-cancer drivers revealed only
by: 1) collecting less-frequent events across tumour-types, 2) integrating event
types such as mutations, copy number changes, and epigenetic silencing, 3)
combining multiple algorithms to identify predicted drivers36, and 4) aggregating
genes using gene networks and pathways (Ideker, Nature Methods 2013, personal
communication).

• Can the increase in numbers of samples enhance the analysis of co-occurrence and
mutual exclusivity of gene aberrations and improve our ability to distinguish
drivers from passengers? A bird's-eye view of genomic and epigenomic events
reveals a “fate map” of the alternative routes to carcinogenesis in a decision tree
that spans tissue boundaries (Ciriello, Nature Genetics 2013, personal
communication).

• Can molecular subtypes be delineated to disentangle tissue-specific from tissue-
independent components of disease? Analysis of the epigenome, transcriptome, and
proteome reveals a strong influence of tissue on the state of the altered pathways in
tumour cells. For instance, the gene expression landscape reinforces the dominant
tissue-dependence of altered pathways, including a view at the level of over a
hundred proteins of high cancer import37 . Using all of the tumour types together
allows for any tumour-specific signals to be subtracted from the datasets.
Intriguingly, subtracting the tissue signal from DNA microarray gene expression
datasets reveals signatures of immune stromal influence that transcend tumour-type
boundaries38. Further, events that are common across lineages become apparent in
a Pan-Cancer analysis37. Examples are the hormonal dependencies of breast,
ovarian and endometrial cancers and a common “squamous” signature across head
and neck, lung, cervical and bladder cancers.

• Which events actionable in one tumour lineage are also actionable in another
tumour lineage, potentially increasing the range of indications for specific targeted
therapeutics? A systematic evaluation of machine-learning approaches reveals
methodological principles for predicting patient outcomes using integrated
information across tissues39.

Limitations of Pan-Cancer Analysis
Several data integration challenges place unavoidable limitations on the Pan-Cancer analysis
at the current time. A key challenge is the integration of data that have been generated on
different platforms, or updates of the same platform, as the technologies improve. In the
Pan-Cancer studies for example, there have been transitions to much higher density DNA
methylation arrays, use of different exome capture technologies, addition of RNA-Seq to
microarray-based RNA characterization and increases in the quality and number of
antibodies available for reverse-phase proteomic arrays (RPPA). A series of batch effects
analyses have been carried out to assess systematic platform-specific biases. However, more
work is needed to establish best practices for minimizing unwanted batch effects while
preserving biological signals.

The kind and quality of clinical data available for the cancer types varies widely. The
differences limit the ability to establish one-size-fits-all norms for demographic information,
histopathologic characterization, behavioral context, and clinical outcomes. For example,
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our survival data are relatively robust for serous ovarian cancer because of its poor
prognosis, but still immature for breast and endometrial cancers because (thankfully) most
of the patients do better for longer. Certain data elements are routinely collected only when
they are anticipated to be relevant (for example, the smoking history of lung, bladder and
head-and-neck cancer patients). Clear viral etiologies have been identified in several solid
tumours types, including head and neck cancer, cervical cancer, Kaposi's sarcoma and
hepatocellular carcinoma. However, a Pan-Cancer analysis of the infectious etiologies of
other cancers could not be conducted at present because infection status was recorded for
only some tumours and tumour types (as an optional data element). Finally, tumour stage
and grade are not easily comparable across different tumour types because, for good reason,
each has its own system. This set of challenges to Pan-Cancer analysis highlights the fact
that current clinical practice is largely conducted according to tissue or organ.

Statistically speaking, care must be taken to ensure that the increased sample size achieved
by cross cancer comparison does not lead to increased false negative rates for discovery (e.g.
by ‘diluting out’ an important mutation specific to one disease) or false-positive rates (e.g.
by compounding on false-positives known to result from current single-tumour
investigations34.

Rare events must not be obscured by disease-associated events. Tumour lineage plays an
important role in the observed patterns of co-aberrations and gene expression profiles that
indicate different consequences of seemingly similar events, for example involving the same
gene(s) or amplicon(s). Likewise, new methods for accurately probing cross-tumour trends
will need to account explicitly for the differences across tissues in mutation rates, copy
number changes at the focal and arm-level scales, and the prevalence of other co-occurring
events in the genetic and epigenetic background.

Despite those challenges, this collection of Pan-Cancer publications represents a landmark
in the continuing effort to understand the common and contrasting biology of cancers from a
molecular perspective. Still, major questions amenable to further Pan-Cancer investigations
remain (Box 3), and the techniques used to compare different tumours will undoubtedly
improve with use, time and further collaborative efforts.

Future Directions
The Pan-Cancer project represents one of the first of what will surely be many efforts to
coordinate analysis across the molecular landscape of cancer, especially as additional
tumour types are investigated in large numbers. Further increasing the number of samples
per tumour type and the variety of these tumour types will improve our ability to detect rare
driver events in heterogeneous tumour samples. But the true power will come from a
detailed analysis across types -- with links to high quality clinical outcomes and eventual
experimental validation and clinical trials to test the hypotheses that emerge. Technologies
such as laser capture microdissection and cell sorting will improve our ability to distinguish
whether omic signals arise from malignant or stromal cells. Histone profiling, protein
analysis based on mass spectrometry and de-convolution of tumour heterogeneity through
single-cell sequencing are examples expected to add important new dimensions of
information. Continued efforts to identify the progenitor cells of tumours will enable
distinguishing parochial from universal properties. Clone-level and single-cell cross-tumour
comparisons may reveal even further connections among tumour types. Longitudinal
genomic studies on primary resected tumours paired with their local recurrences and/or
metastases will be undertaken by large consortial efforts, which have heretofore been
restricted to primary disease and have lacked information about response to treatment. The
characteristics of primary tumours may change markedly when tumours metastasize to
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distant sites, particularly bone and brain. Pan-Cancer analyses of metastases will therefore
be highly informative for mapping out the relationships of metastatic tumours to primaries
and to normal tissues, establishing potential rules for invasion and homing.

The power of pan-cancer analysis will increase as technologies for monitoring individual
tumour cells at high resolution come into play. Now that the price of genome sequencing has
fallen, the next pan-cancer enterprise will be able to analyze large numbers of whole-
genome sequences across tumour types. Whole-genome analysis will complement the
current studies by shedding light on mutational processes in the non-coding parts of the
genome, which are largely unexplored to date. That expanded analysis will bring focus to
disruptions in promoter and enhancer sites and aberrations in non-coding RNAs, as well as
genomic integration processes at work in tumour evolution that result from mobile
endogenous and exogenous DNA elements such as retrotransposons and viruses. Whole-
genome sequencing will create a backdrop against which genome-wide association studies
can relate inherited predispositions to particular forms of cancer. Systems-oriented
approaches, based on relevant pathways and networks, will add to the therapeutic
opportunities that arise from the wealth of data. Experimental follow-up will be critical to
assess the functional consequences and therapeutic liabilities of these new findings.

From Many Tumours to the Individual Patient
The hope is that cross-tumour investigations such as the Pan-Cancer project will ultimately
inform clinical decision-making. We hope they will enable discovery of novel therapeutic
agents that can be tested clinically -- perhaps in novel adaptive, biomarker-based clinical
trials that cross tumour boundaries. Toward those ends, Pan-Cancer TCGA data sets have
been made available publicly in one location. Although coordination remains a challenge,
the data sets comprise an unequalled resource for integrative analysis of cancer in its many
forms.

A key challenge is the development of clinical trial strategies for connecting subsets of
tumours from different tissues in terms of molecular signatures. Recent analyses of
pharmacological profiling experiments across a diverse panel of cancer cell lines has
suggested that common genetic alterations predict response to therapy across multiple cell
lineages40-43. Biomarker-based design of clinical trials can increase statistical power, greatly
decreasing the size, expense, and duration of clinical trials.

The number and size of omic datasets on cancer available to the research community for
mining and exploring continue to expand rapidly, and computational tools to derive insights
into the fundamental causes of cancer are becoming more powerful. It is important to note
that the full potential of the enterprise will be realized only over time and with broader
efforts. Still, the collection of TCGA Pan-Cancer publications represents a significant
contribution to a new period of discovery in cancer research.
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Box 1: TCGA: Mission and Strategy

Important information about the biological relevance of the molecular changes in cancer
can be obtained through combined analysis of multiple different types of data at the
DNA, RNA, and protein levels.

For that reason, TCGA's principal aims are to generate, quality control, merge, analyze,
and interpret molecular profiles at the DNA, RNA, protein and epigenetic levels for
hundreds of clinical tumours from various tumour types and their subtypes. Cases that
meet quality assurance specifications are characterized using technologies that assess the
sequence of the exome, copy number variation (measured by single-nucleotide
polymorphism arrays), DNA methylation, mRNA expression and sequence, miRNA
expression, and transcript splice variation. Additional platforms applied to a subset of the
tumours, including whole genome sequencing and reverse phase protein arrays, provide
additional layers of data to complement the core genomic datasets and clinical/
pathological data. By the end of 2015, the TCGA Network plans to have achieved the
ambitious goal of analyzing the genomic, epigenomic, and gene expression profiles of
more than 10,000 specimens from 25 different tumour types.

TCGA's has other, complementary purposes as well: to promote the development and
application of new technologies, to detect cancer-specific molecular alterations, to make
the data and results freely available to the scientific community, to develop tools and
standard operating procedures that can serve other large-scale profiling projects, and to
build cadres of individuals (including experimentalists, computational biologists,
statistical analysts, computer scientists, and administrative staff) with the expertise to
carry out such large scale team science projects. As of July 24, 2013, TCGA has mapped
molecular patterns across 7,992 total cases representing 27 tumour types. The data, along
with tools for exploring them, are publicly available at cancergenome.nih.gov. Eight
‘marker papers’ (i.e., comprehensive initial publications on each of the tumour types)
have been published to date8-13,15,28.
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Box 2: Coordination of Data and Results

The first goal of the Pan-Cancer Analysis Working Group was to assemble data from the
separate disease projects to build a well-coordinated joint data set spanning multiple
tumour types. A data “freeze” (Dec 21, 2012) based on six different genomic and
epigenomic characterization platforms was made available as the “pancan12” data set to
all analysis groups. Twelve tumour types (GBM, OV, BRCA, LUSC, LUAD, COAD,
READ, KIRC, UCEC, BLCA, HNSC and LAML) were selected based on: data maturity,
adequate sample size, and publication or submission for publication of the primary
analyses. The pancan12 data set includes a total of 5,074 tumour samples, for which at
least one platform from each of genomic, epigenomic, and gene expression data had been
assessed for 93% (i.e., 4,705, listed in Table 1 by measurement platform). The essential
purpose of such a joint data set is twofold: to increase the statistical power to detect
functional genomic determinants of disease and to reveal both tissue-specific aspects of
cancer and intrinsic molecular commonalities across tumour types.

The Pan-Cancer analysis project started as an informal collaboration among members of
the TCGA Network but then quickly expanded to include many other interested
researchers. Ensuring standardization and consistency of the data and annotations across
multiple platforms and clinical data elements was a necessity for the project. To
coordinate analyses across this large group of researchers, formal pipelines were created
to establish a coherent working base of data and results.

The process of TCGA data generation and Pan-Cancer analysis is as follows (Figure 2).
First, tumour and germline samples are obtained from a large number of tissue source
sites and processed by the Biospecimen Core Resource (with sample selection according
to criteria established for each tumour type and with extensive quality controls) to
generate purified DNA, RNA and protein preparations. The preparations are sent to
Genome Characterization Centers (GCCs) and Genome Sequencing Centers (GSCs) for
molecular profiling, and the resulting data are deposited in the TCGA Data Coordinating
Center (DCC) to provide a primary source of data, at four levels of data processing.
Seven Genome Data Analysis Centers (GDACs), along with analysts in the GCCs, GSCs,
and in the external research community, share analysis and interpretation of the data,
coordinating activities through face-to-face meetings and regular (usually weekly)
teleconferences.

A “data freeze” was created by pulling higher levels of interpreted data (“Level 3”) from
the DCC into a coordinating repository called Synapse created by Sage Bionetworks. To
create a coherent dataset, a sample “white list” was created by synchronizing flagged
samples with the DCC, based on annotations and criteria from the individual disease
working groups. The Pan-Cancer project leverages the TCGA infrastructure for sample
acquisition, sample processing and data generation on individual tumour types, as well as
the production of derived data sets and a variety of analysis results assembled in the
Broad Institute's Firehose system (citation). Assembled robust, self-consistent data sets
across all 12 Pan-Cancer tumour types were deposited into Synapse. The Synapse system
implements mechanisms for tracking provenance and metadata, stable digital object
identifiers (DOIs) for data referencing, and flexible methods for data access, either
through a wiki-like web-based environment or programmatically through application
programming interfaces (APIs). The pancan12 datasets and selected results are available
at https://www.synapse.org/#!Synapse:syn300013 (doi:10.7303/syn300013).
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Box 3. Examples of additional major questions amenable to further Pan-
Cancer analyses

● What is the spectrum of nucleotide- and dinucleotide-level changes associated
with different carcinogenic etiologies (e.g. tobacco, pathogens, or inflammation)
operating in different parts of the body?

● Will integration of additional data sources including additional tumour types from
TCGA and other projects increase the power of analysis?

● How can molecular changes complement pathological analysis for classification
into tumour lineages with potentially different management?

● Can molecular profiles effectively categorize cancers for therapeutic decision-
making?

● Are there predictive expression-based signatures for genomic events that
transcend tissues, reflecting pathways disrupted by the alterations?

● Will comprehensive protein analysis through emerging mass spectrometry
approaches in the CPTAC and other efforts extend the power of the genomic,
transcriptomic, and proteomic analyses in TCGA.

● Will emerging technologies such as mass spectrometric metabolomics improve
our ability to identify actionable processes?

● How are changes in protein families distributed across different tumour types?

● Are aberrations in specific protein domains or pathways distributed differentially
across tumour lineages?

● Beyond the known examples including in cervical, head-and-neck, esophageal and
hepatocellular cancers, can we identify other cancer types that show virally-mediated
initiation?

● Are bacteria associated with different cancer lineages (as arefusebacteria in
colorectal cancer)?

● Can the answers to any of these questions help us design novel therapies and
clinical trials, with the ultimate goal of improving patient outcomes?
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Figure 1. Integrated data set for the comparison and contrast of multiple tumour types
The Pan-Cancer project assembled data from thousands of patients with primary tumours
occurring in different sites of the body covering twelve tumour types (upper left panel)
including glioblastoma multiform (GBM), lymphoblastic acute myeloid leukemia (LAML),
head and neck squamous carcinoma (HNSC), lung adenocarcinoma (LUAD), lung
squamous carcinoma (LUSC), breast carcinoma (BRCA), kidney renal clear cell carcinoma
(KIRC), ovarian carcinoma (OV), bladder carcinoma (BLCA), colon adenocarcinoma
(COAD), uterine cervical and endometrial carcinoma (UCEC), and rectal adenocarcinoma
(READ). Six platforms of omics characterizations were performed creating a “data stack”
(upper right panel) in which data elements across the platforms are linked by the fact that
tissue material from the same samples were assayed, thus maximizing the potential of
integrative analysis. Use of the data enables the identification of general trends including
common pathways (lower panel) revealing master regulatory hubs activated (red) or
deactivated (blue) across different tissue types.
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Figure 2. Data coordination for the Pan-Cancer TCGA project
Data were collected by the biospecimen collection resource (BCR) from 12 different tumour
types, characterized on six major platforms by the genome characterization and sequencing
centers (GCC/GSC). Datasets are deposited into the TCGA data coordination center (DCC)
from which it is then distributed to the Broad Institute's Firehose and Memorial Sloan
Kettering Cancer Center's cBioPortal for various automated processing pipelines. Analysis
working groups (AWG) conduct focused analyses on individual tumour types. Results from
the DCC, Firehose, and AWGs were collected and stored in Sage Bionetworks’ Synapse
system to create a “data freeze.” Genome data analysis centers (GDACs) accessed and
deposited both data and results through Synapse to coordinate distributed analyses.
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Table 1
The data “freeze” used by the Pan-Cancer project defined on December 21, 2012

Tabulated are the numbers of unique tumour samples available for each tumour type (rows) and each
measurement platform (columns).

RPPA
a

DNA Methylation
b

Copy Number
c

Mutation
d

miRNA
e

Expression
f

LUSC 195 358 345 178 332 227

READ 130 162 164 69 143 71

GBM 214 405 578 290 501 495

LAML 194 198 197 187 179

HNSC 212 310 310 277 309 303

BLCA 54 126 126 99 121 96

KIRC 423 457 457 417 442 431

UCEC 200 512 511 248 497 333

LUAD 237 431 357 229 365 355

OV 332 592 577 316 454 581

BRCA 408 888 887 772 870 817

COAD 269 420 422 155 407 192

Total 2674 4855 4932 3247 4628 4080

a
RPPA: Reverse-phase protein arrays measuring protein and phosphoprotein abundance.

b
DNA Methylation, DNA methylation at CpG islands.

c
Copy Number. Microarray-based measurement of copy number.

d
Mutation. Samples subjected to whole-exome sequencing to determine single nucleotide and structural variants.

e
miRNA. Sequencing of microRNA.

f
Expression. RNA Sequencing and microarray gene expression.
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