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ABSTRACT

The epigenomic era has revealed a well-connected network of
molecular processes that shape the chromatin landscape.
These processes comprise abnormal methylomes, transcrip-
tosomes, genome-wide histone post-transcriptional modifica-
tions patterns, histone variants, and noncoding RNAs. The
mapping of these processes in large scale by chromatin
immunoprecipitation sequencing and other methodologies
in both cancer and normal cells reveals novel therapeutic

opportunities for anticancer intervention. The goal of this
minireview is to summarize pharmacological strategies to
modify the epigenetic landscape of cancer cells. These
approaches include the use of novel small molecule inhibitors
of epigenetic processes specifically deregulated in cancer cells
and the design of engineered proteins able to stably reprogram
the epigenetic code in cancer cells in a way that is similar to
normal cells.

Introduction

The concept of “epigenetics” was pioneered by Conrad H.
Waddington in 1942 as “the branch of biology which studies
the causal interactions between genes and their products,
which bring the phenotype into being” (Goldberg et al., 2007,
Waddington, 2012). “Epi” comes from the Greek word “over,”
and thereby epigenetics is the study of the molecular, cellular,
and environmental aspects of heredity, which are not
explained by simple changes in the underlying DNA se-
quence. Epigenetic processes influence the chromatin struc-
ture, not the gene sequence per se, but the tridimensional
folding and package of the DNA and associated proteins,
referred to as chromatin (Strahl and Allis, 2000; Kouzarides,
2007). Heterochromatin, comprising pericentromeric regions,
satellite DNA, and retroviral long terminal repeats are
condensed and silenced areas of the genome (Zakrzewski
et al., 2011). In contrast, euchromatin comprises the loci being
actively transcribed (Gilbert et al., 2004). There are two im-
portant characteristics of the epigenetic state of cells. First,
unlike somatic mutations and other genetic alterations,
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which irreversibly alter the genes, epigenetic processes are
reversible and thus provide environmental plasticity and cell
adaptation to new microenvironments. Second, the chromatin
structure is inherited, and in absence of perturbations, the
chromatin state has an intrinsic memory and it is transmitted
over cell generations (Lange and Schneider, 2010; Margueron
and Reinberg, 2010).

In the last decade it has become clear that epigenetic
disruptions play a critical role in tumor initiation and
progression (Berdasco and Esteller, 2010). Recent research in
cancer has focused on the prognosis value of epigenetic
signatures in cancer, with the advent of genome-wide large-
scale profiling of tumor specimens. The emerging view of
cancer epigenetics is that epimutations might affect early
events of cancer, which could prime subsequent events in the
progression of the disease (Carmona and Esteller, 2011;
Rodriguez-Paredes and Esteller, 2011; Sandoval and Esteller,
2012). Epigenetic aberrations in cancer include both abnor-
mal silencing (for example, silencing of tumor/metastasis
suppressors) and reactivation of silenced regions (which leads
to oncogenic activation). In many cases, epigenetic aberra-
tions can collaborate with genetic changes, as for example in
the case of silencing of a second allele of a tumor suppressor

ABBREVIATIONS: AID, activation-induced cytidine deaminase; ATF, artificial transcription factor; CpG, cytosine-phosphate-guanine; DNAme, DNA
methylation; DNMT, DNA methyltransferase; ES, embryonic stem cells; GLP, G9a-like protein; HP1, heterochromatin protein 1; MBT, malignant brain
tumor domains; PHDs, plant homeodomains; PKMTs, protein lysine methyltransferases; PRMTs, protein arginine methyltransferases; SETD7, SET
domain containing (lysine methyltransferase) 7; SETDB1, SET domain, bifurcated 1; SUV39H1, suppressor of variegation 3-9 homolog 1 (Drosophila);
TALEs, transcription activator-like effectors; TET proteins, ten-eleven translocation family of proteins; TF, transcription factor; ZF, zinc finger.
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gene, such as BRCA (Liu et al., 2008a; Lim et al., 2009) and p16
(Arima et al., 2012). Numerous examples involve mutations in
chromatin modifiers themselves, which have a profound impact
in neoplastic progression. In addition to epigenetic modifiers and
chromatin remodelers, multiple molecular constituents impact
chromatin structure, such as transcription factors (TFs),
signal transduction proteins, histone variants, and noncoding
RNA, outlining the complexity and molecular crosstalk that
sculpts the epigenome (Baylin and Jones, 2011).

In light of the recognition of the importance of epigenetic
disruptions in cancer cells, strategies to block or revert these
changes are of growing interest in cancer therapeutics. This
review will focus on novel pharmacological approaches to
reprogram and remodel the epigenome of cancer cells into
a pattern that is similar to normal somatic cells. Ideally, this
reprogramming would entail hereditary changes in chromatin
resulting in long-lasting phenotypic alterations of tumor cells,
namely phenotypic memory. In the first part of this minire-
view we will summarize the language of chemical modifica-
tions in chromatin and the main chromatin modifiers (“writers”)
whose expression/and or activity is disrupted in cancer cells
relative to normal tissue. Next, we will discuss novel state-of-the
art approaches to revert or “rewrite” those aberrant epigenetic
processes in cancer cells using both small molecule inhibitors
and targeted engineered proteins.

The “Language” of Chromatin Modifications

The genome-wide epigenetic status (“epigenetic landscape”)
of cells is dictated by comprehensive sets of chemical
modifications that occur at both the DNA and in the histone
tails. Methylation of the DNA (DNAme) occurs in position 5 in
cytosine residues (Fig. 1). In mammals, the vast majority
(98%) of DNAme occurs in CpG (cytosine-phosphate-guanine)
dinucleotides in somatic cells. In embryonic stem (ES) cells,
however, about one-quarter of all DNAme occurs in non-CpG
context (Lister et al., 2009). In contrast to DNAme, histones
are subjected to several chemical modifications in their N-
terminal tails (Strahl and Allis, 2000), which are rather
unstructured and largely exposed in the context of the three-
dimensional structure of the nucleosomes (Dutnall and
Ramakrishnan, 1997; Luger et al., 1997) (Fig. 2). There is

Fig. 1. Structure of a double-stranded DNA duplex containing meCpG
(383D).

large chemical diversity and a great number of histone
modifications, including methylation, acetylation, phosphory-
lation, ubiquitination, sumoylation, ADP-ribosylation, deami-
nation, and protein isomerization. Some histone modifications,
such as H3K9me, H3K27me, and H4K20me, are typically
associated with repressive chromatin. In contrast, other mod-
ifications, such as H3K4me, H3K9Ac, H3K36me, and H3K79
are connected with actively expressed genes (Kouzarides, 2007,
Henikoff and Shilatifard, 2011; Turner, 2012).

Why is chemical language of histones so degenerate? In
principle, chemical modifications can modulate chromatin
structure by primarily altering the physical properties of the
DNA and or/associated proteins. For example, among all the
histone modifications, phosphorylation adds negative charges
to the histones, whereas acetylation merely reduces the
number of positive charges in chromatin. Because the DNA
helix is negatively charged, chemical modifications could act
to unravel the DNA from the histones, promoting chromatin
relaxation. Second, chemical modifications act as binding
platforms or epitopes for specific endogenous proteins (“bind-
ers” or “readers”). For example, DNAme marks are recognized
by methyl-binding proteins, such as methyl-binding protein-1,
histone methylation is recognized by chromo-like domains,
acetylation by bromodomains, and phosphorylation by 14-3-3
proteins. “Readers” are selective proteins able to recognize
specific histones and even different states of methylation,
for example heterochromatin protein 1 (HP1) recognizes
H3K9me3, polycomb 2 proteins recognize the H3K27me3
(Kouzarides, 2007). In the cell, endogenous readers form
specific complexes with chromatin modifiers possessing
catalytic activity (“modifiers” or “writers”). The complexity
of epigenetic regulation is further exemplified by the dis-
covery of multiple enzymes able to erase specific epigenetic
marks. These include histone deacetylases, lysine demethy-
lases (Klose et al., 2006; Arrowsmith et al., 2012), and the

Fig. 2. Structure of a nucleosome showing the core histones H3 in green
and the histone tail protruding out of the nucleosome outlining the
H3K9me2 mark in yellow (1KX5) and superimposed with the H3K9 lysine
methyltransferase (2RFI).
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more recently discovered DNA-demethylases, which are
involved in excision-repair DNA pathways (Rai et al., 2008;
Bhutani et al., 2010, 2011) erasing DNA methylation patterns
during development, differentiation, and reprogramming.

It has long been proposed that the chemical modifications in
chromatin act in a combinatorial manner to define an
epigenetic code, which coordinately shapes chromatin struc-
ture (Strahl and Allis, 2000). However, the large number of
histone modifications and the possible combinations of all
these primary modifications (many of them in the same
histone tail) clearly add several layers of complexity and
outline the plasticity of the epigenome. Among all the epi-
genetic modifications, DNAme and H3K9me are regarded as
stable and inherited repressive marks (Margueron and
Reinberg, 2010; Han and Brunet, 2012). Notably, DNAme is
a key modification that has traditionally been thought to
“irreversibly canalize” or “force cells” to engage into specific
cell fates (Hochedlinger and Plath, 2009). In the following
sections, the relationships and crosstalks between epigenetic
modifications, particularly DNAme and histone modifica-
tions, will be outlined. Finally, we will briefly describe some of
the key mechanisms associated with DNA demethylation in
mammalian cells.

Interconnections between DNA Methylation and
Histone Methylation

The interactions between “readers” and “writers” provide
regulatory opportunities for the physical transmission of
epigenetic marks along the chromosome (spreading) for the
transmission of epigenetic marks from a mother cell to
a daughter cell (inheritance of epigenetic information) and
define crosstalks of multiple epigenetic constituents (Cheng
and Blumenthal, 2010; Hashimoto et al., 2010). The inter-
actions between readers and writers can be direct or indirect.
Direct interactions include physical associations between
epigenetic modulators. For example, the lysine methyltrans-
ferase G9a, which deposits H3K9me2 and H3K9mel in
euchromatin (Wu et al., 2010), interacts with DNA methyl-
transferases through ankyrin domains (Feldman et al., 2006).
In self-renewal gene promoters, such as Oct4, this recruitment

Replication
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promotes an irreversible epigenetic switch, which forces stem
cells to differentiate (Feldman et al., 2006; Tachibana et al.,
2008). During DNA replication, the protein UHRF1 recog-
nizes hemimethylated DNA and forms a complex with sev-
eral proteins, including DNA methyltransferase 1 (DNMT1)
(which maintains DNAme patterns during replication) and
lysine methyltransferase G9a. These physical interactions
link DNAme with H3K9me in the replication fork, making
sure that both DNAme and H3K9me are spatiotemporally
coupled processes faithfully transmitted during replication
(Bostick et al., 2007; Sharif et al., 2007; Kim et al., 2009;
Hashimoto et al., 2010). Another crosstalk between DNAme
and H3K9me during DNA replication is mediated by methyl-
CpG-binding-proteins, such as the methyl-CpG binding pro-
tein 1 (MBD1). In heterochromatin, methylated DNA is bound
by MBD1, which recruits the H3K9 methyltransferase SET
domain, bifurcated 1 (SETDB1) (Schultz et al., 2002), an enzyme
that deposits H3K9me3 (Ichimura et al., 2005; Uchimura et al.,
2006; Cheng and Blumenthal, 2010; Hashimoto et al., 2010).
The latter mark is recognized by HP1 (Bannister et al., 2001;
Lachner et al., 2001), which in turn recruits histone lysine
methyltransferases, such as SUV39H1/2 (Krouwels et al., 2005).
In addition, HP1 directly binds to the PhD-like domain of
DNMT3A in vitro, which suggests that H3K9me could in
turn influence DNAme (Fuks et al., 2003). The above sug-
gest that DNAme and H3K9me are mutually reinforcing
silencing marks, which might serve to synchronize these two
processes during DNA replication, ensuring the inheritance
of the epigenetic information (Fig. 3). The crosstalk between
DNAme and H3K9me has also been described in plants
(Johnson et al., 2007).

A link between DNAme and histone deacetylation has been
long demonstrated through the discovery of the methyl-CpG-
binding protein 2 (Scarsdale et al., 2011). Methyl-CpG-
binding protein 2 carries a transcriptional repressor domain,
which recruits the corepressor histone deacetylase (Singal
et al., 2002). Reciprocally, histone acetylation is a mark as-
sociated with promoter activation and gene transcription.
H3/H4 lysine acetylation is recognized by bromodomain-
containing proteins, often physically linked to plant homeo-
domain (PHD) fingers and catalytic domains of histone

Fig. 3. A model outlining the crosstalk of some
epigenetic modifications during replication and after
the replication fork. HDAC, histone deacetylase; Suv39,
suppression of variegation 39 homolog 1 or 2 (Drosophila);
UHRF, Ubiquitin-like with PHD and Ring Finger do-
mains 1.



566

Blancafort et al.

acetyltransferases, such as pCAF (Clements et al., 1999; Nagy
and Tora, 2007) and p300 (Liu et al., 2008b; Wang et al., 2008a).
Bromodomains in the subunits of chromatin-remodeling en-
zymes, such as switch/sucrose nonfermentable family, interact
with acetylated histones (Reinke and Horz, 2003; Kundu et al.,
2007; Gao et al., 2008; Kizilyaprak et al., 2010), which anchor
remodeling activities in the nucleosomes and serve to promote
nucleosome eviction (Suganuma and Workman, 2011). In
summary, direct physical interactions between readers and
writers, and readers and erasers, could contribute to a quick
spread of a given mark(s) along the genome, leading to effective
chromosomal condensation and gene silencing or chromatin
relaxation and gene activation.

The interaction or crosstalk between epigenetic processes
could be also indirect. A residue of a given histone can be a
substrate of multiple modifications. For example, the incorpo-
ration of H3K9me by histone lysine methyltransferases could
indirectly block the acetylation of the same histone residues by
histone acetyltransferases. Another indirect example of epige-
netic crosstalks is the incorporation of DNAme, which might
negatively affect H3K4me. Methylated DNA is particularly
refractory to binding of some DNA-binding proteins, includ-
ing the zinc finger protein Cfpl, which preferentially binds
unmethylated DNA. Cfp1l interacts and recruits H3K4 methyl-
transferase SETD1, and thereby induction of DNAme might
indirectly trigger a decrease on H3K9me (Xu et al., 2011),
potentially explaining the dramatic reverse correlation between
these two marks (Thomson et al.,, 2010). Reciprocally, high
levels of Cfpl in the genome could protect these regions from
DNA methylation and gene silencing.

The relationship between DNAme and the silencing mark
H3K27me3 is currently less well understood. Multiple groups
had proposed that in cancer cells H3K27me3 could mark
genes subsequently silenced by DNAme, although many
developmentally regulated genes are marked H3K27me3 in
the absence of DNAme (Ohm et al., 2007; Schlesinger et al.,
2007; Widschwendter et al., 2007). The existence of a mutually
reinforcing mechanism linking DNAme and H3K27me3 is
a topic of intensive research (Hon et al., 2012).

Context-Dependence of the Epigenetic
Modifications

The advent of genome-wide approaches for the mapping of
chromatin modifications, such as chromatin immunoprecipitation
sequencing, has established the relationships and context
dependence of epigenetic modifications, both in embryonic,
induced pluripotent, and somatic cells (Chari et al., 2010;
Zhou et al., 2011). For example, in promoter regions, DNAme
strongly correlates with some histone modifications, specifi-
cally with high levels of H3K9me and low levels of H3K4me. In
fact, DNAme is a better predictor of H3K9me and H3K4me
than the underlying genome context (Mikkelsen et al., 2007;
Meissner et al., 2008). Unlike promoter regions, DNAme inside
the gene bodies is not correlated with silencing. Widespread
low-density of methylation has been proposed to serve as
a mechanism to avoid inappropriate transcription initiation
from cryptic promoters (Bird, 1993; Tran et al., 2005).

Genome-wide maps of histone modifications in stem
and lineage-committed progenitor cells have revealed that
H3K4me3 marks the genes that are actively expressed. The

“bivalent state” (H3K4me3 and H3K27me3) labels develop-
mental genes poorly expressed that are poised for either
expression or repression (Bernstein et al., 2006). In addition,
the H3K27me3 mark is retained in genes that are stably
repressed. H3K9me3 and H4K20me3 are characteristic of
satellite, telomeric, and long-terminal repeats. Finally, H3K36me3
marks coding and noncoding transcripts (Mikkelsen et al., 2007;
Meissner et al., 2008).

Mechanisms of DNA Demethylation

The discovery of active and passive mechanisms to erase
DNAme has opened the door to a new paradigm: DNAme and
demethylation may not be “one-way” streets as initially
thought but highly dynamic and regulated processes (Bhutani
et al., 2011). The current view of DNA demethylation involves
the integration of multiple interconnected pathways. DNA
demethylation can be the result of passive mechanisms, for ex-
ample, by dilution during replication or inactivation of DNMTs.
In addition to passive demethylation, several enzymatic activities
have been recently associated with active demethylation and
DNA repair. Much excitement has surfaced since the discovery
of 5-hydroxymethylcytosine in the mammalian genome in
neuronal and ES cells (Kriaucionis and Heintz, 2009; Tahiliani
et al., 2009) and its role as an intermediate and key player in
DNA demethylation during DNA repair. The ten-eleven
translocation (TET) protein family members catalyze the
active modification of 5meC to give 5-hydroxymethylcytosine.
TET proteins are 2-oxoglutarate and Fe(II)-dependent dioxy-
genases that catalyze the conversion of 5-methylcytosine in
5hC. TET1 was first identified in acute myeloid leukemia as
a fusion protein with the mixed lineage leukemia factor and
was designated as leukemia associated protein (Ono et al.,
2002). TET1 contains a CXXC zinc finger DNA-binding
domain that binds preferentially CpG-rich sequences near
the transcription start site of the targeted genes (Williams
etal., 2011; Wu et al., 2011). TET1 and TET2 are expressed in
mouse ES cells and are necessary for cell lineage specification
(Ficz et al., 2011; Koh et al., 2011). TET3 mediates the
conversion of 5-methylcytosine to 5hC in the paternal pro-
nucleus after fertilization (Gu et al., 2011; Igbal et al., 2011).

Recently, the activation-induced cytidine deaminase (AID)
has been recognized to participate in DNA demethylation.
AID has a pivotal role in generating antibody diversity
in lymphocytes. Unlike TET proteins, AID lacks of a DNA
binding activity. IAD catalyzes deamination of cytosine
residues to uracil. This step is followed by an excision repair
or mismatch repair pathway, which is error prone. In addition
to this function to generate the antibody repertoire, the AID
enzyme has been implicated in demethylation in zebrafish
(Rai et al., 2008) and in mammals. Hence, mice lacking AID
exhibit global DNA hypermethylation in the primordial germ
cells (Popp et al., 2010). Active DNA demethylation is believed
to be enzymatically coupled with the replacement of the
modified cytosine via DNA repair. DNA glycosylases, such as
those belonging to the base excision repair pathway have been
involved in the removal of modified cytosine in plants (Gehring
et al., 2009). In mammals, these enzymes could act in concert
with TET and AID enzymes to promote demethylation. In this
model, 5-methylcytosine and 5-hydroxymethylcytosine are first
deaminated by AID to thymine and 5-hydroxymethyluracil,
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respectively, followed by glycoylase-mediated thymine and 5-
hydroxymethyluracil excision repair (Cortellino et al., 2011).

Epigenetic Alterations in Cancer

Tumor cells show multidimensional aberrations affecting
many levels of regulation, including genetic changes, but also
profound modifications in the epigenetic landscape. The
“cancer methylome” is therefore distinct from normal, non-
transformed tissue. Characteristic hallmarks of cancer in-
clude a global genome-wide hypomethylation and also
hypermethylation of CpG islands (which is typically associ-
ated with gene repression) (Berdasco and Esteller, 2010;
Portela and Esteller, 2010; Rodriguez-Paredes and Esteller,
2011; Sandoval and Esteller, 2012). However, a substantial
fraction of DNA methylation occurs in the cancer methylome
away from the transcription start site (~2 kb or more),
comprising microRNAs and mirtrons (Dudziec et al., 2011)—
these dinucleotides are named CpG shores (Irizarry et al.,
2009; Sandoval et al., 2011).

Global DNA hypomethylation and local hypermethylation
has recently been confirmed by whole genome shotgun
sequencing of bisulfite-treated DNA (methyl-sequencing) of
a low-passage breast cancer cell HCC1954 relative to normal
epithelial cells (HUMEC cell line). This study revealed that
the majority of hypomethylated regions in cancer cells
correlated with partially methylated domains in normal cells.
Surprisingly, in the tumor cells, these regions exhibited mono-
allelic DNA methylation, one allele displaying DNAme and
the other allele possessing the repressive histone marks
H3K9me3 or H3K27me3. Thus, hypomethylated regions in
cancer cells were correlated with silenced gene expression and
repressed chromatin (Hon et al., 2012). In an independent
study, differentially methylated regions have been mapped in
colon cancer relative to normal tissue. These regions were
associated with high gene expression variability. Whole
genome bisulfite sequencing has also confirmed hypomethy-
lation in discrete blocks in about half of the cancer genome.
These data suggest a model of neoplastic progression in-
volving loss of epigenetic stability and tumor heterogeneity
(Hansen et al., 2011). In another recent study in colon cancers
versus matched normal tissue, focal CpG island hyper-
methylation was also detected within long-range (>100 base
pairs) hypomethylation regions. In this case, the widespread
changes of DNA methylation in cancer was correlated with
repressive chromatin and by the three-dimensional organiza-
tion of the chromatin inside the nucleus (Berman et al., 2012)

In mammalian cells, DNA methylation outside promoter
regions frequently occurs in long-terminal repeats of viral
origin and other repetitive regions named satellite regions.
The methylation of these sequences in healthy cells could
serve to protect the genomes by preventing the expression of
exogenous promoters. Hypomethylation of preferentially re-
petitive sequence classes including short interspersed ele-
ments, long interspersed elements (e.g., LINE-1 elements),
satellite, subtelomeric, and Alu repeats, has been associated
with tumor progression in several cancer models, such as
colon (Rodriguez et al., 2008; Sunami et al., 2011), squamous
cell carcinomas of the lung (Pfeifer and Rauch, 2009), head,
neck (Szpakowski et al., 2009), and mammary tumors (Costa
et al., 2006). Hypomethylation of repetitive regions could
prime genomic instability and also reactivate potential
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oncogenes during transformation, tumor progression, and
metastasis. Importantly, the use of global demethylating
agents for the treatment of cancers (e.g., 5-Aza-2’dC) in in
vitro models has indicated that these inhibitors could prime
tumor progression by re-expression of silenced oncogenes,
such as Sox2 in chondrosarcoma cells (Hamm et al., 2009) and
c-Met in colon carcinoma cell lines (Weber et al., 2010).

The genome-wide mapping of DNAme changes in tumor
versus normal cells could help investigators gain valuable
prognosis information in cancer patients and help not only to
identify single gene hits important for tumor progression, but
also to define prognosis signatures. Esteller et al. (2000)
demonstrated that hypermethylation of CpG islands in the
promoter of the gene O-6-methylguanine-DNA methyltrans-
ferase is a predictor of good response of glioma cancer patients
to alkylating agents (Esteller et al., 2000). Since then,
genomic approaches have identified groups of biomarkers
associated with poor prognosis and responsiveness to thera-
peutic drugs, such as in pancreatic (Gupta et al., 2012) and
colon cancers (Esteller et al., 2001). In glioblastoma multi-
forme, a genome-wide study by Martinez and colleague
demonstrated that genes hypermethylated in glioblastoma
multiforme were highly enriched for targets of the polycomb
repressive complex 2 in embryonic stem cells, and thus, these
tumors exhibited a methylome with stem cell-like features
(Martinez et al., 2009; Martinez and Esteller, 2010).

During the process of immortalization, tumorigenesis, and
tumor progression precancerous cells might acquire a “hyper-
methylator phenotype” affecting several tumor suppressor
gene promoters (Sato et al., 2010). Methylation of p16 is a key
gateway control for cells to overcome senescence barriers, and
together with overexpression of telomerase these events
might be crucial for the onset of the tumorigenic process
(Gallardo et al., 2004; Beltran et al., 2011a). Another example
in breast and ovarian cancers is the methylation of the
BRCA1 tumor suppressor (Jacinto and Esteller, 2007;
Stefansson et al., 2011), a gene associated with DNA repair,
thereby promoting further genomic instability (Jacinto and
Esteller, 2007). Mutations of BRCA genes have been associ-
ated with expansion of stem/progenitor cells and basal-like
cancer (Liu et al., 2008a; Rakha et al., 2008). For these genes,
methylation and genetic alterations can contribute to inacti-
vating both copies of the tumor suppressor. Some tumor
suppressors, namely class II tumor suppressor genes, are
solely inactivated by epigenetic mechanisms. One classic
example is the tumor suppressor mammary serine protease
inhibitor (maspin), in which the degree of promoter methyl-
ation clearly correlates with disease stage and metastatic
behavior in multiple cancer models, such as breast, lung, and
prostate cancer (Zou et al., 1994; Futscher et al., 2002, 2004).
In the maspin promoter, DNAme clearly correlates with
H3K9me2 (Wozniak et al., 2007), which could be explained by
the tight epigenetic crosstalk established between DNA
methyltransferases and the H3K9 methyltransferase G9a.

The era of cancer epigenomics has recently identified the
extent of the histone modifications in the cancer genome
relative to normal tissue, leading to aberrant gene activation
or repression (Rodriguez-Paredes and Esteller, 2011; Sandoval
and Esteller, 2012). In non-small lung cancer, high dimethyl-
H3K4 and low acetyl-H3K9 has been associated with favor-
able prognosis (Song et al.,, 2012). As discussed earlier,
aberrant H3K4me and H3K27me have also been detected in
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prostate cancer cells (Ke et al., 2009) and human colorectal
cancer (Enroth et al., 2011).

What is the mechanistic basis of aberrant epigenetic
regulation in cancer cells? In many cases, mutations or
disruption in gene expression of the chromatin modifiers
themselves have been identified. For example, the polycomb
group of methyltransferases, such as enhancer of zeste
homolog 2 (drosophila), are often overexpressed in basal-like
breast cancers, particularly in African-American women
(Chase and Cross, 2011; Pang et al., 2012). The histone
methyltransferase G9a (Chen et al., 2010) and other lysine
methyltransferases have also been associated with tumori-
genesis and targeted by screening and structure-based design
for the identification of specific inhibitors (Unoki, 2011).
Deregulation of TF gene expression might cause profound
effects in the epigenetic landscape of cells. During reprogram-
ming of somatic cells toward pluripotency, the exogenous
delivery of Oct4, Sox2, Klf4, and c-Myc TFs is sufficient to
change the epigenetic architecture of the genome in a way
that is similar to embryonic ES cells (Takahashi and
Yamanaka, 2006; Takahashi et al., 2007). Moreover, intensive
research revealed that induced pluripotent stem cells are not
identical to ES cells, retaining epigenetic features (epigenetic
memory) from the cell of origin (Takahashi and Yamanaka,
2006; Takahashi et al., 2007; Kim et al., 2010; Polo et al.,
2010; Lister et al., 2011; Ziller et al., 2011). The “pluripotency”
TFs activate a cellular network involving many other self-
renewal TFs and chromatin remodelers. An imbalance in
normal gene expression due to changes in expression or activity
of specific TF's could lead to dysregulation of the epigenome of
cells, resulting in cancer predisposition. In the mammary
gland, our laboratory has demonstrated that overexpression of
the TF Oct4 leads to aberrant epithelial to mesenchymal
transition and to the generation of clones possessing tumor
initiation capabilities (Beltran et al., 2011a).

In addition to coding regions, many noncoding RNAs have
been associated with tumor progression (Veeck and Esteller,
2010). An explosion of studies has demonstrated global
changes in expression of micro-RNA signatures between
normal and tumor cells in multiple tumor types, including
a recent study in lung cancer (Guan et al., 2012). Interest-
ingly, some microRNAs are epigenetically silenced and act as
tumor suppressors, whereas many others act as oncogenes
(Cho, 2012). The significance of the complex noncoding-RNA
circuitry in cancer development is not well understood;
microRNAs could fine tune the threshold levels of critical
targets involved in development and perhaps in cancer,
illustrating the complexity of the regulatory network control-
ling cancer progression.

Strategies to Revert the Epigenetic Landscape of
Cancer Cells Using Small Molecules and
Engineered Proteins

The epigenetic deregulation of tumor cells comprising the
aberrant silencing of tumor suppressors and the hypomethy-
lation of potential oncogenes creates the basis of novel
therapeutic strategies to revert their chromatin state. The
endogenous silencing of tumor suppressors can be reverted
with epigenetic inhibitors, such as DNA methyltransferase,
histone methyltransferase, and histone deacetylase inhibitors.

An active area of research aims at developing chemical
approaches to inhibit specific “writers” or “erasers,” some of
which will be reviewed in the following sections. Moreover, it
is believed that these agents’ lack of locus selectivity may
result in potential off targets and might cause adverse effects
in cancer patients. Another approach is the design of artificial
proteins or artificial transcription factors (ATFs) able to
recognize specific sequences in the genome, directing a chro-
matin modification or combinations of chromatin modifica-
tions, in specific loci.

Selective Inhibitors of Bromodomains and
Methyl-Lysine Readers

The acetylation and methylation of lysine residues play
a central role in chromatin function, substantially through
creation of binding sites for the readers of these marks
(Taverna et al., 2007; Wang et al., 2008b). Although acetylation
of lysine eliminates the residue’s positive charge (akin to the
significant change in chemical properties and charge upon
phosphorylation of serine, threonine, and tyrosine), methyla-
tion is a more subtle post-translational modification, simply
shifting the chemical properties of lysine toward a more diffuse,
polarizable positive charge as methylation proceeds from mono-
methyl (Kmel) to trimethyl (Kme3) (Zacharias and Dougherty,
2002; Hughes et al., 2007). Recently, small molecule probes of
bromodomains, the readers of acetylated lysine, have been
reported, and their utilization has revealed bromodomain
regulation of critical gene transcription events such as the
regulation of the c-myc oncogene (Filippakopoulos et al., 2010;
Dawson et al., 2011; Delmore et al., 2011). Although the
current repertoire of acetyl lysine readers in the human
genome is limited primarily to the structurally homologous 57
bromodomains and possibly a subset of PHDs (Zeng et al.,
2010), there are more than 200 methyl-lysine (Kme) reader
domains described within several protein families: PHD; the
so-called "royal family" made up of Tudor, Agenet, chromo,
(Pro-Trp-Trp-Pro), and MBT (malignant brain tumor)
domains; the WD40 repeat proteins consisting of WDR5,
and EED (Adams-Cioaba and Min, 2009; Margueron et al.,
2009). This large Kme reader family seems destined to expand
further as research in epigenetics continues (Kuo et al., 2012;
Nakamura et al., 2012). A unifying feature of all of these
domains is the presence of an “aromatic cage” that comprises
the Kme binding pocket (Li et al., 2007b; Santiago et al.,
2011). Computational analysis suggests that this target class
has significant drugability (Santiago et al., 2011), and
progress toward chemical probes for Kme readers is summa-
rized here (Frye et al., 2010; Herold et al., 2011a).

In contrast to many protein target classes, such as G protein-
coupled receptors, nuclear receptors, and protein kinases, where
ligand discovery sometimes proceeded determination of high-
resolution protein structures by decades, Kme binding sites
were relatively well explored structurally prior to any reports
of potent, small molecule ligands (Ruthenburg et al., 2007;
Adams-Cioaba and Min, 2009). As a consequence, approaches
toward ligands have been based primarily upon computational
and structural techniques (Campagna-Slater and Schapira,
2010; Campagna-Slater et al., 2010; Kireev et al., 2010). In the
first report of experimentally confirmed Kme binding domain
small molecule ligands (MBT), Kireev et al. (2010) used both
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a two-dimensional and three-dimensional virtual screening
approach to select ligands from a computationally curated
and procurable set of 5.8 million small molecules. Of 51
compounds tested in a histone-peptide competitive dose
response proximity assay (Wigle et al., 2010a), 19 compounds
produced a measurable IC5q in the 5-100 uM range. All active
compounds from this screen contained a mono- or dialkyl-
amine that presumably satisfies the mono- and dimethyl-
lysine histone peptide preference of the MBT domains (Kireev
et al., 2010). Subsequently, Herold et al. (2011b) described the
structure- and pharmacophore-based design of UNC669 (Fig.
4) that demonstrates a 5 uM dissociation constant (Kd) versus
L3MBTL1 (Herold et al., 2011b). The conformationally rigid
piperidino-pyrrolidine Kme mimic in UNC669 results in
a ligand with fivefold greater affinity for LSMBTL1 than the
H4K20mel peptide—a presumed endogenous binding part-
ner. UNC669 demonstrated moderate to high selectivity as a
ligand for LSMBTL1 versus a small panel of other Kme
binders with the next highest affinity being for L3MBTL3
(Herold et al., 2011b). A subsequent structure-activity relation-
ship study of the UNC669 template revealed that pyrrolidine is
an optimal size and shape for binding in the aromatic cage of
L3MBTL1 that recognizes Kme and that an increase in ring
size to piperidine was not tolerated (Herold et al., 2012).
Although these first reports of antagonists of Kme binding
domains have described ligands of modest potency, the
functional conservation of the pi-cation Kme recognition motif
across this large and structurally diverse domain family bodes
well for improvements in affinity as a further structure-
activity relationship is developed (Herold et al., 2011a).

Selective Inhibitors of Protein Lysine
Methyltransferases

Protein lysine methylation is increasingly recognized as an
important type of post-translational modification. This mod-
ification has been heavily studied in the context of epigenetic
regulation of gene expression through histone lysine methyl-
ation (Strahl and Allis, 2000; Jenuwein and Allis, 2001;
Martin and Zhang, 2005; Bernstein et al., 2007; Kouzarides,
2007; Gelato and Fischle, 2008), but numerous nonhistone
substrates suggest that the impact of lysine methylation is not
limited to chromatin biology (Huang et al., 2006, 2007, 2010;
Rathert et al., 2008). Protein lysine methyltransferases
(PKMTsSs, also known as histone methyltransferases) catalyze
mono-, di-, and/or trimethylation of lysine residues of histone
and nonhistone proteins (Kouzarides, 2007; Copeland et al.,
2009). Since the first PKMT was characterized over a decade
ago (Rea et al.,, 2000), more than 50 PKMTs have been
identified (Kouzarides, 2007; Copeland et al., 2009; Wu et al.,
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Fig. 4. Structure of UNC669. See PDB 3P8H for structure of UNC669
bound to LSMBTL1.
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2010). Growing evidence suggests that PKMTs play critical
roles in various human diseases including cancer (Bedford
and Richard, 2005; Martin and Zhang, 2005; Fog et al., 2007;
Cole, 2008; Esteller, 2008; Copeland et al., 2009; Spannhoff
et al., 2009a, 2009b; Bissinger et al., 2010; Frye et al., 2010;
Yost et al., 2011; He et al., 2012 ). Selective inhibitors of
PKMTs are valuable tools for dissecting biologic functions of
these proteins and assessing their potential as therapeutic
targets. In this part of the review, we briefly discuss the
selective PKMT inhibitors discovered to date (Fig. 5).

The discovery of BIX01294, the first selective PKMT
inhibitor by Jenuwein and colleagues (Kubicek et al., 2007)
was a major milestone in the PKMT inhibitor field. BIX01294
has good in vitro potency against G9a and G9a-like protein
(GLP) and is selective for G9a and GLP over SUV39H1 and
SETDB1 and SETD7 (Kubicek et al., 2007; Chang et al.,
2009). BIX01294 is also active in cells. However, it has a poor
separation of functional potency and cell toxicity (Chang et al.,
2010; Vedadi et al., 2011; Yuan et al., 2012). Optimization of
this quinazoline scaffold via structure-based design and
synthesis by Jin and coworkers led to the discovery of
UNCO0638 (Vedadi et al., 2011), a chemical probe of G9a and
GLP and several other potent and selective inhibitors of G9a
and GLP (Liu et al., 2009, 2010, 2011). UNC0638 has
balanced high in vitro potency versus G9a/GLP and desirable
physicochemical properties and is >100-fold selective for G9a
and GLP over a broad range of epigenetic and nonepigenetic
targets (Vedadi et al., 2011). Importantly, UNC0638 has
robust on-target activities in cells and an excellent separation
between functional potency and cell toxicity (Vedadi et al.,
2011). Cheng et al. (2010) also discovered a potent G9a and
GLP inhibitor E72 based on the quinazoline template via
structure-based design and synthesis. E72 has high in vitro
potency versus G9a and GLP and is inactive against
SUV39H2 (Chang et al., 2010). E72 is also active in cells
and shows reduced cell toxicity compared with BIX01294
(Chang et al., 2010). X-ray cocrystal structures of these
G9a/GLP inhibitors in complex with GLP or G9a reveal that
these quinazoline-based inhibitors occupy the substrate binding
groove and do not occupy the cofactor binding site (Chang
et al.,, 2009, 2010; Liu et al., 2009; Vedadi et al., 2011). These
findings were confirmed by mechanism of action studies,
which reveal that UNC0638 and its analog are competitive
with the peptide substrate and noncompetitive with the cofactor
(Wigle et al.,, 2010b; Vedadi et al.,, 2011). More recently,
Schreiber and coworkers discovered a cofactor-competitive G9a
inhibitor BRD9539 (Yuan et al., 2012), which is structurally
distinct from quinazoline-based G9a/GLP inhibitors. BRD9539
has moderate in vitro potency versus G9a and EZH2 and is
selective over SUV39H1, NSD2, DNMT1, 16 other chromatin-
modifying enzymes, and 100 kinases (Yuan et al., 2012).
BRD4770, the methyl ester of BRD9539, is active in cells with
a cellular potency similar to the in vitro potency of BRD9539
(Yuan et al., 2012).

The discovery of EPZ004777, the first highly selective,
cofactor-competitive PKMT inhibitor by Pollock and co-
workers (Daigle et al., 2011) was also a significant advancement
in the PKMT inhibitor discovery field. EPZ004777, a nucleo-
side-based inhibitor, is highly potent versus DOT1L (X; = 0.3
nM) and >1,000-fold selective for DOT1L over other PKMTs
and PRMTs (protein arginine methyltransferases) tested
(Daigle et al., 2011). In addition, EPZ004777 selectively kills
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Fig. 5. Selective Inhibitors of PKMTs. DOT1L, DOT1-like; SMYD2, SET and MYND domain containing 2.

off cells bearing mixed lineage leukemia translocation and
continuous infusion of EPZ004777 via a mini-pump increases
animal survival in a mouse mixed lineage leukemia xenograft
model (Daigle et al., 2011). Song and coworkers also discovered
potent, selective, cofactor-competitive, nucleoside-based inhib-
itors of DOT1L and obtained an X-ray cocrystal structure of
DOTI1L in complex with one of their inhibitors (Yao et al.,
2011). Compound 1, the most potent and selective inhibitor in
their series, was proposed to be capable of covalently modifying
the enzyme (Yao et al., 2011).

In 2011, Ferguson et al. (2011) reported the discovery of
a potent SMYD2 inhibitor AZ505 (IC5q = 120 nM), which is
selective for SMYD2 over a panel of PKMTs including
SMYD3, DOT1L, EZH2, GLP, G9a, and SETD7. The X-ray

cocrystal structure of AZ505 in complex with SMYD2 reveals
that AZ505 occupies the peptide binding groove, which was
confirmed by the findings from mechanism of action studies:
AZ505 is competitive with the peptide substrate and un-
competitive with the cofactor (Ferguson et al., 2011). Most
recently, an X-ray cocrystal structure of compound 2 in
complex with SETD7 has been reported in the protein data
bank (4E47). Although the in vitro potency of this SETD7
inhibitor has not been reported, the X-ray cocrystal structure
reveals that this inhibitor occupies the substrate-binding
groove and does not occupy the cofactor binding site.

GSK-A was recently reported as the first selective, cofactor-
competitive inhibitor of EZH2 by Diaz et al. (2012). GSK-A
(K; = 700 nM), which was identified via high throughput
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screening, is selective for EZH2 over a panel of PKMTs,
PRMTs, and DNMTs. It is competitive with the cofactor and
noncompetitive with either the peptide or nucleosome sub-
strate. GSK-A is cell permeable and reduces cellular levels of
H3K27me3 with an ICsq of 8 uM. Most recently, Knutson
et al. (2012) discovered EPZ005687, a highly potent, selective,
and cofactor-competitive inhibitor of EZH2, via high through-
put screening and subsequent optimization. EPZ005687 (K; =
24 nM) is 50-fold selective for EZH2 over EZH1, >500-fold
selective over 15 other PKMTs and PRMTSs, and at least 60-
fold selective over a broad panel of G protein-coupled re-
ceptors and ion channels. Similar to GSK-A, EPZ005687 is
competitive with the cofactor and noncompetitive with the
nucleosome substrate. It inhibits wild-type EZH2 and 6 Y641
or A677 EZH2 mutants with similar in vitro potencies and
reduces H3K27 methylation in various lymphoma cells with
high cellular potencies. Importantly, EPZ005687 selectively
induces apoptotic cell killing in heterozygous Y641F or A677G
mutant cells and has little effect on the proliferation of wild-
type lymphoma cells.

Artificial Transcription Factors as Locus-specific
Epigenetic Modulators

Locus-specific targeting of epigenetic domains in chromatin
requires minimally two modules: a DNA-recognition domain,
which has sequence selectivity, and an effector domain, which
is engineered to modify chromatin (Beltran and Blancafort,
2010). Most engineered proteins were constructed using
zinc finger (ZF) scaffolds, and more recently, transcription
activator-like effectors (TALEs), which are bacterial proteins
of the genus Xanthomonas that are injected into infected
plants (Mussolino and Cathomen, 2012). The DNA-binding
specificity of a TALE is a tandem array of ~15.5-19.5 single
repeats, each repeat containing ~34 conserved residues. The
binding specificity is dictated by positions 12 and 13 of the re-
peats, known as repeat variable residues. Thereby, the TALE
code is a simple 1:1 interaction, one repeat unit to one
nucleotide (Moscou and Bogdanove, 2009; Deng et al., 2012;).
Recently, several laboratories have designed artificial TALEs
for gene regulation and genome editing using nuclease
technology (Bogdanove and Voytas, 2011; Bultmann et al.,
2012). The on-targets and potential off-targets of these emerging
technologies are still under investigation.

Sequence specific Cys2-His2 ZFs have been engineered by
several approaches, including “helix grafting” (directed
mutations in the a-helical recognition sequence), and by in
vitro as well as in vivo selection experiments in both bacteria
and yeast (Beltran et al., 2006)). These selection experiments
have overcome the context dependence of the assembly of the
ZF units, generating proteins with potentially improved
specificity for the target DNA. Each ZF module recognizes
primarily three base pairs of DNA, and most studies have
engineered polydactyl proteins consisting of three or more ZF
proteins. Thereby, 6ZF proteins will recognize an 18-base pair
recognition site in the DNA with potentially unique specificity
in the genome (Tan et al., 2003), although potential off-targets
might also occur in the cell due to the binding of the engineered
protein to closely related binding sites. ZF proteins have been
linked to several activator or repressor domains, promoting
specific activation or repression of the targeted gene by
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recruiting specific coactivator or corepressors (Sera, 2009;
Stolzenburg et al., 2010). However, such a first generation of
effector domains does not possess intrinsic catalytic activity to
modify either the histones or the DNA. Consequently, these
effectors are expected to have a transient effect in the target
cell and are not capable of inducing epigenetic memory (tran-
smission of epigenetic modifications over the cell progeny). In
contrast, the linkage of ZFs with epigenetic modifiers possess-
ing enzymatic activity is expected to directly modify the
histones or the DNA. Thus, some of these effectors are
potentially able to promote hereditable changes in chromatin
(Rivenbark et al., 2012).

Among all epigenetic marks, DNAme and H3K9me are
recognized as being hereditable marks, or transmitted over
the cell progeny. Several studies have demonstrated that
linkage of a catalytic domain of bacterial methyltransferases
with designer ZFs leads to targeted DNAme in plasmid-based
assays or integrated reporters (Carvin et al., 2003; Minczuk
et al., 2006; Li et al., 2007a; Smith and Ford, 2007; Smith
et al., 2008). To avoid untargeted methylation, programmable
DNA methyltransferases have been constructed, in which the
expression of two independent ZF proteins can complement or
restore the activity of a functional DNA methyltransferase
enzyme (Nomura and Barbas, 2007; Meister et al., 2010).
Interestingly, triple-helix forming oligonucleotides have been
coupled with a DNA methyltransferase M.SssI to promote
targeted methylation of the EpCAM oncogenic promoter (van
der Gun et al., 2010). Our laboratory recently reported the
first endogenous targeted DNA methyltransferase activity in
a cancer genome, by tethering 6ZF domains with the catalytic
domain of human Dnmt3a, an enzyme that catalyzes the de
novo DNAme (Fig. 6). When linked with a 6ZF promoting
homing to a tumor suppressor gene promoter, such as Maspin,
the ZFs-Dnmt3a fusions promoted targeted DNAme, which
was accompanied by an increased tumorigenic ability of the
breast cancer cells in vitro. In contrast, in the context of an
oncogene, such as Sox2, 6ZF linked to Dnmt3a promoted
cancer cell growth arrest. Importantly, these studies sug-
gested that the silencing initiated by the ZFs-Dnmt3a fusions
was maintained over more than 50 cell generations. In fact,
DNAme patterns were faithfully transmitted over cell gen-
erations even when after the ZF protein was no longer
expressed in the tumor cells (Rivenbark et al., 2012). Overall,
these studies suggested that ZFs-Dnmt3a constructs were
able to stably reprogram the epigenetic state of the targeted
promoters. In addition to DNA methyltransferases, ZF pro-
teins have been linked to histone methyltransferase domains,
such as SUV39H1 and G9a, targeting H3K9me marks in the
context of the vascular endothelial growth factor A gene.
These chimeras were sufficient to target silencing of the
endogenous gene (Snowden et al., 2002).

Fig. 6. Schematic structure of the catalytic domain of Dnmt3a (2QRV)
linked to a 6ZF-DNA complex.
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Reactivation of epigenetically silenced genes has also been
achieved with ZF proteins. Gene activation, however, appears
to be fundamentally more challenging than targeted silencing
due to the decreased accessibility of the targeted region.
Reactivation of silenced and proapoptotic genes has been
reported for maspin (Beltran and Blancafort, 2011), Bax
(Falke et al., 2003), and p53-dependent pathways using ZF
library screenings (Blancafort et al., 2008). Highly methylated
promoters, for example tumor suppressors, are associated
with condensed chromatin, which could impede TF's to find
their targets in chromatin. In the case of the maspin tumor
suppressor, for example, the degree or extent of trans-
activation by ZF proteins is highly dependent on the targeted
region of the promoter and in the DNA methylation level of
the cell line examined (Beltran et al.,, 2011b). We have
characterized an activator ATF able to reactivate silenced
maspin in breast and lung cancer lines having high degree of
promoter methylation. When delivered in these cell lines, the
ATF suppressed breast cancer growth and totally abolished
metastatic colonization (Lund et al., 2004; Beltran, 2011;
Beltran et al., 2011b). Moreover, the effect of the ATF in
reactivating endogenous maspin was highly synergistic with
small molecule inhibitors of DNA methyltransferases and
histone deacetylases (Beltran et al., 2008). Similarly, in the
context of an epigenetically silenced oncogene, such as Oct4,
TALE activators designed against the promoter were able to
reactivate Oct4 only in presence of epigenetic inhibitors, such
as 5-Aza-dC and trichostatin A (Bultmann et al., 2012). These
experiments indicated that compact chromatin represented
a partial blockade for ZFs and TALE technologies and
generally TFs to reach high levels of regulation of silenced
genes. Future engineering of both ZFs and TALEs might
benefit from linkage of the DNA binding domains with
chromatin remodelers, which might help to unravel the
silenced chromatin. The discovery of novel DNA demethylases
able to erase the 5meC of DNA represents a powerful new
engineering avenue.

ATFs Versus Small Molecule Inhibitors

The “pros” and “cons” for the use of ATFs and small mol-
ecules for anticancer treatment are summarized in Table 1.
The design and optimization of DNA-binding domains in ATF
backbones opens the possibility to regulate single genes in
the cancer genome. Nevertheless, the spectrum of targets

TABLE 1

regulated by the ATF highly depends on the choice and
primary selectivity of the DNA-binding domains used for the
construction of the proteins. Investigators can now take
advantage of genome-wide approaches to map the ATF-
binding events in the cell and to study the specificity of
regulation by chromatin immunoprecipitation sequencing
and RNA-sequencing (or gene expression microarrays), re-
spectively. Nevertheless, work done in our laboratories and
others demonstrate that the genomic context of the host cell
type, for example, target site selectivity and promoter context,
are key factors defining the specificity of action of ZF proteins
(Beltran and Blancafort, 2010; Beltran, 2011). As is often
observed with siRNA technology, several ATF proteins need
to be constructed to effectively regulate the desired gene
(Beltran et al., 2007).

Genomic and functional studies have defined critical target
genes deregulated in cancer cells relative to normal tissue,
providing investigators with ad hoc information regarding
which genes are the most important to correct and in which
subtypes of cancers. For example, investigators can selec-
tively downregulate specific oncogenes overexpressed in
cancer tissues without altering the behavior of normal cells.
In contrast, the inhibition of endogenous epigenetic enzymes
using small molecules potentially yields toxicity or undesired
pharmacology due to the lack of locus selectivity of these
chemical-based approaches. Because both the biologic conse-
quence of chromatin regulator inhibition and the potential
off-target profile of small molecules are not predictable,
experimental data, not debate, will reveal the magnitude of
this challenge. By analogy to the selectivity issues often
debated for protein kinase inhibitors, we anticipate clinically
useful levels of efficacy and selectivity to be obtainable in the
epigenetics field with progress driven by thoughtful experi-
mentation. The potency of transcriptional regulation using
ATFs is highly enhanced by using transactivator or repressor
domains. In our hands, the degree of upregulation of tumor
suppressors genes is considerably stronger using ATFs
compared with small molecule inhibitors. This result could
be explained by the effective recruitment of RNA polymerase
II complex and associated factors by ATFs, which results in
enhanced transactivation and strong anticancer effects (Lara
et al., 2012). A linkage of multiple epigenetic effectors (e.g.,
methyltransferase and histone deacetylase functions) in the
same ATF could improve the effect of the engineered protein.
Similarly, small molecules targeting different epigenetic

Comparison between artificial transcription factors and small molecule epigenetic inhibitors for anticancer intervention

Features

Artificial Transcription Factors

Epigenetic Molecules

Genomic/ functional (e.g., cell type)
specificity

Transcriptional / regulatory potency

regulation

Combinatorial delivery of effector functions,
diversity of epigenetic domains
Viral/nonviral (targeted nanoparticles)

Delivery in cells/tumors/tissues

Probability of acquired resistance
mechanisms

Cost of synthesis/delivery Potentially very high cost

Design of sequence-specific DNA-binding domains
can provide high selectivity for the target

Selective targeting for cancer cells by regulation of
genes differentially expressed in cancer cells

Coupling the DNA-binding domain with
transactivators/repressors can result in potent

Potentially diminished by using epigenetic effector
domains (e.g., methyltransferase enzymes)

Broad spectrum of cellular targets, some specificity
depending on the compound

Potentially high toxicity due to undesirable
targeting of normal cells

Can result in transcriptional regulation of targeted
promoters

Combinatorial delivery of small molecules results
in potent synergisms

Intravenous delivery, targeted nanoparticle
delivery

Drug resistance/disease recurrence is often
observed during treatment

Large spectrum of small molecules available for
treatment or in clinical trials
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processes have been shown to be highly synergistic in
upregulating endogenous genes.

Certainly the strongest known limitation of the ATF tech-
nology is effective delivery into the target tissue. Targeted
delivery for gene therapy has been historically addressed with
the use of tissue-specific viral vectors (e.g., adeno- and adeno-
associated vectors). In addition, targeted nanoparticles en-
capsulating a more stable and modified ATF mRNA have been
used in animal models of metastatic ovarian cancer (Lara et al.,
2012). These nanoparticles were able to accumulate with high
doses in the tumor site and were able to inhibit tumor growth
when administered intravenously. In addition to delivering
the ATF in the tumor compartment, another fundamental
problem of the ATFs is the high cost associated with the bulk
production of ATF-containing nanoparticles required for
treatment. Moreover, the ultimate hope of these ATF ap-
proaches is the generation of more stable epigenetic treat-
ments for aggressive cancers, which might increase the
longevity of the therapeutic approach, while providing a
window of opportunity to combat incurable and highly drug-
resistant tumors. Chimeric nanoparticles containing multiple
ATF's and other anticancer agents, could be envisioned in the
future to enhance therapeutic outcome.

Summary

In conclusion, the epigenomics era has provided a multi-
layer view of fundamental processes disrupted in cancer cells,
which include changes in DNA and histone-methylation in
many different loci. The development of small molecule
inhibitors for specific methyltransferases and methyl-readers
(bromodomains) has provided novel strategies to target the
epigenetic processes that are disrupted in malignant cells.
Sequence-specific, engineered proteins attached to chromatin
remodeling enzymes have the pivotal advantage to target
specific locus associated with malignant progression. Combi-
natorial treatments of cancer cells with several distinct
pharmacological approaches, for example small molecules
and artificial chromatin remodeling enzymes, represent
attractive approaches to stably reprogram the epigenetic
landscape of cancer cells.
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