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Abstract
Mapping the dynamics of neural source processes critically involved in initiating and propagating
seizure activity is important for effective epilepsy diagnosis, intervention, and treatment. Tracking
time-varying shifts in the oscillation modes of an evolving seizure may be useful for both seizure
onset detection as well as for improved non-surgical interventions such as microstimulation. In
this report we apply a multivariate eigendecomposition method to analyze the time-varying
principal oscillation patterns (POPs, or eigenmodes) of maximally-independent (ICA) sources of
intracranial EEG data recorded from subdural electrodes implanted in a human patient for
evaluation of surgery for epilepsy. Our analysis of a subset of the most dynamically important
eigenmodes reveals distinct shifts in characteristic frequency and damping time before,
throughout, and following seizures providing insight into the dynamical structure of the system
throughout seizure evolution.

I. Introduction
Nearly 5% of patients with epilepsy are potential candidates for surgical treatment. Surgery
for epilepsy can have a good chance of success if the brain region(s) generating seizures can
be accurately localized. For this purpose, in selected cases recordings are acquired using
intracranial (subdural and/or depth electrode) recording for pre-surgical evaluation. In
previous work [1], we examined the spatial and time-frequency dynamics of seizure
generation and propagation in an intracranial EEG recording by Dr. Worrell at the Mayo
Clinic (Rochester MN) using adaptive vector autoregressive (VAR) models fit to source
activations obtained from Independent Component Analysis. We reported multiple seizure
stages corresponding to distinct shifts in the spatial distribution of sources and inter-source
connectivity as well as spectral frequency of interaction. To better understand the oscillatory
structure of these seizure stages, in this paper we extend our previous analysis and perform
an eigendecomposition of the VAR model into a system of decoupled oscillators and
relaxators (eigenmodes) with characteristic damping times and frequencies. Our anaysis of a
low-dimensional subset of the most dynamically important eigenmodes reveals distinct
shifts in principal oscillation patterns before, during, and after the seizure with progressive
frequency slowing from beta through alpha, theta, and finally post-ictal delta. These shifts
are temporally consistent with previously reported changes in spatial source distributions
and effective connectivity in this patient [1], [2]. We suggest that examination of
dynamically important eigenmodes may be useful for identification of ictal onset while also
providing valuable insight into the principal resonance frequencies and dynamical structure

NIH Public Access
Author Manuscript
Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2014 February 11.

Published in final edited form as:
Conf Proc IEEE Eng Med Biol Soc. 2012 ; 2012: 2921–2924. doi:10.1109/EMBC.2012.6346575.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



of the system during distinct stages of the seizure. To our knowledge, this is the first such
application of multivariate eigendecomposition to intracranial source data.

II. Theory
A. Vector autoregressive modeling

Assuming that X = [x1 … xT] is an M-dimensional zero-mean weakly-stationary stochastic
process of length T, we can describe the linear dynamics of the state vector

 as a vector autoregressive (VAR[p]) process of order p:

(1)

where  is a zero-mean white noise process with covariance matrix .

The coefficient matrices, Al, can be estimated using a number of approaches, including
multivariate ordinary and stepwise least-squares approaches, lattice algorithms (e.g. Vieira-
Morf) or state-space models (Kalman filtering) [3]. Neumaier and Schneider [4] provide an
efficient stepwise least-squares algorithm which we use here. To handle non-stationary data,
we model the time-varying cortical dynamics using a simple segmentation approach in
which we fit separate VAR[p] models to a sequence of highly-overlapping locally-stationary
windows [6].

B. Decomposition of a dynamical system into eigenmodes
Using the eigendecomposition method of Neumaier and Schneider [7], it can be shown that
a stable M-dimensional VAR[p] model can be decomposed into Mp, M-dimensional
decoupled eigenmodes, which can each be characterized as an oscillator or relaxator with a
characteristic frequency and damping time. The dynamics of the eigenmodes can be
described by a system of Mp univariate VAR[1] models coupled only by the covariance of
the noise terms. Analysis of the eigenmodes can provide insight into the linear dynamics of
the system under observation.

In brief, we begin by noting that the VAR[p] process described in equation 1 is equivalent to
the VAR[1] process.

2

with augmented noise vector  and augmented state vector

 and with coefficient matrix

and singular noise covariance matrix
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Note that  represents a delay embedding of the original state vectors xt. If  is nonsingular

then  where the columns of Q are the eigenvectors (eigenmodes) of  and Λ =
diag(λk) for k = {1;…;Mp} is the associated diagonal matrix of eigenvalues. The original

state and noise vectors can then be represented as ,  with eigenmode

coefficient vector  and noise vector . Note that

 is a linear transformation of the delay-embedded state vectors into the coordinate
system of the eigenvector basis. Substituting these expansions into Eq. 2 for the VAR[1]

model, and using the diagonality of Λ, we can represent the coefficient vectors,  as a

system of univariate VAR[1] models  which are coupled only via the

transformed, augmented covariance matrix of the noise coefficients: .

In the complex plane, the expected values of the eigenmode coefficients describe a spiral

 with damping time  and

characteristic frequency . Here Fs denotes the sampling rate of the time series.
The damping time (also known as the e-folding time [8]) denotes the time required (here in

units of seconds) for an initial amplitude  to decay to . As Von Storch
notes in his review on POP analysis [8], an eigenmode analysis using the linear, stationary
model (Eq. 2) preferentially “sees” an oscillation in its mature state when noise is relatively
small and damping is due to nonlinear and other, unobserved, processes. The damping time
(which is positive and bounded for a stable VAR model) provides a statistical measure of
how long, on average, the signal is seen before stochastic noise, as well as unobserved or
nonlinear dynamical processes become more and more important.

An eigenmode with eigenvalue λ can be characterized as a stochastically forced oscillator if
λ is either complex or negative and real. Conversely, if λ is real and positive, the eigenmode
is characterized as a relaxator with characteristic frequency fλ = 0. In contrast to a damped
oscillator, which oscillates about its mean while decaying from an initial value towards zero,
a relaxator simply decays exponentially towards zero.

The variance of the amplitudes of the kth eigenmode coefficients (excitations)

 can be interpreted as the dynamical importance of the kth

eigenmode Q:k. Analysis of the most dynamically important eigenmodes can help elucidate
the global dynamical structure of the system.

III. Data Collection and Modeling
Intracranial EEG was collected from a patient undergoing presurgical evaluation at The
Mayo Clinic (Rochester, MN). The patient presented with seizures due to a porencephalic
cyst in the fronto-parietal brain. Seventy-eight channel iEEG data was collected at a
sampling rate of 500 Hz during drowsy resting. We selected for analysis a 16-minute epoch
of data containing two seizure bursts, each lasting about 2 minutes. The data were
decomposed by extended Infomax ICA [9] into 78 maximally-independent processes. By
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visual inspection, 16 ICs were identified as exhibiting clear epileptiform activity; remaining
ICs were ignored for present purposes. For additional details see [10], [11], [1].

The time courses of the ictal ICs were downsampled to 256 Hz after application of a zero-
phase FIR antialiasing filter. Each IC activation sequence was then independently z-
normalized. A 16-dimensional VAR[7] model was fit to the normalized IC activations using
ARFIT stepwise least-squares [4]. An adaptive model was realized using a 15-sec sliding
window with 1-s step size. The model order (p=7) was selected based on inspection of the
distribution, over all windows, of model orders that minimized the Hannan-Quinn
information criterion [5].

IV. Results
Figure 1 shows the time course of activations of the selected ICs during onset (top left) and
offset (top right) of the first seizure. The seizure terminates abruptly at 349.5 seconds. The
lower panel shows 6 seconds of mid-seizure activity from a representative IC. Note the
prominent damped alpha and beta oscillations.

A. Stability analysis
A VAR[p] model is stable (and by implication stationary) if the roots of its reverse
characteristic polynomial lie outside the unit circle. This is equivalent to all eigenvalues of 
having modulus less than 1 [3]. Figure 2 plots the stability index ς = maxk ln∣λk∣ of the fitted
model for each window. Note that the process is stable for all time, but starts to lose stability
in the first part of the seizure, becomes highly stable in the mid-end of the seizure, and
plateaus at near-instability during the inter-ictal and post-ictal periods.

B. Eigenmode analysis
For each time window, the VAR[7] model was subjected to an eigendecomposition
producing 112 eigenmodes sorted in descending order by variance. Figure 3 shows the time-
varying characteristic frequencies (left) and damping times (right) of the nine (8%) most
dynamically important eigenmodes (plotted as blue dots). These quantities were also
smoothed with a LOWESS (Locally Weighted Scatterplot Smoothing) regression [14] using
a span of 20 points (black curve). Beneath each panel is indicated whether the eigenmode in
the corresponding time window is characterized as a relaxator (blue) or oscillator (peach).

Examining first the characteristic frequencies (Fig. 3-left), we see that, in the pre-ictal
period, the majority of the leading eigenmodes are either characterized predominantly as
relaxators or low-frequency oscillators (0.5-3 Hz). This is reasonable since the spectrum of
drowsy resting EEG follows a power law (1/fN) with N ≥ 2 and infraslow fluctuations
dominate. However, another characteristic of resting EEG is alpha rhythms (7-13 Hz).
Interestingly, one of the dominant eigenmodes (row 8) appears to be an 8-12 Hz oscillator.
At ictal onset we see most of the leading eigenmodes dramatically shift to beta-band (12-25
Hz) oscillators. In a previous report we examined the time-varying power spectrum and
frequency-domain Granger causality of this VAR model and found that, in the early part of
the seizure, the power and causal interactions were predominantly concetrated in the beta
band [1]. Several leading eigenmodes show a brief mid-seizure (t ≈ 270 sec, seizure 1)
collapse in characteristic frequency to an alpha or delta-theta mode followed by a return to a
slightly slower beta oscillation. This period corresponds to a sharp reversal in the direction
of information flow within a frontal ictogenic network [1]. Towards the end of the seizure (t
≈ 300 sec), for several eigenmodes, we see a second sharp decrease in characteristic
frequency, a return to a slower 8-15 Hz oscillatory mode, followed by a smooth decline back
to a low-frequency oscillator/relaxator mode at ictal offset. This third ictal stage corresponds
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to the time period when the information flow dynamics switch from more local interaction
to more global interaction. The inter-ictal period following the first seizure is again
dominated by infraslow (< 1 Hz) oscillatory or relaxatory dynamics, which is consistent
with the surpressed neuronal state commonly observed following periods of intense ictal
activity. The second seizure is similar to the first, exibiting a consistent slowing from beta to
delta as the seizure progresses.

The damping time of dominant eigenmodes is significantly decreased during the seizure
followed by a dramatic post-seizure increase in damping time. The short damping time
during seizure may reflect compensatory inhibitory mechanisms as the system strives to
maintain stability. As seen for IC11 in Figure 1, ictal beta and alpha oscillations appear to be
highly damped, exhibiting significant amplitude modulation with bursts lasting 1-2 seconds.
In contrast, during the inter- and post-ictal periods, the data is dominated by infra-slow
oscillations which may take a long time to decay to a small fraction of their original
amplitude. It is worth noting that another brief report which applied univariate
eigendecomposition independently to two channels of scalp EEG data, reported similarly
reduced damping time during seizure [12].

The alpha eigenmode (row 8) stands out amongst the other modes. Although it exhibits a
slight shift to the beta band during the seizure, it returns to an alpha rhythm during the inter-
ictal and post-ictal periods. Furthermore, the damping time appears only weakly perturbed
by the seizure. This is significant as this eigenmode may reflect the natural background
alpha rhythm seen in healthy cortical tissue and thus could be separated from eigenmodes
which are more clearly seizure-related. In general, identifying and analyzing only dominant
eigenmodes which exhibit dramatic shifts in characteristic frequency or damping time may
prove useful in separating pathological from non-pathological activity, improving detection
of seizure onset and identification of ictal resonance frequencies for stimulation-based
interventions.

V. Conclusions and Future Work
In this paper we analyzed neuronal dynamics during epileptic seizures using adaptive
multivariate autoregressive models applied to maximally-independent (ICA) sources of
intracranial EEG data recorded from subdural electrodes implanted in a human patient for
presurgery monitoring. Analysis of the time-varying characteristics of the most dynamically
important eigenmodes of the system revealed a prominent shift in the principal oscillation
patterns from relaxatory and/or low-frequency oscillatory dynamics with a moderate
damping time to beta oscillatory dynamics with low damping time at seizure onset followed
by multiple stages of progressive slowing of principal oscillation frequencies throughout the
seizure. While this analysis is novel in the context of intracranial seizure data analysis, this
paper represents a preliminary investigation into the topic and these results must be verified
in additional patients. The temporal resolution and suitability of the VAR model may be
improved through the use of dual extended or cubature Kalman filtering or sparse VAR
modeling. It will also be fruitful to examine the contributions of eigenmodes to each IC
source to allow spatial identification of sources exhibiting pathological shifts in frequency
and damping time characteristics. Finally, we plan to combine the results of this paper and
previously published work to examine the relationships between the observed resonant
frequency modes and local and long-range feedforward and feedback influences in seizure
propagation.
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Fig. 1.
Time course of activations of selected ICs during first seizure onset (top) and offset
(middle). Time units are in seconds. Bottom panel shows 6 seconds of mid-seizure activity
from IC11.
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Fig. 2.
Results of stability analysis. Vertical lines indicate seizure periods.
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Fig. 3.
Characteristic frequencies and damping times for the 8% most dynamically important
eigenmodes, in descending order of importance. Red (black) vertical lines denote onset
(offset) of seizure. Solid black curves represent lowess smoothing of individual
characteristic frequencies and damping times (blue dots). Beneath each panel is indicated,
for each time window, whether the respective eigenmode is a relaxator (blue) or oscillator
(peach).

Mullen et al. Page 9

Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2014 February 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


