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Abstract
Cough and swallow are highly coordinated reflex behaviors whose common purpose is to protect
the airway. The pharynx is the common tube for air and food/liquid movement from the mouth
into the thorax, has been largely overlooked, and is potentially seen as just a passive space. The
thyropharyngeus muscle responds to cough inducing stimuli to prepare a transient holding area for
material that has been removed from the subglottic airway. The cricopharyngeus muscle
participates with the larynx to ensure regulation of pressure when a bolus/air is moving from the
upper airway through to the thorax (i.e inspiration or swallow) or the reverse (i.e expiration reflex
or vomiting).These vital mechanisms have not been evaluated in clinical conditions, but could be
impaired in many neurodegenerative diseases leading to aspiration pneumonia. These newly
described airway protective mechanisms need further study, especially in healthy and pathologic
human populations.
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Aspiration: Relationships between Cough and Swallow
Cough is the most audible of aspiration responses, and can be stimulated by rapidly adapting
receptors (cough receptors) [1, 2] and C-fibers in the laryngeal and tracheal mucosa
(especially the area of the carina), which terminate on second order neurons in the nucleus
tract solitarius, then project to pontine and medullary respiratory neuron populations as well
as recruited neurons within the medial reticular formation [3-5]. Following the inspiratory
phase, there is rapid vocal fold adduction and contraction of the expiratory muscles,
including all abdominal muscles with a majority of force production from the internal and
external oblique muscles [6, 7]. The material in lower airway is sheared and/or aerosolized
to be removed via the mouth or deposited into the pharynx.

Smith-Hammond first described the relationship between cough and swallow, in a
population of patients following stroke [8, 9]. Pitts et al [10] also examined this relationship
in a cohort of patients with Parkinson’s disease (PD). In this study penetration/aspiration
during swallow was associated with an impaired voluntary cough. Additionally, patients
with penetration/aspiration had significantly longer cough duration (time for completion of
the three cough phases) and a decrease in the expiratory phase peak flow when compared to
patients with PD who did not exhibit penetration/ aspiration. Furthermore, prolongation of
the compression phase, decreases in the expiratory phase peak flow and cough volume
acceleration have been shown to detect and/or predict dysphagia in PD [9, 11]. These and
other clinical studies have highlighted commonalities between cough and swallow. Recent
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studies in animals [12, 13] are beginning to explain peripheral and central interactions
between cough and swallow.

Pharyngeal participation in swallow
Swallowing is made up of three distinct phases: oral, pharyngeal, and esophageal. The
pharyngeal phase of swallow, especially in an upright human, presents particular risk for
aspiration. The human mouth the pharynx connect at a 90 degree angle and with the addition
of gravity, there is risk for aspiration at any age [14-16]. The proper movement of the bolus
through the pharynx, around the larynx, and adequate use of the pyriform and valleculae
sinuses is necessary to reduce aspiration risk.

The pharyngeal phase of swallow is a patterned behavior [17]. There are several actions that
take place during this phase. First, the tongue base retracts and then moves superior and
posterior, which in turn directs the bolus toward the pharynx. During the tongue movement
there is closure of the velopharyngeal port. Velopharyngeal closure is important because it
allows for a build-up of pressure in the pharynx to help propel the bolus toward the
esophagus, and the contact of the soft palate with the back pharyngeal wall prevents the
bolus from moving into the nasopharynx [18, 19]. The pharynx then has two basic
movements: there is elevation of the entire pharynx and then a descending activation of
various parts of the pharyngeal musculature to act as a peristaltic wave to move the bolus
along. The submental muscles contract to move the hyoid bone and larynx superior and
anterior into position under the tongue base [19]. During the movement of the larynx, the
vocal folds and aryepiglottic folds adduct preventing material from entering the lower
airway. Additionally, the epiglottis folds over the glottal space to act as another layer of
protection from material entering the lower airway. The movement of the larynx also pulls
opens the superior portion of the esophageal sphincter. Following the contraction of the
inferior pharyngeal muscle there is a relaxation of the muscles making up the upper
esophageal sphincter. The bolus is then passed into the esophagus.

Anatomy of the pharynx
The posterior and lateral portions of the pharyngeal wall are made up of encircling striated
muscle fibers and its embryonic division is from splanchnic mesoblast that is found
surrounding the foregut [20]. Humans, in contrast with smaller animals, have longitudinal
muscle fibers and have the addition of the stylopharyngeus muscle which works to suspend
the pharynx for vertical movement which is necessary during the pharyngeal phase of
swallowing [20, 21].

Overlying the muscle is pharyngeal mucosa e.g. [22]. The innervation of the pharyngeal
mucosa is complex. This complex innervation is referred to as the pharyngeal plexus [22].
Mu and Sanders [23] stained and dissected the afferent innervation in the mucosa of the
lateral and posterior pharyngeal walls in a human cadaver and found that the oropharynx is
innervated by the pharyngeal branch of the glossopharyngeal and vagus nerves, and the
laryngopharynx is innervated by the inferior branch of the superior laryngeal nerve. Afferent
fiber density, in humans, varied across the pharyngeal complex, with the naso-pharynx
having the least dense innervation and the lateral pharyngeal walls having the highest
density.

Hypopharynx (thyropharyngeus and cricopharyngeus muscles)
The pharyngeal response to aspiration has not been well described, and its importance may
be underappreciated. The hypopharynx (lower pharynx) can be described in anatomical
(thyropharyngeus and cricopharyngeus) or functional terms (inferior pharyngeal constrictor
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and upper esophageal sphincter). There are physiological differences between these two
muscles, and in our experiments, conducted in anesthetized cats, we have employed
electromyographic methods that show the thyropharyngeus acts as the inferior pharyngeal
constrictor and the cricopharyngeus acts as the upper esophageal sphincter (Figure 1).

The thyropharyngeus is a fan shaped muscle beginning at the thyroid cartilage, of the larynx,
and extending around to the midline raphe. Efferent innervation is from the vagus and
afferent information is carried by vagal and possibly the glossopharyngeal nerves [24]. The
thyropharyngeus is composed of predominantly type II muscle fibers (fast contracting,
glycolytic, and highly fatigable), and the motor end plates terminate in the belly of the
muscle [25].

The thyropharyngeus is intrinsically involved in pharyngeal clearance and has active control
of the diameter of the pyriform sinus (Figure 1) [13]. The pharynx has upper (valleculae
sinus) and lower (pyriform sinus) cavities that act as bilateral reservoirs for collection of
material [26-28]. Dua and colleagues [29] have also demonstrated that there are volume
sensitive receptors, in the pyriform sinus, which can also trigger a swallow in humans.
Additionally, when a swallow is produced during sequential cough, the swallow related
thyropharyngeus activity increases 14% on average in cats [13]. Beyond its participation in
the pharyngeal phase of swallow; the pyriform sinus is a location for safely holding material
that has been removed from the lower airways by a cough bout. Figures 1a is a schematic of
the pharynx during eupnea (breathing), cough, and swallow. The thyropharyngeus, in the cat
and human, is expiratory phasic during breathing [13], and is suppressed during cough [13]
(Figure 1b). This suppression of the thyropharyngeus EMG activity during cough is a newly
described airway protective mechanism, and we propose that it is used to collect particulates
that were too large to be aerosolized or did not get expectorated. Theoretically, material is
then collected to be removed during the subsequent swallow.

Conversely, the cricopharyngeus is made up of two distinct components the oblique and
horizontal [24]. The oblique follows a similar path as the thyropharyngeus, except it arises
from the cricoid cartilage of the larynx; however the horizontal portion is a “loop of tissue”
which connects to the lower third of the cricoid cartilage. The horizontal portion is agreed to
be a part of the upper esophageal sphincter (UES), however other portions of the
thyropharyngeus may also be involved in sphincter activity. Efferent innervation is by the
vagus, specifically the pharyngoesophageal nerve, and afferent is carried by the vagus [24].
As opposed to the thyropharyngeus, the cricopharyngeus is mostly made of type I muscle
fibers (slow contracting, oxidative, and resistant to fatigue), and the motor endplates are
diffuse throughout the muscle [25].

Dual valve hypothesis
The larynx has been described as a valve for many years [30-33]. Recent data [13], however,
supports the hypothesis that the UES works in concert with the larynx creating a dual-valve
system (Figure 2). During the pharyngeal phase of swallow the larynx is maximally
adducted, reciprocally the UES is maximally relaxed. However, during the compression
phase of cough (to maintain intra-thoracic pressure and ensure cough effectiveness) both the
larynx is adducted and the UES is maximally contracted [13]. Cricopharyngeus EMG
activity is also highly responsive to mechanical stimulation of the trachea, resulting in a
significant increase in tone [13]. This could be a result of a feedforward mechanism in the
brainstem control network to prepare the pharynx for cough production.

A common condition that arises during neurodegenerative disease progression is
cricopharyngeal bar [34, 35]. Increased cricopharyngeal tone leads to “bunching” of
sphincter tissue, which in turn blocks the entrance of the esophagus leading to “food getting
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stuck” and potentially aspiration of material into the lungs. A common treatment of this
condition is injection of botulium neurotoxin A (botox) directly into the muscle [36-38].
This leads to an interesting clinical condition, where the upper esophageal sphincter can no
longer participate in pressure regulation. There are no studies available examining cough
production pre and post botox injections to the cricopharyngeus; according to the dual valve
hypothesis, this would lead to significant cough impairment.

Summary
The pharynx is the common space for which air travels for breathing and food/liquid for
sustenance. However, it is not a passive tube, but an active participant in airway protection.
The thyropharyngeus is responsive to cough inducing stimulation to prepare a transient
reservoir for removed material. The cricopharyngeus participates with the larynx to ensure
regulation of pressure when a bolus/air moves from the upper airway through to the thorax
(i.e inspiration or swallow) or the reverse (i.e expiration reflex or vomiting). These vital
mechanisms have not been evaluated in clinical conditions, but could be impaired in many
neurodegenerative diseases leading to aspiration pneumonia. Clinical studies are needed to
evaluate their regulation in healthy and disease conditions.
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Figure 1a.
Control of the pyriform sinus by the thyropharyngeus acting as the inferior pharyngeal
constrictor. Following the expiratory phase of cough the pyriform sinus can act as a holding
reservoir for material which can then be passed into the esophagus during the subsequent
swallow. 1b. Electromyogram activity (raw and integrated) of the thyropharyngeus,
parasternal (inspiratory chest-wall muscle), cricopharyngeus (acting as the upper esophageal
sphincter), and abdominal muscles during eupnea, cough and swallow. During eupnea
(resting breathing) the thyropharyngeus is expiratory phasic, its activity is suppressed
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beginning at the mechanical stimulation of the trachea and continuing through the cough
efforts. It activity is markedly increased during swallow.
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Figure 2.
The larynx and upper esophageal sphincter act as “dual valves.” They work in concert to
control the path of pressure for movement of air/liquid/bolus from the upper airway into the
thorax (breathing and swallowing) and from the thorax into the upper airway (cough and
vomiting).
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