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Abstract

Cancer, a complex genetic disease involving uncontrolled cell proliferation, is caused by inactivation of tumor
suppressor genes and activation of oncogenes. A vast majority of these cancer causing genes are known targets
of microRNAs (miRNAs) that bind to complementary sequences in 3¢ untranslated regions (UTR) of messenger
RNAs and repress them from translation. Single Nucleotide Polymorphisms (SNPs) occurring naturally in
such miRNA binding regions can alter the miRNA:mRNA interaction and can significantly affect gene ex-
pression. We hypothesized that 3¢UTR SNPs in miRNA binding sites of proto-oncogenes could abrogate their
post-transcriptional regulation, resulting in overexpression of oncogenic proteins, tumor initiation, progression,
and modulation of drug response in cancer patients. Therefore, we developed a systematic computational
pipeline that integrates data from well-established databases, followed stringent selection criteria and identified
a panel of 30 high-confidence SNPs that may impair miRNA target sites in the 3¢ UTR of 54 mRNA transcripts of
24 proto-oncogenes. Further, 8 SNPs amidst them had the potential to determine therapeutic outcome in cancer
patients. Functional annotation suggested that altogether these SNPs occur in proto-oncogenes enriched for
kinase activities. We provide detailed in silico evidence for the functional effect of these candidate SNPs in
various types of cancer.

Introduction

Cancer is a complex genetic disease that arises due to
structural, functional, and expression abnormalities

in two main categories of genes, namely tumor suppressors
and oncogenes, which show ‘loss-of-function’ and ‘gain-of-
function,’ respectively. Proto-oncogenes, the normal cellular
genes involved in cell proliferation and differentiation can be
activated into cancer-promoting oncogenes by mutation,
DNA amplification, or increased expression (Torry and
Cooper, 1991). Apart from these classical mechanisms, a re-
cent mode of oncogenic transformation occurs through loss of
microRNA binding sites caused either by translocation of
3¢untranslated region (3¢UTR) or by use of alternative poly-
adenylation signals that shortens the 3¢UTR (Mayr and Bartel,
2009; Mayr et al., 2007). MicroRNAs (miRNAs) are short (*22
nt) endogenous noncoding RNAs derived by nuclear and
cytoplasmic processing of longer RNA transcripts, and they
regulate gene expression by binding to complementary
sequences—‘miRNA target sites’—present mostly in the
3¢UTR of mRNAs (Bartel, 2004). In mammals, this binding is

mediated usually through nucleotides spanning the position 2
to 7 at the 5¢ end of miRNAs (called ‘miR-seed’) to their target
sequence by Watson-Crick base pairing, leading to transla-
tional inhibition or very rarely mRNA cleavage (Lai, 2002;
Lewis et al., 2003). Recent studies have demonstrated that a
single nucleotide mismatch between miR-seed and its target
site can abolish repression (Brennecke et al., 2005), thus es-
tablishing the requirement of stringent recognition between
the two interacting sequences. Therefore, naturally occurring
genetic variants or other genetic lesions at miRNA target sites
can alter the efficacy and thermodynamics of miRNA binding
and can significantly affect gene expression, leading to cancer
and other diseases (Nicoloso et al., 2010; Ryan et al., 2010).

Single Nucleotide Polymorphisms (SNPs) are the most
abundant form of genetic variation (*90%), occurring once
every several hundred base pairs throughout the human ge-
nome (Cargill et al., 1999). By definition, a SNP is a genomic
locus where two or more alternative bases occur with an
appreciable frequency of >1%. Our understanding of the
contribution of SNPs to diversity among individuals, pheno-
types, traits, and diseases has greatly been enhanced by
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several landmark studies (Altshuler et al., 2010; Shastry, 2009;
Thorisson and Stein, 2003; 1000 Genomes Project Consortium,
2010). Interestingly, results of The ENCODE Project Con-
sortium illustrate that disease-associated SNPs are enriched
within noncoding yet functional DNA elements (Bernstein
et al., 2012). SNPs in coding regions of the genome can alter
protein conformation or function as elucidated by a number of
functional (Megaraj et al., 2011; Ueki et al., 2010), as well as
molecular dynamic simulation studies (Huang et al., 2010;
Kumar et al., 2013; Rajendran et al., 2012), while those in
noncoding regions can impair regulation of gene expression
(Haraksingh et al., 2013). To this end, SNPs occurring in
miRNA target sites (miR-TS-SNPs) need special attention, as
there is a rapid expansion of literature associating miRNAs
(Vandenboom Ii et al., 2008) and miR-TS-SNPs (Landi et al.,
2008; Manikandan et al., 2012; Saunders et al., 2007; Yu et al.,
2007) to cancer progression and susceptibility. Given the
wealth of data and sequence information that is currently
available on the human genome, it is possible to locate genetic
variations in miRNA target sites. Hence, using an integra-
tive and systematic computational approach, we identified a
panel of high confidence candidate SNPs in putative miRNA
binding sites of proto-oncogenes that may lead to either
complete or partial loss of miRNA mediated translational
inhibition, which in turn, would result in increased expression
of oncogenic proteins (Fig. 1). We speculate that the candidate
SNPs identified in this study may have functional effects
ranging from cancer susceptibility to therapeutic outcome.

Materials and Methods

The proto-oncogene dataset

The list of proto-oncogenes (keyword: KW-0656) was re-
trieved from UniProt Knowledge Base (UniProtKB, http://
www.uniprot.org/), a central hub for the collection of func-
tional information on proteins with accurate, consistent and

rich annotation (Magrane and Consortium, 2011; UniProt
Consortium, 2012). Of the two sections in UniProtKB, we se-
lected the one that brings together experimental results,
computed features, and scientific conclusions (UniProtKB/
Swiss-Prot) with high quality manually-annotated and nonre-
dundant records. The other with unreviewed automatically
annotated records (UniProtKB/TrEMBL) was not considered.
The protein identifiers were converted to official gene sym-
bols using the DAVID Gene ID Conversion Tool–DICT
(Huang da et al., 2008), available at http://david.abcc.ncifcrf
.gov/conversion.jsp.

Identification and analysis of miR-TS-SNPs
with ‘oncogenic’ capability

The official gene symbols of human proto-oncogenes were
uploaded in text format to MirSNP database (http://
202.38.126.151/hmdd/mirsnp/search/), a collection of hu-
man SNPs in predicted miRNA target sites (Liu et al., 2012).
The miR-TS-SNPs given as output were pre-organized into
one of the following four categories based on their effect on
miRNA binding: (i) create—the derived allele introduces a
new miRNA binding site in the variant mRNA, (ii) enhance—
the derived allele enhances the binding of the originally tar-
geting miRNA to the variant mRNA (iii) break—the derived
allele completely disrupts the miRNA binding site and (iv)
decrease—the derived allele reduces the binding efficacy of
the originally targeting miRNA to the variant mRNA. From
this comprehensive list we selected SNPs of categories
‘‘break’’ and ‘‘decrease’’, since they completely abolish or di-
minish the efficient binding of miRNAs to their respective
mRNAs, resulting in increased or ‘leaky’ translation. These
SNPs were then checked for their minor allele frequencies
(MAF) in Exome Variant Server (EVS). The EVS, developed
with the goal of providing sequence information of human
protein coding genes across diverse, richly-phenotyped pop-
ulations, is maintained by NHLBI Exome Sequencing Project

FIG. 1. Mechanism of oncogenic activation by miR-TS-SNPs. Under normal conditions, the
homeostatic expression of proto-oncogenes is governed by miRNAs, which bind to the com-
plementary sites present in the 3¢UTR of mRNAs. miR-TS-SNPs impair the binding of miRNAs
to proto-oncogenes, leading to overexpression of oncogenic proteins and tumorigenesis.

ONCOGENE ACTIVATION BY MICRORNA-TARGET SITE-SNPS 143



and is freely accessible online at http://evs.gs.washington
.edu/EVS/ (Fu et al., 2013). Only the SNPs with a MAF
greater than 0.1% were considered for further analyses.

Concordant prediction of SNP-involved target sites
and their putative miRNAs by TargetScanHuman
6.2 and RNAhybrid 2.1

The SNP-involved miRNA target sites together with
their putative miRNAs were subjected to consistent cross-
prediction with TargetScanHuman 6.2 (Grimson et al., 2007),
and RNAhybrid version 2.1(Kruger and Rehmsmeier, 2006).
TargetScanHuman 6.2 available at http://www.targetscan
.org/ predicts both conserved and nonconserved target sites
that match the seed region of each miRNA and also sites with
mismatches in the seed region that are compensated by con-
served 3¢ pairing. RNAhybrid is an extension of classical RNA
secondary structure prediction algorithm and is shown to
predict functional miRNA target sites (Rehmsmeier et al.,
2004). Further, RNAhybrid offers a flexible online prediction,
as the user can define the position and length of the seed
region with option to allow G:U wobble in seed pairing. To
verify the effect of each SNP on miRNA binding and on
minimum free energy (MFE) required for the formation
of miRNA:mRNA duplex, the nucleotide sequence of that
particular 3¢UTR region containing either the ancestral or
the derived allele at the SNP locus and the corresponding
miRNA sequence was submitted to RNAhybrid available
online at http://bibiserv.techfak.uni-bielefeld.de/rnahybrid/.
The MFE of miRNA:mRNA duplex before and after intro-
duction of the variant allele was computed and the difference
(i.e., DMFE in kcal/mol) was calculated using the following
formula:

DMFE¼ (MFE of miRNA:mRNA duplex ancestral allele)

� (MFE of miRNA:mRNA duplex derived allele)

Obtaining the expression profile of oncogenes
in various cancer types

The assessment of mRNA expression profiles of onco-
genes in different types of cancer provides a rational ap-
proach to study a particular miR-TS-SNP that abrogates the
corresponding oncogene in a specific cancer type. Therefore,
the expression profile of selective human oncogenes in vari-
ous types of cancer was analyzed using NCBI’s UniGene
(www.ncbi.nlm.nih.gov/unigene) (Sayers et al., 2012), an
organized view of the transcriptome that evaluates semi-
quantitatively the expression sequence tag (EST) calculated as
number of transcripts per million (TPM). The EST data for
‘Breakdown by Health State’ that shows the approximate
gene expression pattern in various cancers was chosen.

Functional annotation and enrichment analysis
of the proto-oncogenes harboring miR-TS-SNPs

The final list of proto-oncogenes predicted to harbor
high-confidence miR-TS-SNPs was analyzed for enrichment
of molecular function, KEGG pathways, and drug association
using WEB-based Gene SeT AnaLysis Toolkit (WebGestalt –
URL: http://bioinfo.vanderbilt.edu/webgestalt/) (Zhang et al.,
2005). As obvious, the gene ID type was set to ‘‘hsapiens_

gene_symbol.’’ The background reference was selected as
‘‘hsapiens_genome’’ and the statistical method was set to
default ‘‘hypergeometric.’’ The multiple test adjustment was
set to be done by Benjamini and Hochberg, the significance
level was set to top 10 and the minimum number of genes for a
category was two. The results of drug association analysis
was visualized as a network using Cytoscape v.2.8.3 (Smoot
et al., 2011) and the miR-TS-SNPs were linked with their
corresponding oncogenes using the same tool.

Results

Analysis of exome sequencing data reveals
that 198 SNPs can impair miRNA binding sites
of proto-oncogenes

The initial list of proto-oncogenes retrieved from Uni-
ProtKB (UniProt Consortium 2012) consisted of 562 entries
across different species. We narrowed our dataset to the 232
entries of ‘Homo sapiens’ and queried their official gene
symbols in MirSNP, a database developed by integrating in-
formation from dbSNP build 135, miRBase 18, mRNA se-
quences from NCBI and miRanda miRNA target prediction
algorithm (Liu et al., 2012). Compilation and analysis of re-
sults showed that a total of 5452 miR-TS-SNPs impaired the
binding of 1869 miRNAs to 218 proto-oncogenes. To identify
functional and effective candidates from this large list, we
followed a stepwise integrative and systematic computa-
tional pipeline (Fig. 2). Although numerous SNPs are docu-
mented in dbSNP database of NCBI, many of them seldom
occur in the human population, and for many others the
Minor Allele Frequency (MAF) is not available. Hence, to
identify miR-TS-SNPs specific to the human genome with
MAF > 0.1%, we utilized Exome Variant Server (EVS) which
serves as a repository of more than 10 million SNPs identified
by sequencing 15,336 genes in 6515 individuals of European
American and African American ancestry (Fu et al., 2013).
Moreover, EVS also provides conservation scores (PhastCons
and GERP) for each SNP-involved sequence. Upon analysis,
we found that 87,906 3¢UTR SNPs were documented in EVS
and cross checked them with the 5452 miR-TS-SNPs. Inter-
estingly, a minor fraction of 198 SNPs distributed across the
3¢UTR of 85 proto-oncogenes overlapped between the ana-
lyzed data sets (Fig. 3), suggesting that the vast majority of
miR-TS-SNPs are either very rare (MAF < 0.1%) or not present
in samples of the specified ancestry. As lack of sequence in-
formation in EVS can also result in false exclusion of a par-
ticular proto-oncogene, we verified the data and identified
SSX2 to be one such gene. We limited our further analyses
with the 198 SNPs predicted to impair the binding of 632
miRNAs to 85 proto-oncogenes.

Sequential filtering of SNP-involved miRNA target sites
and their putative miRNAs

Although the miRanda algorithm employed by MirSNP
was shown to have high sensitivity in detecting miRNA tar-
get sites (Alexiou et al., 2009), the accuracy of miRNA tar-
get site prediction by any single method is modest. Therefore,
we strengthened the prediction of SNP-involved miRNA
target sites and their putative miRNAs by combining addi-
tional databases namely TargetScan (Grimson et al., 2007) and
RNAhybrid (Rehmsmeier et al., 2004). This approach ensured
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that different aspects of miRNA target site prediction such as
pattern-based search, seed match, structural features, con-
servation, and hybridization energy are covered, and also
enabled the identification of more conservative set of putative
miRNAs by reducing spurious predictions. In addition, we
refined the predictions by taking into account certain quan-
titative scores. The MirSNP database, as an added feature
contains miRSVR score that integrates target site information
and contextual features for ranking the efficiency of miRanda-
predicted miRNA target sites. Betel et al. (2010) developed
the miRSVR methodology by supervised training on mRNA
expression data from a panel of miRNA transfection experi-
ments and showed that miRSVR’s top predictions are func-
tional. Hence, we restricted with the top predictions that had

a ‘‘good’’ miRSVR score of < - 0.1. However, this score is not
provided for all miRNA target site predictions in MirSNP,
which may be traced back to SNPs (the miRSVR methodo-
logy did not consider the impact of SNPs on miRNA-mRNA
bindings), the use of different UTR database and miRNA
information (Liu et al., 2012). Wherever the miRSVR score
was unavailable, miRNA target sites with a ‘‘total context
score’’ of £ - 0.1 was considered to avoid exclusion of true
positives to certain extent. The total context score given by
TargetScan considers contextual features such as the AU
content in vicinity of the miRNA target site, location of
the site within the 3¢UTR, and absence of secondary struc-
tures that render the target site accessible for miRNA
(Grimson et al., 2007).

FIG. 2. A summary of the workflow employed to identify high-confidence miR-TS-SNPs.

FIG. 3. Venn diagram showing the significant overlap of the 3¢UTR SNPs captured by
the Exome Variant Server and the miR-TS-SNPs of proto-oncogenes predicted by MirSNP.
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The miR-TS-SNPs change the minimum free energy
required to form miRNA:mRNA duplex

Several reports suggest that miR-TS-SNPs can change the hy-
bridization energy needed for the formation of miRNA:mRNA
duplex (i.e., Minimum Free Energy or MFE). To address this
aspect, a stretch of at least 20 nucleotides flanking either side
of the SNP locus was submitted as the mRNA sequence in
FASTA format to RNAhybrid, and the corresponding miRNA
sequence from miRBase 19 (Kozomara and Griffiths-Jones,
2011) was also entered. The same procedure was once again
repeated with the variant allele having replaced the ancestral
allele in the mRNA sequence. The value of MFE before
and after introduction of the SNP was noted down as illus-
trated in Figure 4, and the difference (DMFE) was calculated
(see Materials and Methods). The greater the DMFE value, the
greater is the impact of miR-TS-SNP on miRNA binding. We
observed that the allelic variants increased the MFE of the
corresponding RNA duplexes, leading to weaker miRNA-
target site interaction. The final list consisted of 30 high-
confidence miR-TS-SNPs that impaired the binding of 42
miRNAs to the 3¢UTR of 54 mRNA transcripts belonging to
24 proto-oncogenes (Table 1), with the DMFE value of
these SNPs averaging to - 2.429 kcal/mol.

Implications of the miR-TS-SNPs in various cancer
types and pharmacogenomics

The high-confidence miR-TS-SNPs predicted to deregulate
the expression of proto-oncogenes represent a source of reli-
able candidates. However, these SNPs are of least importance
when the corresponding oncogenes are not expressed in cells
and tissues of a specified cancer type. Hence we studied the

expression of the 24 oncogenes in different types of cancer
using NCBI’s UniGene (Sayers et al., 2012). The currently
available data demonstrate that LHX4 is overexpressed in
tumors of soft tissue or muscle tissue, and hence the corre-
sponding miR-TS-SNP rs138054044 can be analyzed primar-
ily in tumors of the specified type (Fig. 5). In contrast, AKT2
and FUS were found to be overexpressed in all types of cancer
and hence the respective miR-TS-SNPs rs2304186 and
rs80301724 can be analyzed broadly in all cancers. Of note,
human HOXA9 EST profile was not documented in UniGene,
whereas the human FGF6 specific ESTs were absent from the
total EST pool analyzed across various cancers. The proto-
oncogenes were further subjected to enrichment analysis for
molecular function using WebGestalt (Zhang et al., 2005) and
the results evidently indicate that these SNPs occur in onco-
genes functioning predominantly as kinases (Table 2).

KEGG pathway enrichment analysis identified 10/24
genes as integral part of ‘Pathways in Cancer–hsa05200’
(Fig. 6) and has provided several important insights on the
causal role and effect of miR-TS-SNPs in cancer. Even a sin-
gle SNP that causes increased expression of the correspond-
ing oncogene can likely activate the cancer pathway by
amplifying the proliferation signals. For example, the miR-TS-
SNP rs2241286 in FGF6 may increase the expression of
these ligand molecules, while rs3135816 in FGFR2 and
rs2066933 in CSF1R can lead to over expression of these re-
ceptor tyrosine kinases and make them sense scanty amount
of ligands in the cancer microenvironment. The miR-TS-SNP
rs113181701 that causes over expression of BCL6 can totally
deregulate the repertoire of genes under the control of
this particular transcription factor thus having an extensive
effect. This suggests that studying a group of SNPs in genes

FIG. 4. The predicted miRNA:mRNA interaction between SNP-involved target site of AKT2
and hsa-miR-4716-3p. The different alleles of the SNP rs2304186 (C/A) in the 3¢UTR of AKT2
are indicated by arrow marks. The MFE of the miRNA:mRNA duplex with the ancestral allele
and that with the derived allele is indicated within boxes.
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of the cancer pathway can complement the single-SNP ap-
proach in understanding the aberrant molecular signaling. We
also tested the proto-oncogenes for drug association, which
revealed 8 miR-TS-SNPs (rs2229561 in PDGFRB, rs2066934
and rs2066933 in CSF1R, rs113181701 in BCL6, rs62621676 in

PRKCA, rs78933588 and rs146333729 in ENTPD5 and rs2304186
in AKT2) to have the potential to modulate drug response in
cancer patients by increasing the expression of their respective
genes (Fig. 7). Further, a single miR-TS-SNP like rs113181701
can lead to resistance to multiple drugs such as Imatinib,
Doxorubicin and Daunorubicin by increasing the expression of
BCL6 oncoprotein. The results strongly suggest that these can-
didate SNPs merit further investigation in cancer cell lines from
the appropriate tumor type for the drug of interest.

Discussion

UTRs are the regulatory elements that play important roles
in gene expression (Mignone et al., 2002). Greater than 60% of
protein coding mRNA transcripts have target sequences in
their 3¢UTR to which miRNAs bind, leading to translational
repression (Friedman et al., 2009). Genetic aberrations and ex-
ogenous episomal integrations that alter these miRNA target
sites are of medical importance, as they may lead to severe
disorders. It is becoming apparent that polymorphisms in
miRNA binding sites determine disease susceptibility by
causing aberrant expression of genes and can further predict
treatment outcome in cancer patients (Chin et al., 2008; Ratner
et al., 2011; Ryan et al., 2010; Teo et al., 2012). Although many
databases have catalogued enormous number of miR-TS-
SNPs, identifying truly functional candidates among them re-
mains challenging due to insufficient knowledge on miRNA

Table 2. Functional Annotation of the 24
Proto-Oncogenes Predicted to Harbor

High-Confidence miR-TS-SNPs

Molecular function—GO Category R adjP

Protein kinase activity – GO:0004672 7.66 0.0013
Transmembrane receptor protein tyrosine

kinase activity – GO:0004714
29.75 0.0013

Protein tyrosine kinase activity – GO:0004713 17.96 0.0013
Phosphotransferase activity, alcohol group as

acceptor – GO:0016773
6.42 0.0013

Kinase activity – GO:0016301 5.96 0.0013
Transferase activity, transferring phosphorus-

containing groups – GO:0016772
5.12 0.0028

Transmembrane receptor protein kinase
activity – GO:0019199

23.73 0.0028

Protein binding – GO:0005515 1.72 0.0057
Adenyl nucleotide binding – GO:0030554 3.51 0.0071
ATP binding – GO:0005524 3.59 0.0071

GO, Gene ontology; adjP, P value adjusted by multiple testing; R,
Ratio of enrichment.

FIG. 5. EST profiles of the oncogenes predicted to be activated by miR-TS-SNPs. Each column
represents an oncogene and each row represents a particular type of cancer. The oval spots
represent the expression of a particular oncogene in a corresponding type of cancer as mea-
sured by Expression Sequence Tags (ESTs). The intensity of the spot is based on the amount of
transcripts per million (TPM) as captured by the ESTs. Data retrieved from NCBI’s UniGene.
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FIG. 7. MicroRNA-target site-SNPs have the potential to modify drug response in cancer
patients. The blue diamonds, the saffron circles, and the green boxes represent the miR-TS-
SNPs, the respective proto-oncogene harboring the SNP and the drug associated with that
particular oncogene. The lines connecting these entities represent the interactions between
them. The occurrence of a miR-TS-SNP may cause overexpression of the respective onco-
gene, thereby leading to drug resistance/sensitivity.

FIG. 6. KEGG Pathways in Cancer–hs05200, mapped with the proto-oncogenes harboring
miR-TS-SNP. This figure highlights the 10 proto-oncogenes that mapped to KEGG Pathways in
Cancer–hs05200. Among the miR-TS-SNPs that disrupt the binding of miRNAs to these on-
cogenes, the occurrence of a single SNP is enough to activate the cancer pathway. Figure
developed by WebGestalt KEGG enrichment analysis tool.
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biology, as well as the limited number of experimentally vali-
dated target sites. Therefore, accurate and reliable bioinfor-
matics prediction of SNPs that modulate miRNA binding is
essential. Noteworthy to mention, previous studies have paved
the way to identify not only high priority candidate miR-TS-
SNPs (Landi et al., 2008; Richardson et al., 2011; Saunders et al.,
2006) but also other functional SNPs located in UTR regions
(Aouacheria et al., 2007) from publicly available resources.

We hypothesized that 3¢UTR SNPs in miRNA target sites
of proto-oncogenes could abrogate cis-regulation of gene
expression, resulting in oncogenic transformation, cancer
predisposition, and modulation of drug response. The meth-
odology utilized in this study is based on the traditional
miRNA–mRNA binding site complementarity and concor-
dant cross prediction by three different algorithms. The SNP
involved target sites of miRNAs were filtered based on their
miRSVR and total context scores. The effect of the SNP on
miRNA:mRNA duplex was verified by RNAhybrid. The re-
sults indicate that nearly 10% of the oncogenes (24/232) are
subjected to expression changes which may arise due to miR-
TS-SNPs. From Table 1, it can be inferred that majority of
these SNPs occur in nonconserved miRNA binding sites re-
inforcing that conservation should be used in combination
with other informative features to score target sites and not as
hard filter, which may lead to a substantial loss of bona fide
targets (Betel et al., 2010). The PhastCons and GERP values are
given for the reader to underscore the level of conservation of
the SNP involved sites. PhastCons scores are extremely useful
to define broad regions of cross-species conservation using a
tree-HMM approach (Siepel et al., 2005), while Genomic
Evolutionary Rate Profiling or GERP assigns a conservation
score to each site in alignment, independently of neighboring
sites (Cooper et al., 2005). A positive GERP score represents a
substitution deficit, while a negative score represents substi-
tution surplus. Among the list of miRNAs predicted to bind
the SNP-involved target sites, hsa-miR-30b, hsa-miR-34a, hsa-
miR-93, and hsa-miR-182 were previously reported to be de-
regulated in one or more types of cancer (Xie et al., 2013). The
knowledge gained by studying these cancer-associated miR-
NAs together with their miR-TS-SNPs will help in under-
standing this unique mode of gene deregulation in cancer and
also microRNA pharmacogenomics (Bertino et al., 2007). The
in silico approach described here therefore sets the stage for
the next phase of characterization of genetic variants in the
3¢UTR of cancer associated genes.

The 8 miR-TS-SNPs predicted to modulate drug response
in cancer patients represent reliable functional candidates for
pharmacogenomic studies. There is sufficient evidence for the
critical role of genetic variations altering miRNA targeting in
drug treatment and therapeutic outcome of cancer patients. A
report concerning the 3¢UTR SNP C829T, which disrupts the
binding of hsa-miR-24 to DHFR, demonstrated that the SNP
caused DHFR over expression associated with methotrexate
resistance. Cells with a mutant DHFR 3¢ UTR exhibited a two-
fold increase in mRNA half-life, expressed higher DHFR
mRNA and protein, and were four times more resistant to
methotrexate (Mishra et al., 2007). Zhang et al. 2011 found an
association of a polymorphism in let-7 binding region of KRAS
3¢-UTR (rs61764370) with treatment response to the mono-
clonal antibody cetuximab in metastatic colorectal cancer
patients. The KRAS wild-type (KRASwt) patients harboring
the heterozygous or homozygous variant allele (TG or GG) at

the let-7 binding site had a 42% object response rate to ce-
tuximab, compared to a 9% response in KRASwt patients with
the homozygous TT genotype ( p = 0.02). Another study re-
ported the loss of miR-519c binding site in ABCG-2 with
shortened 3¢UTR leading to ABCG2-overexpressing drug-re-
sistant cell lines (To et al., 2009). Very recently, a novel 3¢UTR
mutation that reduced the binding affinity of miR-520a and
miR-525a to PIK3CA gene was shown to be associated with
increased sensitivity of colorectal cancer cell lines to the drug
saracatinib (Arcaroli et al., 2012). In this context, an intriguing
question remains on the contribution of multiple SNPs in the
miRNA network to drug response and carcinogenesis. For
instance, miR-196a-2 is predicted to bind the 3¢UTR of DHFR
as well as thymidylate synthase (Hu et al., 2008). A SNP in
miR-196a-2 (rs11614913) is associated with cancer risk (Hu
et al., 2008), while a polymorphism in the 3¢UTR of thymi-
dylate synthase was associated with response to 5-fluoro-
uracil (Lu et al., 2006). Therefore, it would be interesting to
study the different combinations of microRNA-related SNPs
such as the DHFR C829T 3¢UTR polymorphism, thymidylate
synthase 3¢UTR polymorphism, and the miR-196a-2 SNP in
cancer patients to expand our understanding on the cumu-
lative effect and interindividual variability in drug responses
and disease predisposition. Application of these SNPs into
treatment decisions is promising and will require further
confirmation in prospective randomized trials.

Our study has carefully considered some features that de-
termine miRNA:mRNA interaction to better understand the
effect of miR-TS-SNPs and their association with disease.
Despite the requirement of a perfect match between miRNA
‘seed’ and target mRNA (Lewis et al., 2005), studies have
shown that G:U wobble in the seed region is acceptable (Di-
diano and Hobert, 2006; Lal et al., 2009). Based on this fact, we
admitted G:U wobble in seed pairing while predicting the
miRNA:mRNA target interactions in RNAhybrid, so that miR-
TS-SNPs that simply cause G:U wobble without changing the
MFE can be omitted. As the miRNA:mRNA duplex is known
to contain self loops and bulge loops, SNPs in these regions
may not have an effect on sequences that pair and hence they
were excluded. For a subset of miR-TS-SNPs, there was am-
biguity in ancestral allele when cross-checked with NCBI’s
dbSNP and such cases were also excluded. Wherever dis-
crepancies existed in prediction between MirSNP-
employed miRanda, TargetScan, and RNAhybrid, the results
were discarded. A few functional constraints, however, were
not addressed by our study. Recent projects on in vivo micro-
RNA targets identified a significant number of non-canonical
miRNA target sites by employing cross-linking and immuno-
precipitation (CLIP) method (Chi et al., 2009; Hafner et al.,
2010). Therefore, seed complementarity is neither necessary
nor sufficient for microRNA regulation, indicating that other
characteristics may also specify targeting. One such feature is
the pairing between 3¢ region of the miRNA (mostly nucleo-
tides 13–16) and the UTR region complementary to this miR-
NA segment (Brennecke et al., 2005; Grimson et al., 2007).
These ‘‘3¢ supplementary sites’’ can enhance the efficacy of
mammalian seed-matched sites and can also compensate for a
single-nucleotide bulge or mismatch in the seed region, as il-
lustrated by the let-7 miRNA sites in lin-41 and miR-196 site in
HOXB8 (Vella et al., 2004; Yekta et al., 2004).

Another report highlighted the importance of the sequence
surrounding miRNA target sites by mutating these regions
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and showing loss of miRNA mediated repression (Didiano
and Hobert, 2008). Thus, SNPs falling outside the sequences
that are directly involved in miRNA:mRNA hybridization
could also be functional. Further, 3¢UTR SNPs may signifi-
cantly affect the secondary structure of mRNAs resulting in
their degradation, as exemplified by the C-to-T polymor-
phism 14nt downstream of the miR-24 target site on DHFR
gene (Mishra et al., 2007). Interestingly, data integration ap-
proach has shown that SNPs in the 3¢UTR can also introduce
alternative polyadenylation signals, thereby generating
mRNA transcripts with shortened 3¢UTR that escape miRNA
binding (Thomas and Saetrom, 2012). Finally, rare variants
are expected to be geographically clustered (Nelson et al.,
2012) and many more SNPs await documentation in dbSNP
database. Nevertheless, the miR-TS-SNPs identified in our
study represent yet another mechanism of ‘loss of function’ of
miRNA-mediated gene regulation and can result in over-
expression of the proto-oncogenes in cancer cells.

Conclusions

There is compelling evidence that miRNA target site SNPs
can modify the expression of genes and can influence cancer
risk. However, no previous study has provided a cumulative
list of high-confidence miR-TS-SNPs specific to oncogenes.
The current study shows that our systematic and integrated
computational approach is a step forward for the identifica-
tion of miR-TS-SNPs that disrupt the translational control of
not only oncogenes, but other genes as well. Depending on the
combinatorial effect of different miRNAs that regulate a given
mRNA, a SNP that disrupts a true target site may have sig-
nificant functional implications on post-transcriptional regu-
lation. The SNPs identified in this study has not been assigned
any functional mechanism until now and has not formed the
basis of any previous cancer case-control association studies.
We provide in silico evidence for these candidate miR-TS-
SNPs to activate oncogenes and functional analyses are war-
ranted to demonstrate their contribution to carcinogenesis
and therapeutic response.
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