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Peroxisome proliferator–activated re-
ceptors (PPARs) form a family of nu-
clear hormone receptors involved in

energy hemostasis and lipid metabolism
(1,2) and include three isotypes encoded
by different genes: PPARa (chromo-
some22q12–13.1), PPARb/d (chromosome
6p21.2–21.1), and PPARg (chromosome
3p25). PPARa was the first discovered
and causes cellular peroxisome prolifera-
tion in rodent livers (3), giving this recep-
tor family its name. Upon activation,
PPARs interact with retinoid X receptor
to create heterodimers, which bind to a
specific DNA sequence motif termed per-
oxisome proliferator response element
(4). Peroxisome proliferator response ele-
ment usually appears in promoter regions
and is constructed from repeats of nucle-
otide sequence AGGTCA separated by a
single nucleotide.

PPARa is widely expressed in tissues
with high fatty acid catabolic activity:
brown fat, heart, liver, kidney, and intes-
tine (5). Upon activation by endogenous
fatty acids and their derivatives, PPARa
mediates fatty acid catabolism, gluconeo-
genesis, and ketone body synthesis,
mainly in liver (6–9). In rodents, PPARa
activation also influences immune modu-
lation (10,11) and amino acidmetabolism
(12), reduces plasma triglyceride, reduces
muscle and liver steatosis, and amelio-
rates insulin resistance (IR) (13,14). Phar-
macologic PPARa activation is achieved

by fibrates (7) and results in reduced
(30–50%) triglyceride and VLDL levels
by increasing lipid uptake, lipoprotein
lipase–mediated lipolysis, and b-oxidation
(15). This is accompanied by a modest
increase in HDL cholesterol (5–20%),
secondary to transcriptional induction of
apolipoprotein A-I/A-II synthesis in liver
(15). In man, the primary effect of PPARa
is to reduce plasma triglyceride concentra-
tion; effects on plasma free fatty acid (FFA)
concentration/FFA oxidation, muscle/liver
fat content, andmuscle/hepatic insulin sen-
sitivity have not been demonstrated with
current PPARa agonists such as fenofibrate
(16,17). Fibrates are used to treat severe
hypertriglyceridemia and combined hyper-
lipidemia (18–20). Clinical trials to
establish a role for PPARa agonists (feno-
fibrate, gemfibrozil) in primary or sec-
ondary cardiovascular prevention in
patients with hypertriglyceridemia or di-
abetes have been disappointing (21,22).
Clinically significant effects of fibrates on
glucose homeostasis, IR, and insulin secre-
tion in man have not been demonstrated
(16,17,23).

PPARb/d is expressed ubiquitously,
correlating with the level of cellular pro-
liferation exhibited in different tissues
(24). In rodents, PPARb/d activation ex-
erts metabolic effects in skin, gut, skeletal
muscle, adipose tissue, and brain (25,26).
Several PPARb/d agonists are in clinical
trials because of their beneficial effects

on dyslipidemia (27,28) and other com-
ponents of metabolic syndrome (29,30).

PPARg has two splice variants,
PPARg1 and PPARg2, differing by 30
amino acids in the N9 terminal end.While
PPARg1 is widely expressed in tissues
(skeletal muscle heart, liver) at low levels,
both are highly expressed in adipose tis-
sue (31,32). PPARg is considered the
“master” regulator of adipogenesis (33).
PPARg overexpression in cultured fibro-
blasts transforms them into adipocytes
(34), while selective adipose deletion of
PPARg results in lipodystrophy and IR
(35–37). Dominant negative PPARg mu-
tations are associated with lipodystrophy
(in the limbs and gluteal region), dyslipi-
demia, hypertension, and severe IR (38–
40). PPARg polymorphisms (specifically,
Pro12Ala) are associated with increased
risk of developing type 2 diabetes
(T2DM) (41–43). PPARg agonists, thiazo-
lidinediones (2,44,45), are potent insulin
sensitizers, enhance insulin secretion, im-
prove glucose tolerance, and are the focus
of this review.

THIAZOLIDINEDIONES: PAST
TO PRESENTdTroglitazone was the
first thiazolidinedione approved by the
U.S. Food and Drug Administration
(FDA) and shown to improve insulin
sensitivity and b-cell function in T2DM,
impaired glucose tolerance (IGT), and
nondiabetic individuals (46–50). Trogli-
tazone also was shown to improve endo-
thelial dysfunction in obesity and T2DM
(49,51), induce ovulation in PCOS (52),
and effectively treat lipodystrophy (53).
Troglitazone also caused fat redistribu-
tion from visceral to subcutaneous adipose
tissue (54,55) and reduced circulating
levels of inflammatory adipocytokines
and FFAs, while increasing plasma adipo-
nectin levels (2). Thus, troglitazone shares
many beneficial effects with pioglitazone
and rosiglitazone. However, because of
hepatotoxicity troglitazone was removed
from the U.S. market by the FDA in 1997
(56). However, the idiosyncratic liver tox-
icity observed with troglitazone does not
appear to be a class effect. In a review of
the literature, alanine aminotransferase
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levels .10 times the upper limit of nor-
mal were observed in 0.68% of diabetic
patients treated with troglitazone versus
no individuals treated with pioglitazone
or rosiglitazone (57). (See subsequent
discussion on nonalcoholic steatohepatitis
[NASH].)

Rosiglitazone shares similar beneficial
effects with pioglitazone and troglitazone
on insulin sensitivity, b-cell function, gly-
cemic control, endothelial function, and
adipocyte metabolism (see subsequent
discussion). However, because of con-
cerns about cardiovascular safety rosigli-
tazone has been severely restricted in the
U.S. and has been removed from the mar-
ket in Europe and many other countries.
In 2007, a meta-analysis by Nissen and
Wolski (58) suggested an increased inci-
dence of cardiovascular events in diabetic
patients treated with rosiglitazone. In
2010, a patient-level analysis by FDA statis-
ticians of data supplied byGlaxoSmithKline
gave hazard ratio (HR) 1.4 for composite
MACE end point (cardiovascular death,
myocardial infarction [MI], stroke) and
1.80 for MI (59), leading to removal of ro-
siglitazone from the U.S. market for all
practical purposes. In a recent literature re-
view, Schernthaner and Chilton found that
rosiglitazone consistently was associated
with HR .1.0 for cardiovascular events,
while pioglitazone was associated with
HR,1.0 (60).

In subsequent sections, we will focus
on the pleotrophic effect of thiazolidine-
diones, with emphasis on pioglitazone
and rosiglitazone.

Pleotrophic effects of PPARg agonists
PPARg agonists exert pleotrophic effects
on glucose and lipid metabolism in mul-
tiple tissues and have become an impor-
tant therapeutic agent for treating T2DM
(45,61,62).
Glycemic control. Thiazolidinediones
are potent insulin sensitizers in liver/mus-
cle/adipocytes (14,61–67), augment/pre-
serve b-cell function (68), and produce
durable HbA1c reduction in T2DM. In
eight of eight long-term (.1.5 years),
double-blind, or active comparator stud-
ies (Fig. 1), thiazolidinediones caused du-
rable HbA1c reduction (rev. in 61) lasting
up to 5–6 years (69). Their durable effect
on glycemic control results from com-
bined action to both augment b-cell func-
tion and enhance insulin sensitivity. In
T2DM patients with starting HbA1c 8.0–
8.5%, one can expect a 1.0–1.5% decrease
in HbA1c (70–76). Thiazolidinediones are
approved for monotherapy and add-on

therapy to all oral hypoglycemic agents,
glucagon-like peptide-1 analogs, and in-
sulin (76).
Insulin sensitivity in liver and muscle.
In liver, thiazolidinediones augment
insulin sensitivity and inhibit gluconeo-
genesis, leading to reduction in fasting
plasma glucose concentration (63,64). In
muscle, thiazolidinediones are the only
true insulin sensitizers, producing a de-
cline in postprandial glucose levels
(61,66,67). Metformin is a weak insulin
sensitizer in muscle, and it has been diffi-
cult to demonstrate a muscle insulin-
sensitizing effect in absence of weight
loss (77,78). Thiazolidinedione-mediated
improvement in insulin sensitivity in
T2DM is mediated via multiple mecha-
nisms: PPARg activation, enhanced insu-
lin signaling, increased glucose transport,
enhanced glycogen synthesis, improved
mitochondrial function, and fat mobiliza-
tion out of muscle/liver, i.e., reversal of
lipotoxicity (45,62,79–82). Recent stud-
ies suggest that metabolic effects of
thiazolidinediones are mediated by mito-
chondrial target of thiazolidinediones,
mtot1 and mtot2, which represent the
pyruvate transporter (83,84).

For insulin to exert its metabolic
effects, it must first bind to and activate
insulin receptor by phosphorylating three
key tyrosine molecules on b chain (Fig.
2). This causes insulin receptor substrate
(IRS)-1 translocation to plasmamembrane,
where it undergoes tyrosine phosphoryla-
tion, leading to phosphatidylinositol 3-
kinase (PI3 kinase) and Akt activation.
This causes glucose transport into cell, ac-
tivation of nitric oxide synthase with arte-
rial vasodilation (85–87), and stimulation
of multiple intracellular metabolic pro-
cesses (45).

In humans, we demonstrated that
insulin-stimulated tyrosine phosphoryla-
tion of IRS-1 in muscle is severely im-
paired in lean T2DM (81,88,89), in obese
normal glucose tolerant (NGT) individu-
als (89), and in insulin-resistant NGT off-
spring of two T2DM parents (90,91) (Fig.
2); similar results have been reported by
others (92–95). This insulin-signaling de-
fect leads to reduced glucose transport,
impaired nitric oxide release (explaining
endothelial dysfunction), and multiple
defects in intramyocellular glucose me-
tabolism.

In contrast to the defect in IRS-1
activation, the mitogen-activated protein
(MAP) kinase pathway, which can be
activated by Shc, is normally responsive
to insulin (61,62,88,89) (Fig. 2). Stimu-
lation of MAP kinase activates multiple
intracellular pathways involved in inflam-
mation, cellular proliferation, and athero-
genesis (62,96–98).

The defect in IRS-1 tyrosine phos-
phorylation impairs glucose transport,
and resultant hyperglycemia stimulates
fasting/postprandial insulin secretion. Be-
causeMAPkinase retains normal sensitivity
to insulin (62,88,89,94), hyperinsulinemia
causes excessive stimulation of this path-
way and activation of multiple intracellular
pathways involved in inflammation and
atherogenesis. This provides a pathogenic
link that, in part, can explain the strong
association between IR and atherosclerotic
cardiovascular disease in nondiabetic and
T2DM individuals (99–102).

Thiazolidinediones are the only anti-
diabetes drugs that simultaneously aug-
ment insulin signaling through IRS-1 and
inhibit MAP kinase pathway (61,77,81),
providing a molecular mechanism to
explain results from CHICAGO (104)
and Pioglitazone Effect on Regression of
Intravascular Sonographic Coronary
Obstruction Prospective Evaluation
(PERISCOPE) (105) studies, in which
pioglitazone reduced progression of
carotid intima-media thickness (IMT)
and coronary atherosclerosis in T2DM.
Consistent with these anatomical studies,
pioglitazone in PROactive (106) de-
creased (P = 0.027) MACE end point
(death, MI, stroke) by 16%.
Adipocyte insulin sensitivity. In adi-
pose tissue, thiazolidinediones are potent
insulin sensitizers, inhibiting lipolysis
and release of inflammatory cytokines,
while increasing adiponectin secretion
(67,79,80,107–109). In T2DM and obese
NGT individuals, adipocytes are resistant
to insulin’s antilipolytic effect, resulting in

Figure 1dThiazolidinediones produce a sus-
tained long-term reduction in HbA1c in eight
of eight double-blind or placebo- or active-
comparator controlled studies. (See text for
a more detailed discussion.) Reprinted with
permission from DeFronzo (61).
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accelerated triglyceride breakdown with
release of FFA. Elevated plasma FFAs en-
hance FFA flux into cells, leading to accu-
mulation of toxic lipid metabolites (fatty
acyl CoAs, diacylglycerol, ceramides),
which inhibit insulin action in muscle/
liver (62,110–112) and impair b-cell
function (113). Thus, these lipotoxic
molecules antagonize the core defects
that characterize T2DM. By improving in-
sulin sensitivity in adipocytes and inhib-
iting lipolysis, thiazolidinediones reduce
plasma FFA, leading to enhanced insulin
sensitivity in muscle/liver and improved
b-cell function in T2DM.

In T2DM, adipocytes are in a state of
chronic inflammation, as evidenced by
monocyte infiltration (114). Inflamed
adipocytes release adipocytokines (tumor
necrosis factor-a, resistin, angiotensino-
gen, plasminogen activator inhibitor 1,
interleukin-6, and others), which cause
IR, impair b-cell function, promote in-
flammation in distant tissues, augment
thrombosis, and accelerate atherogenesis
(79,80). Adipocytes from T2DM patients
have reduced ability to secrete adiponectin
(81,82), a potent vasodilator and antia-
therogenic molecule. Thiazolidinediones
suppress inflammation in adipose tissue,
inhibit release of inflammatory and pro-
thrombotic adipokines, and augment adi-
ponectin secretion.

Thiazolidinediones reverse
lipotoxicity
The current diabetes epidemic is being
driven by the obesity epidemic. Both
obesity and T2DM are characterized by
tissue fat overload (Fig. 3). Accumulation
of intracellular toxic lipid metabolites
causes IR in muscle/liver by inhibiting in-
sulin signaling, glycogen synthesis, and
glucose oxidation (rev. in 61,62). Fat ac-
cumulation in liver causes nonalcoholic

fatty liver disease (NAFLD) and NASH
(115), which has become the leading
cause of cirrhosis in Westernized coun-
tries. Fat accumulation in b-cells impairs
insulin secretion and promotes apoptosis
(113). Fat deposition in arteries promotes
atherogenesis (62), while fat accumula-
tion in visceral depots is associated with
coronary arterial disease (116).

Thiazolidinediones reverse lipotoxic-
ity by mobilizing fat out of muscle/liver/
b-cells/arteries and relocating fat to sub-
cutaneous adipose depots where it is met-
abolically “benign” (62,79,80) (Fig. 3).
After binding to PPARg, thiazolidine-
diones stimulate subcutaneous adipo-
cytes to divide and induce multiple
genes involved in lipogenesis (117).
Newly formed subcutaneous adipocytes
take up FFA, leading to marked reduction
in plasma FFA and decreased FFA flux
into liver/muscle/b-cells/arteries. Thiazo-
lidinediones also increase expression of

PPARg coactivator (PGC-1), the master
regulator of mitochondrial biogenesis
(118,119). Increased PGC-1 upregulates
multiple mitochondrial oxidative phos-
phorylation genes, increasing fat oxida-
tion and decreasing levels of intracellular
toxic lipid metabolites.

Thiazolidinediones and b-cell
function
Thiazolidinediones exert potent effects to
improve/preserve b-cell function (68)
and demonstrate durability of glycemic
control for up to 5–6 years in eight of
eight studies (rev. in 61). This is in con-
trast to sulfonylureas and metformin,
which, after initial HbA1c decline, are as-
sociated with progressive HbA1c rise, re-
sulting from progressive b-cell failure
(120–122).

In addition to studies performed in
T2DM, six studies demonstrate that thia-
zolidinediones prevent IGT progression

Figure 2dInsulin signal transduction in healthy nondiabetic (left panel) and T2DM (right panel) subjects. Thiazolidinediones improve insulin
signaling through the PI-3 kinase pathway, while inhibiting insulin signaling through the MAP kinase pathway. Reprinted with permission from
DeFronzo (61).

Figure 3dBody fat distribution in T2DM patients and its redistribution with thiazolidinediones
(TZD). (See text for a detailed discussion.) TG, triglyceride. Reprinted with permission from
DeFronzo and colleagues (79).
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to T2DM (123–128). In Diabetes Reduc-
tion Assessment with Ramipril and Rosi-
glitazone Medication (DREAM), T2DM
was reduced by 62% with rosiglitazone
(124), while in Actos Now for the preven-
tion of diabetes (ACT NOW) (127) pio-
glitazone decreased IGT conversion to
T2DM by 72%. All six studies demon-
strated that, in addition to their insulin-
sensitizing effect, thiazolidinediones
preserved b-cell function. b-Cells re-
spond to increased plasma glucose levels
with an increase in insulin secretion, and
ΔI/ΔG is modulated by severity of IR
(128). The insulin secretion/IR index

(ΔI/ΔG 4 IR) represents the gold stan-
dard for b-cell function and should not
be equated with plasma insulin response.
In ACT NOW, improvement in insulin
secretion/IR index was the strongest pre-
dictor of diabetes prevention in IGT sub-
jects and reversion to NGT. Similar
results have been demonstrated in TRo-
glitazone In the Prevention Of Diabetes
(TRIPOD) and Pioglitazone In Prevention
Of Diabetes (PIPOD) (123,126), in which
development of diabetes in Hispanic
women with GDM was decreased by 52
and 62%. In Canadian Normoglycemia
Outcomes Evaluation (CANOE) (128),

low-dose rosiglitazone (4 mg/day), com-
bined with low-dose metformin (1,000
mg/day), reduced IGT conversion to
T2DM by 70%. In vivo and in vitro stud-
ies with human/rodent islets demonstrate
that thiazolidinediones exert protective
effects on b-cell function (129–131).
Studies from our group using insulin
secretion/IR index have shown that thia-
zolidinediones markedly augment b-cell
function in T2DM patients (68) (Fig. 4).

Improved b-cell function with thia-
zolidinediones results from 1) stimulatory
effect of PPARg to increase GLUT2, glu-
cokinase (132), and Pdx (133) in b-cells;
2) reduced intracellular levels of toxic
lipid metabolites (129,132,134,135); 3)
muscle/liver insulin-sensitizing effect of
thiazolidinediones, which reduce insulin
and, therefore, amylin secretion (amylin
degradation products are toxic to b-cells
[136,137]; the ability of thiazolidine-
diones to protect human islets from
amylin toxicity is mediated via PI3 kinase–
dependent pathway [138]); and 4) studies
in b-cell insulin receptor knockout
(BIRKO) mice suggest that defective insu-
lin signaling through IRS-1/PI3 kinase im-
pairs insulin secretion (139) and that
thiazolidinediones correct this insulin sig-
naling defect (129), resulting in enhanced
insulin secretion.

Summary
Thiazolidinediones improve multiple de-
fects (IR in liver/muscle/adipocytes and
b-cell dysfunction) that comprise the
Ominous Octet (61) (Fig. 5), cause dura-
ble HbA1c reduction, and can be used as
monotherapy or in combination with any
other antidiabetes agent. Pioglitazone and
rosiglitazone similarly reduce HbA1c, im-
prove insulin sensitivity in muscle/liver/
adipocytes, and enhance b-cell function.

THIAZOLIDINEDIONES AND
IR SYNDROMEdIR (metabolic) syn-
drome represents a cluster of metabolic
and cardiovascular disorders, each of
which represents a major cardiovascular
risk factor (62). A common thread linking
all IR syndrome components is the basic
molecular etiology of IR (61,62,81,88,89),
which not only promotes inflammation
and atherogenesis but also aggravates other
components of the syndrome. Pioglitazone
and rosiglitazone ameliorate the molecular
defect in insulin signaling, enhancemuscle/
hepatic/adipocyte insulin sensitivity, cor-
rect hyperinsulinemia, improve glucose
tolerance and endothelial dysfunction, re-
duce blood pressure, decrease plasma FFA

Figure 4dThiazolidinediones enhance b-cell function (insulin secretion/IR index) in new-
onset, drug-naïve T2DM patients and in long-standing, sulfonylurea-treated T2DM individuals
(69). *P , 0.01.

Figure 5dPioglitazone corrects four of the eight pathophysiologic components of the Ominous
Octet. Modified with permission from DeFronzo (61). TZD, thiazolidinediones.
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levels, increase HDL cholesterol, transform
small dense LDL particles into larger less
atherogenic ones, shift body fat from vis-
ceral to subcutaneous depots, mobilize fat
out of muscle/liver, reduce plasminogen
activator inhibitor 1/tumor necrosis fac-
tor-a levels, and increase plasma adiponec-
tin (rev. in 62). Rosiglitazone produces
metabolic effects similar to those of piogli-
tazone with two notable exceptions: rosi-
glitazone increases both plasma LDL
cholesterol and triglycerides (140). Con-
cerns about cardiovascular safety (58)
have led to removal of rosiglitazone from
U.S. (56) and European markets.

Pioglitazone reduces cardiovascular
events
Pioglitazone is the only antidiabetes med-
ication shown, in a large prospective
placebo-controlled outcome study, to
reduce cardiovascular events. In PROac-
tive, 5,238 T2DM patients with prior
cardiovascular event or multiple CVD risk
factors were randomized to pioglitazone
or placebo plus standard of care for all

cardiovascular risk factors (106). Com-
pared with placebo, pioglitazone reduced
the second principal MACE end point
(cardiovascular mortality, MI, stroke) by
16% (P, 0.02) (Fig. 6A). Cardiovascular
benefit most likely resulted from com-
bined improvements in dyslipidemia (in-
creased HDL cholesterol), endothelial
dysfunction, blood pressure, HbA1c, other
inflammatory markers that were not mea-
sured, and direct effect on arterial wall to
inhibit atherogenesis (141). In a subgroup
of 2,445 patients with previous MI, piogli-
tazone reduced (HR 0.72, P = 0.04) likeli-
hood of subsequentMI by 16% (142) (Fig.
6C). In 984 patients with previous stroke,
pioglitazone caused 47% reduction (HR
0.53, P = 0.008) in recurrent stroke
(3,143) (Fig. 6D).

The composite primary end point
(mortality, nonfatal MI, silent MI, stroke,
acute coronary syndrome, coronary
artery bypass grafting/percutaneous
coronary intervention, leg amputation,
leg revascularization) did not reach sig-
nificance (HR 0.90, P = 0.09) because of

increased number of leg revascularization
procedures in the pioglitazone group. Leg
revascularization is not aMACE end point
and typically is excluded from cardiovas-
cular intervention trials, i.e., with statins,
because the major risk factors for periph-
eral vascular disease are gravity (i.e., sub-
ject’s height) and smoking, which are
not influenced by antidiabetes therapy.
Subsequent PROactive analyses con-
firmed that pioglitazone has no beneficial
effect on peripheral vascular disease
(144). Consistent with PROactive, a
meta-analysis of all pioglitazone studies
published (excluding PROactive) and re-
ported to the FDA demonstrated a 25% de-
crease in cardiovascular events (145) (Fig.
6B), and a recent review recommended
that pioglitazone should be considered in
diabetic patients with cardiovascular dis-
ease (146).

Two additional studies demonstrated
that pioglitazone slows anatomical
progression of atherosclerotic cardiovas-
cular disease. In PERISCOPE (105),
T2DM patients with established coronary

Figure 6dA: Kaplan-Meier plot of time to MACE end point (mortality, MI, stroke) in T2DM patients treated with pioglitazone (PIO) or placebo
(Plc) in PROactive. Redrawn with permission from Dormandy et al. (106). B: Pioglitazone reduces recurrent MI in diabetic patients with a previous
MI in PROactive. Redrawn with permission from Erdmann et al. (142). C: Pioglitazone reduces recurrent stroke in diabetic patients with a previous
stroke or PROactive. Redrawn with permission from Wilcox et al. (143). D: Meta-analysis of all published studies (excluding PROactive) in which
the effect of pioglitazone versus placebo or active comparator on cardiovascular events is examined. Redrawn with permission from Lincoff et al.
(145).
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artery disease were randomized to piogli-
tazone or glimepiride for 1.5 years. In the
glimeperide-treated group, percent ath-
eroma volume progressed, while per-
cent atheroma volume regressed in the
pioglitazone-treated group. In CHICAGO,
pioglitazone halted progression of carotid
IMT, whereas carotid IMT progressed in
the glimepiride-treated group (P = 0.008)
(104). Results of these two anatomical trials
(104,105), when viewed in concert with
cardiovascular outcome trials (106,145),
strongly suggest that pioglitazone provides
cardiovascular protection, especially in in-
dividuals with established cardiovascular
disease.

The different effects of pioglitazone
and rosiglitazone on cardiovascular out-
comes remains unexplained. One obvi-
ous explanation is rise in plasma LDL
cholesterol and triglyceride observedwith
rosiglitazone (140). Another explanation
involves differential regulation of gene ex-
pression by rosiglitazone and pioglita-
zone. In muscle (147) and adipocytes
(148), multiple genes are differentially
stimulated or inhibited by the two thiazo-
lidinediones, and the function of these
genes is largely unknown.

Thiazolidinediones prevent T2DM in
high-risk individuals
Six large prospective, randomized, double-
blind, placebo-controlled studies (TRIPOD
[126], PIPOD [123], DPP [125], DREAM
[124], CANOE [128], and ACT NOW
[127]) have provided conclusive evidence
that thiazolidinediones dramatically re-
duce by 52–72% conversion of predia-
betes (IGT and/or IFG) to T2DM. In ACT
NOW, IGT conversion to T2DM was re-
duced by72%and carotid IMTprogression
was diminished by .50% versus placebo
(127). Increased b-cell function (insulin
secretion/IR index) was the strongest pre-
dictor of diabetes prevention. In ACT
NOW and other prevention trials reduc-
tions in HbA1c, blood pressure, triglycer-
ides, inflammatory cytokines, and rise in
HDL cholesterol also have been observed
(127).

THIAZOLIDINEDIONES AND
NASHdIn T2DM hepatic fat accumu-
lation, NAFLD is common and represents
a precursor for NASH. NASH is associ-
ated with hepatic/muscle IR (115) and
accelerated atheogenesis (148). Several
large, placebo-controlled studies have
demonstrated that pioglitazone mobili-
zes fat from liver, reduces hepatic injury,
and causes histologic improvement in

inflammation/fibrosis in NASH (149–
151). Pioglitazone also reduces liver fat
and improves IR in lipodystrophic pa-
tients (152). Studies examining effect of
rosiglitazone in NASH have shown an ini-
tial beneficial effect on liver histologic pa-
rameters with no benefit from prolonged
continuous treatment (153).

THIAZOLIDINEDIONES AND
KIDNEYdDiabetic rodents develop
renal insufficiency and histologic lesions
analogous to those in man, and thiazoli-
dinediones reduce mesangial matrix
(hallmark lesion of diabetic nephropa-
thy) volume, decrease urinary protein
excretion, and prevent renal failure
(154,155). PPARg is expressed diffusely
throughout kidney, and PPARg agonists
inhibit mesangial cell proliferation and
reduce mRNA expression of matrix pro-
teins (collagen, fibronectin) and trans-
forming growth factor-b, which has
been implicated in glomerular injury
(156). In diabetic humans, pioglitazone
(157) and rosiglitazone (158) reduce
albuminuria, although long-term studies
examining effect of thiazolidinediones on
GFR have not been performed. Beneficial
effect of thiazolidinediones to reduce al-
buminuria cannot be explained by im-
proved glycemic control and is closely
correlated with improved insulin sensi-
tivity (159).

Diabetic individuals with renal insuf-
ficiency are at increased risk for cardio-
vascular disease/mortality (159). In
PROactive, pioglitazone significantly re-
duced MACE end point in patients with
and without reduced GFR (160). Thiazo-
lidinediones also reduced all-cause mor-
tality in hemodialysis-treated patients
(161).

SAFETYdBenefits of pioglitazone on
glycemic control and prevention of car-
diovascular disease are well established.
However, physicians must be cognizant
of potential side effects to maximize ben-
efit and minimize risk. The majority of
pioglitazone’s beneficial effects on glu-
cose metabolism, insulin sensitivity, insu-
lin secretion, and cardiovascular risk
factors are observed with a dose of 30
mg/day (70,162). At this dose, side effects
are mild and manageable. Increasing dose
to 45 mg/day provides little more efficacy
and substantially increases risk of side ef-
fects (70). Therefore, we recommend a
starting dose of 7.5–15 mg/day, tritiated
to 30 mg/day (163–165). Combined pio-
glitazone/metformin therapy (166,167) is

particularly effective in reducing HbA1c,
does not cause hypoglycemia, and mini-
mizes side effects. Moreover, both piogli-
tazone (106,145) and metformin (121)
reduce cardiovascular events, although
the number (n = 344) of subjects in the
metformin arm of the UK Prospective Di-
abetes Study (UKPDS) was small and
would not satisfy current standards for a
cardiovascular intervention study.

Fat weight gain
On average, pioglitazone-treated subjects
gain ;2–3 kg of fat weight after 1 year
(70,76,106,168), which results from
PPARg stimulation of hunger centers in
hypothalamus (169). Simultaneously,
PPARg activation redistributes fat from vis-
ceral to subcutaneous depots (55,79,170),
mobilizes fat out of muscle/liver/b-cells
(79,80,149,150,171), inhibits lipolysis/
reduces plasma FFA (79,80,109), and
stimulates PGC-1/other mitochondrial
genes involved in lipid oxidation (118).
The net result is a metabolically more fa-
vorable fat distribution from visceral to
subcutaneous depots where it is metabol-
ically benign (79,80) and depletion of
toxic lipid metabolites in muscle/liver/
b-cells (62). Of note, the greater the
weight gain, the greater the improve-
ments in b-cell function and insulin sen-
sitivity and the greater the reduction in
HbA1c (68,170,172). On a short-term
basis, i.e., up to 3 years (106), no adverse
effects of thiazolidinedione-associated
weight gain have been observed. Long-
term effects, if any, of thiazolidinedione-
associated weight gain remain unknown.
Weight gain, if excessive, should be man-
aged with reinforcement of dietary advice
and exercise, reduction in pioglitazone
dose, or use of pharmacologic agents ap-
proved for weight loss.

Bone fractures
T2DM patients treated with thiazolidine-
diones have increased risk of fracture
(173–176), which primarily occurs in dis-
tal long bones of upper (forearm, hand,
wrist) and lower (foot, ankle, fibula, tibia)
limbs and is related to trauma. Excess
fracture risk is 0.8 fractures per 100
patient-years (1.9 in pioglitazone treated
vs. 1.1 in comparator treated) (173–176).
This represents a small but significant
risk. Since increased fracture risk pri-
marily occurs in postmenopausal fe-
males and not in premenopausal women
or men, pioglitazone should be used with
caution in postmenopausal women or not
at all.
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Fluid retention and congestive heart
failure
Thiazolidinediones may cause fluid re-
tention, which can exacerbate heart fail-
ure in diabetic patients who do not
uncommonly have underlying diastolic
dysfunction (106). When used as mono-
therapy, edema occurs in 3–5% of indi-
viduals and is dose related (177). Edema
most commonly occurs when thiazolidi-
nediones are used with sulfonylureas and
especially with insulin (177–180). Fluid
retention occurs secondary to peripheral
vasodilation (181) and stimulation of
ENac (epithelial sodium) channel in col-
lecting duct (182). Sodium retention re-
sponds well to distally acting diuretics,
spironolactone or triamterene (183).
Pedal edema identifies individuals at
risk to develop congestive heart failure
(CHF) and who should be treated
with a diuretic or reduction in pioglita-
zone dose. In PROactive, incidence of
CHF was 6%. However, cases were not
adjudicated, and mortality and cardio-
vascular events tended to be decreased
in pioglitazone-treated individuals who
developed CHF (106,184). These results
suggest that after excess fluid has been
diuresed, the cardioprotective effect of
pioglitazone becomes evident. Lastly,
pioglitazone has no negative impact on
cardiac function (185) and improves en-
dothelial dysfunction (186).

THIAZOLIDINEDIONES AND
CANCERdIn PROactive (106), inci-
dence of malignancy was similar in pio-
glitazone (3.7%) and placebo (3.8%)
groups. However, two imbalances were
noted. There were more cases of bladder
cancer in pioglitazone (n = 16) versus pla-
cebo (n = 6) groups (P = 0.069). Prior to
unblinding, external experts adjudicated
that 11 cases could not plausibly be re-
lated to treatment. Of the remaining
nine case subjects, six were treated with
pioglitazone and three with placebo (P =
0.309). The other imbalance was related
to breast cancer; there were fewer breast
cancers in the pioglitazone versus placebo
group (3 vs. 11, P = 0.034). Thus, the
nonsignificant increase in bladder cancer
was numerically offset by the statistically
significant decrease in breast cancer.

In 2003, the FDA requested that a
safety study be conducted to assess
whether pioglitazone increased bladder
cancer risk. After 4 years of a 10-year
longitudinal cohort study of 193,099
patients (187), ever use of pioglitazone
was not associated with increased bladder

cancer risk (HR 1.2 [95% CI 0.9–1.5]).
However, in patients receiving pioglita-
zone for $24 months, there was slight
increased bladder cancer risk (1.4
[1.03–2.0]); 95% of cancers were detected
at an early in situ stage, and authors
acknowledged that this could have been
attributed to the fact that pioglitazone-
treated patients underwent greater sur-
veillance for bladder cancer. Bladder
cancer risk increased from 7/10,000
patient-treatment years (no pioglitazone)
to 10/10,000 (with pioglitazone)dan
increase of 3 cases per 10,000 patient-
treatment years. Overall, there was no
increase in total cancers in pioglitazone-
treated patients (187,188), and risk of
some cancers (colon, kidney/renal pelvis,
breast) was decreased (188). In a recent
8-year analysis of the same study popula-
tion, HR for bladder cancer was 0.98
(95% CI 0.81–1.18) (189). If pioglita-
zone actually increased bladder cancer
risk, one would have expected HR to
increasednot decreasedafter 8 years.
These results argue against a putative
role for pioglitazone in development of
bladder cancer. Further, overall inci-
dence of malignancy has been reported
not to increase (106) or decrease in cer-
tain cancer types (breast and liver) in
pioglitazone-treated patients (188,190–
192). Lastly, any increased bladder
cancer risk must be viewed in the context
of protection against all-cause death, MI,
and stroke, i.e., MACE end point in

PROactive. It has been estimated that treat-
ment of 10,000 patients with pioglitazone
would avoid 210 MIs, stroke, or deaths
over 3 years (193) compared with a poten-
tial increase of three cases of bladder cancer
per 10,000 patients over the same period.
Moreover, even this increase of 3/10,000
disappeared after 8 years (189).

Based upon the body of evidence
reviewed above (not including 8-year
follow-up data reported by Lewis), the
FDA recommended that pioglitazone not
be used in patients with active bladder
cancer or prior bladder cancer history.
We recommend that any hematuria be
evaluated to exclude bladder cancer be-
fore starting pioglitazone.

BENEFIT-RISK ANALYSISdAs
reviewed in preceding sections, the
benefit-to-risk ratio for pioglitazone is
very favorable. Importantly, if physicians
are aware of potential risks associated
with thiazolidinediones and if the piogli-
tazone dose does not exceed 30 mg/day,
side effects can be reduced even further
(Table 1).
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Table 1dBenefits and risks associated with thiazolidinedione therapy

Benefit Risk

c Potent, durable HbA1c reduction c Fat weight gain
c Low risk of hypoglycemia c Fluid retention/heart failure
c Reduces IR c Bone fractures (distal long bones; trauma-related)
c Improves b-cell function
c Improves cardiovascular risk
factors (↑ HDL, ↓ triglyceride,
↓ blood pressure, ↓ inflammation,
↓ microalbuminuria)

c Bladder cancer (potentially)

c Decreases cardiovascular events in
high-risk diabetic patients
(PROactive; meta-analysis)

c Reduces cardiovascular events in
diabetic patients with chronic
kidney disease

c Improves endothelial dysfunction
c Improves liver damage in NASH
c Prevents IGT progression to
T2DM (ACT NOW, TRIPOD,
PIPOD, DREAM)
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