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A lthough it has long been assumed
that insulin resistance is the leading
factor in the pathogenesis of type 2

diabetes (1), evidence for the importance
of the pancreatic b-cells has accumulated
over the past decades. In fact, the vast ma-
jority of genes associated with type 2 di-
abetes have been linked to the b-cell,
and impairments in b-cell mass and in
insulin secretion have been reported in
numerous studies in patients with type 2
diabetes. One misconception that has
prevented the appreciation of the b-cell
defects for a long time is the idea of a “hy-
perinsulinemia” in patients with type 2
diabetes. This concept has arisen from
the observation that patients with type 2
diabetes often present with higher fasting
insulin concentrations than nondiabetic
individuals. However, if insulin concen-
trations are interpreted in the context of
the concurrently elevated glucose levels in
patients with type 2 diabetes, a relative
insulin deficit rather than hyperinsuline-
mia becomes apparent. Furthermore,
when insulin secretion is evaluated under
stimulated conditions (e.g., after intrave-
nous glucose administration), the typical
defects, especially in early-phase insulin
release, can be unmasked (2,3).

It has also been suggested that obesity
causes type 2 diabetes through impaired
insulin action. Undoubtedly, the risk of
developing type 2 diabetes increases

markedly with BMI. However, if obesity
were really the cause of type 2 diabetes,
one would expect the vast majority of
obese individuals to develop hyperglyce-
mia, whereas in reality ;80% of obese
individuals remain free of diabetes (4).
These findings suggest that obesity and
insulin resistance are indeed important
cofactors that increase the individual
risk of diabetes but that the actual cause
of the disease seems to be clearly linked to
the b-cells.

If one accepts this notion, the next
question is whether b-cell defects are pri-
marily functional in nature or whether a
reduction in the number of insulin-
secreting cells (i.e., b-cell mass) is the
leading problem in type 2 diabetes. This
article will summarize the arguments in
favor of both sides, aiming to reach a con-
sensus as to the importance of reduced
b-cell mass and impaired b-cell function
in the pathogenesis of type 2 diabetes.

Is type 2 diabetes primarily caused
by a deficit in b-cell mass?
That type 2 diabetes develops largely
because of a deficit in b-cell mass is sup-
ported by several lines of evidence. Au-
topsy studies in various populations
(European, Asian, and North American)
have reported significant reductions in
the amount of pancreatic b-cells in pa-
tients with type 2 diabetes compared

with nondiabetic individuals (5–7). The
extent of this deficit ranges from ;20%
in some studies to;65% in others (5–7).
There is also evidence for ab-cell deficit in
prediabetic individuals with impaired
fasting glucose (6). The reasons underly-
ing the heterogeneous results from differ-
ent studies are probably multifactorial in
nature. Presumably, the individual con-
tribution of the b-cell deficit versus that
of b-cell dysfunction and insulin resis-
tance to the overall pathogenesis of type
2 diabetes varies between different popu-
lations. While based on these studies
there is no doubt that b-cell mass is re-
duced to a variable extent in patients with
type 2 diabetes, the reasons underlying
this b-cell deficit are less well established.
A common view is that increased b-cell
apoptosis leads to the continuous loss of
b-cells (8). In support of this theory, ap-
optosis was found to be increased in islets
from patients with type 2 diabetes com-
pared with nondiabetic subjects based on
two different studies using either immu-
nohistochemistry or Western blot anal-
ysis (6,9). Controversy exists regarding the
presumed causes of b-cell apoptosis in
type 2 diabetes. Under in vitro condi-
tions, b-cell death has been induced by
various factors linked to the type 2 diabe-
tes phenotype, such as high concentra-
tions of glucose, free fatty acids, or
human islet amyloid polypeptide (10).
Also commonly assumed is that a high
secretory demand in overtly hyperglyce-
mic or obese individuals causes genera-
tion of reactive oxygen species (oxidative
stress) as well as protein misfolding in
the endoplasmatic reticulum (ER stress),
both of which can result in the induction
of apoptosis (11). Finally, inflammatory
signals, such as local production of
interleukin-1b within islet b-cells, have
been linked to b-cell death in type 2 di-
abetes (12). Estimating which of these
mechanisms is most important for induc-
tion of b-cell death in patients with type 2
diabetes seems difficult.

Although accelerated b-cell death
would reasonably explain the overt
b-cell deficit in type 2 diabetes and would
also be consistent with the clinical
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observation of a progressive deterioration
of insulin secretion in patients with type 2
diabetes over time (13), an alternative hy-
pothesis would be insufficient islet devel-
opment during the pre- and postnatal
growth period (14). In support of such
reasoning, we have previously noted a re-
markable variation in fractional b-cell
area (.30-fold) in individuals of similar
age-groups throughout the pre- and post-
natal growth period (15). It has also been
suggested that intrauterine malnutrition
as well as certain polymorphisms may
predispose children to an insufficient for-
mation of islets, which might lead to an
increased risk of diabetes later in life (16).

What are the consequences of a b-cell
deficit for the maintenance of glucose ho-
moeostasis? Not surprisingly, postchal-
lenge insulin levels are reduced after a
b-cell loss (17,18). There is also evidence
that hyperglycemia causes additional
functional impairments in insulin release
that go beyond the actual b-cell deficit
(19). This is most likely the result of

b-cell exhaustion (i.e., depletion of in-
sulin granules) and subsequent loss of
early-phase insulin release (20). In fact, if
b-cell mass is reduced by 50%, the secre-
tory burden for the remaining b-cells in-
creases by 100%, thereby leading to
chronic b-cell stress. This is probably the
reason why the functional impairment
of insulin secretion (especially glucose-
stimulated first-phase insulin release) in
patients with type 2 diabetes often mark-
edly exceeds the estimated deficit in b-cell
mass (2,3). In turn, induction ofb-cell rest
by means of insulin therapy or even an
overnight infusion of somatostatin has
been found to largely restore the func-
tional defect in glucose-induced insulin
secretion in hyperglycemic patients with
type 2 diabetes (21,22). That glucose-
induced insulin secretion can be almost
fully normalized even within ,1 day
sheds doubts on the idea of a primary
functional b-cell abnormality in type 2 di-
abetes (23,24). Along the same line, pro-
gressive deterioration of glycemic control

over time occurred despite significant im-
provements in b-cell function in a large
randomized prospective trial (A Diabetes
Outcome Progression Trial [ADOPT])
(13).

One way to address the impact of a
b-cell loss is to study individuals with a
b-cell deficit due to causes other than type
2 diabetes, such as chronic pancreatitis.
When we examined a large group of pa-
tients who underwent partial pancreatec-
tomy for various pancreatic diseases, we
found that on average diabetes occurred
when b-cell area (as quantified in the re-
sected pancreatic tissue) was reduced by
;65% (25). This number is consistent
with the mean reduction in b-cell area
reported in a recent autopsy study in pa-
tients with type 2 diabetes (6). The impact
of an acute 50% reduction in b-cell mass
has also been examined prospectively in
individuals who donated 50% of their
pancreas for transplantation (17). In this
study, hemipancreatectomy led to abnor-
mal glucose tolerance in 7 of 28 donors

Figure 1dWorking model for the impact of reduced b-cell mass on the pathogenesis of type 2 diabetes. In patients with type 2 diabetes, b-cell mass
is reduced by;20–65%, leading to impaired and delayed insulin secretion and a specific reduction in the amplitude of pulsatile insulin secretion. The
reduction of insulin secretion and insulin pulsatility leads to disruption of the intraislet insulin-glucagon cross-talk, causing insufficient suppression
of glucagon release. Reduced pulsatile insulin secretion impairs hepatic insulin signaling and perturbs peripheral insulin action. Increased hepatic
glucose release is further augmented by the exaggerated glucagon concentrations. Together, these defects cause hyperglycemia in patients with type
2 diabetes.
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after 1 year, along with a significant im-
pairment in insulin secretion (17). Four of
eight patients who had been followed up
for 9–18 years after the hemipancreatec-
tomy had developed overt diabetes in the
meantime (26). Notably, the risk of dia-
betes was greatest in obese patients (26),
probably owing to the higher insulin de-
mand in such patients. Also, dispropor-
tionate hyperproinsulinemia, which was
initially believed to be a primary func-
tional abnormality in type 2 diabetes
(27), was found after hemipancreatec-
tomy, suggesting that exaggerated secre-
tion of proinsulin results from an
increased insulin demand subsequent to
theb-cell loss (28). These data from organ
donors are in good agreement with stud-
ies in patients undergoing partial pancre-
atectomy for chronic pancreatitis or
tumors showing significant impairments
in insulin secretion as well as a high risk of
diabetes after surgery (18).

The impact of an ;50% reduction of
b-cell mass has also been examined in
various large animal models. Indeed,
most of the characteristic features of
type 2 diabetes, such as reduced maxi-
mum insulin secretion, reduced ampli-
tude of pulsatile insulin secretion,
reduced insulin clearance, impaired post-
prandial glucagon suppression, and insu-
lin resistance, have been found after an
experimental b-cell loss resembling the

b-cell deficit in patients with type 2 dia-
betes (29,30). Studies in mice or rats sug-
gesting preserved glucose homoeostasis
after 60–90% partial pancreatectomy are
difficult to interpret because of the unusu-
ally high capacity for b-cell regeneration
in rodents of young age (31). Notably,
studies in older animals or in adult hu-
mans have not confirmed such high po-
tential for b-cell regeneration after partial
pancreatectomy (32,33).

An important functional parameter
that has been tightly linked to b-cell mass
in various studies is the amplitude of pul-
satile insulin secretion (34). A recent se-
ries of studies examining the interaction
between pulsatile insulin secretion and
hepatic insulin signaling has convincingly
demonstrated that reduced pulsatile insu-
lin secretion (which typically results
from a b-cell deficit) causes impaired ac-
tivation of the hepatic insulin receptor
substrate (IRS)-1 and IRS-2, as well as
downstream insulin-signaling molecules
(35). Also, a failure to suppress glucagon
levels in response to glucose administra-
tion as well as peripheral insulin resis-
tance has been linked to abnormalities
in pulsatile insulin secretion (29,36,37).
Collectively, these studies lend strong
support to the hypothesis that reductions
in b-cell mass secondarily cause various
abnormalities in b-cell function (espe-
cially pulsatile insulin secretion), a-cell

function, and insulin action in patients
with type 2 diabetes (38,39). The impor-
tance of b-cell mass for the maintenance
of glucose homoeostasis is further em-
phasized by studies showing restoration
of glucose control after pancreas trans-
plantation even in insulin-resistant pa-
tients and in spite of steroid-based
immunosuppressive treatment regimens
(40). A working hypothesis on the con-
sequences of reduced b-cell mass on the
pathogenesis of type 2 diabetes is presen-
ted in Fig. 1.

Is b-cell loss of function the main
determinant of b-cell defects in type
2 diabetes?
The case for a prevalent role of b-cell loss
of function versus b-cell loss of mass in
the etiology and pathogenesis of human
type 2 diabetes is a thorny issue, essen-
tially because we have an incomplete
knowledge of the exact role played by
the b-cell in the natural history of this
disease (41,42). In humans, only in the
last decade has a reasonable consensus
been reached regarding how one should
measure b-cell functional mass in vivo
(43). b-Cell functional mass can hardly
be summarized in one single number for
the simple reason that the b-cell copes
with awfully complex and diverse tasks.
The minimum level of description of
b-cell functional mass should include
measurement of both derivative, or dy-
namic, control (i.e., the b-cell response
to the rate of glucose increase) and pro-
portional, or static, control (i.e., the stim-
ulus response curve relating insulin
secretion rate to glucose concentration)
of b-cell functional mass during both in-
travenous and oral glucose challenges
(43) so as to also be able to quantify the
incretin effect on insulin secretion
(44,45).

During appropriate intravenous glu-
cose challenges, the derivative (dynamic)
control is the time-honored first-phase
insulin release, whereas the stimulus re-
sponse curve of the proportional (static)
control embodies the traditional basal
insulin secretion rate plus the second-
phase insulin response (46) (Fig. 2). The
incretin effect can be quantified as the am-
plification of insulin secretion rate (or ei-
ther control of b-cell functional mass)
induced by the oral versus the venous
route of glucose administration (44,45).
Extensive evidence supports the notion
that different insulin granule pools (47)
and distinct voltage-gated calcium chan-
nels (48) sustain the derivative and the

Figure 2dStimulus response curve for first-phase (derivative control of b-cell function) (con-
tinuous lines) and second-phase (proportional control of b-cell function) (dotted lines) insulin
release in control subjects (C) and in patients with type 2 diabetes (T2DM). All subjects un-
derwent a number of hyperglycemic clamps at graded glucose levels to construct a stimulus re-
sponse curve in each. Although both first- and second-phase insulin releases are severely impaired
in the patients (P , 0.01 for both, type 2 diabetic vs. control), second phase shows a graded
response to the glucose challenge, whereas first phase is virtually absent in the patients, thereby
showing asymmetric functional defects. Data are redrawn from ref. 52.
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proportional control of insulin secretion,
whereas it is obvious that the incretin ef-
fect is served by specific b-cell receptors
and signaling molecules (49). Attempts to
build more sophisticated modeling of in
vivo b-cell function that embodies these
additional features of the insulin secretory
machinery are under way (50,51).

Patients with type 2 diabetes display
reductions in the derivative (dynamic)
and proportional (static) controls of
b-cell functional mass (52,53) and in
the incretin effect (44). All of these im-
pairments concur to cause b-cell failure
in these patients. At this qualitative level
of description, these findings may be

equally compatible with a prevalent role
of either a b-cell loss of function or a
b-cell loss of mass in b-cell failure (41).
If the latter were the only b-cell alteration,
the b-cell functional profiling in human
type 2 diabetes would show 1) parallel
defects in both controls of b-cell func-
tional mass, 2) no possibility of rapid re-
versibility of either defect, 3) no defect in
the incretin effect when expressed as per-
cent, and 4) no involvement of genes reg-
ulating b-cell function.

However, under close inspection the
available data fulfill none of the above
predictions, thereby lending support to
the existence of b-cell loss of function in-
dependently of b-cell loss of mass in type
2 diabetes. We herein briefly review the
experimental evidence falsifying the four
statements above.
1. Lack of parallelism between defects
of derivative (dynamic) and propor-
tional (static) control of b-cell func-
tional mass in patients with type 2
diabetes. In his Banting Lecture of 1990,
Daniel Porte, beautifully summarizing
several decades of research on the b-cell,
reported that first-phase insulin secretion
(derivative or dynamic control) is dispro-
portionately more impaired than second-
phase insulin secretion (proportional or
static control) in patients with overt type
2 diabetes (54). Until then, most studies
were conducted with intravenous glucose
challenges, inwhich theb-cellmetricswere
based on insulin concentration. Potential
critiques were the (lack of) generalizability
of these observations to the oral route of
administration and the potential pitfalls in-
troduced by the use of insulin concentra-
tion, which is heavily determined not only
by insulin secretion rate but also by insulin
catabolism, with the latter process being
variably altered in states of insulin resis-
tance such as diabetes. These potential
drawbacks have been overcome by in
vivob-cell metrics resting onmathematical
modeling of C-peptide (43,55,56), from
which one can compute the b-cell insulin
secretion rate (units: picomoles per min-
ute) and quantify the derivative control
and proportional control of b-cell func-
tional mass. These tools have confirmed
that in type 2 diabetes, there are severe im-
pairments of both derivative (dynamic) and
proportional (static) control ofb-cells (53),
and that these defects are evident also dur-
ing an oral mixed-meal test (57).

However, during intravenous glucose
challenges, the defect in the derivative
(dynamic) control exceeds the impair-
ment in the proportional (static) control

Figure 3dRelationship between pancreatic b-cell area, as determined from pancreatic tissue
removed at surgery, and the C-peptide–to–glucose ratio determined in the fasting state (A) and 30
min after oral glucose ingestion in 8 individuals with normal glucose tolerance (NGT), 14 with
impaired fasting glucose (IFG) or impaired glucose tolerance (IGT), and 11 with diabetes. r and
P values were calculated by linear regression analysis. These analyses demonstrate the tight
relationship between b-cell mass and b-cell function. Modified from ref. 75.

Figure 4dConsensus model for the relationship between impaired b-cell function and mass in
type 2 diabetes. A reduction in b-cell mass increases the secretory demand to the remaining
b-cells, thereby disturbing b-cell function. This may lead to hyperglycemia and hyperlipidemia,
which may again induce b-cell apoptosis, thereby aggravating the b-cell deficit. Along the same
lines, the vicious circle may be initiated by a primary defect in b-cell function. The detrimental
effects of hyperglycemia and b-cell exhaustion on b-cell mass and function may involve both
oxidative stress and ER stress. FFA, free fatty acid.
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of b-cell secretion (Fig. 2). Importantly,
this lack of parallelism between the two
defects is evident also in the prediabetes
stage. While the derivative (dynamic)
control displays an approximately linear
decline (58), which starts already at glu-
cose levels well within the limits of nor-
malcy (59), the proportional (static)
control is characterized by a somewhat
abrupt fall in the passage from impaired
glucose regulation to overt diabetes
(58,60).
2. Fast reversibility of b-cell defects in
type 2 diabetes. Looking at fast revers-
ibility of defects in b-cell functional mass
as evidence of function-relateddnot
mass-relateddimpairments is predicated
on the tenet that b-cells in human adults
turn over very slowly. Although life span
and regeneration rates of b-cells are quite
arduous to measure in humans, the few
current data show that the b-cell pool
turns over at a very slow rate of years
(61,62). Bariatric surgery performed in
patients with type 2 diabetes has been re-
ported to cause significant improvements
in b-cell function in the time span of a few
weeks (63) or even days (64), i.e., orders
of magnitude faster than it can be accounted
for by changes in mass. However, the
perturbations brought about by complex
and different surgical intervention always
leave room for the possibility that, inad-
vertently, not all factors may have been
controlled for appropriately in these com-
parisons. From this viewpoint, a recent
paper by Lim et al. (65) may be of help.
These authors treated patients with type 2
diabetes with a very-low-calorie diet
(VLCD) and monitored changes in insulin
secretion and insulin action by perform-
ing isoglycemic insulin clamps and hy-
perglycemic clamps, respectively. In the
time frame of weeks, they detected a ro-
bust improvement in the b-cell functional
mass of these patients before any change in
insulin sensitivity could be documented.
Similar results were reported by us in a
small group of morbidly obese patients
with type 2 diabetes after only 1 week of
VLCD (66). Finally, in a clinical trial con-
ducted by Weng et al. (22) patients with
newly diagnosed type 2 diabetes were in-
tensively treated for 4 weeks with insulin
pump therapy, basal-bolus insulin ther-
apy, or a number of oral hypoglycemic
agents, with the goal of normalizing
blood glucose levels over the entire day.
At the end of the 4-week treatment pe-
riod, there was a dramatic improvement
in first-phase insulin release during the
intravenous glucose tolerance test, which

was also partially maintained after 1 year
off of therapy. Therefore, different inter-
ventions, such as bariatric surgery, VLCD,
or intensive diabetes treatment, can result
in marked improvements in b-cell func-
tional mass in the time frame of a few
weeks.
3. Presence of an incretin defect in
type 2 diabetes. In the case of a pure
b-cell loss ofmass, the incretin effectwould
be decreased in absolute terms but normal
when expressed in percent figures. How-
ever, this requires that the incretin effect be
measured as insulin secretion ratednot in-
sulin concentration.Unfortunately, inmost
experiments the latter metric is used rather
than the former.

A few years ago, a detailed study by
Muscelli et al. (44) showed that the incre-
tin effect, computed as the ratio of total
insulin secretion rate during the oral glu-
cose challenge to total insulin secretion
rate during the intravenous challenge,
was decreased in type 2 diabetes. The
same was also true for the incretin effect
on proportional (static) control, but not
on derivative (dynamic) control, of b-cell
functional mass. Thus, this study pro-
vides two pieces of evidence in favor of
b-cell loss of function in type 2 diabetes:
1) there is a defect in the incretin effect on
insulin secretion rate when expressed as
percent and 2) the defect in the incretin
effect affects proportional (static) but not
derivative (dynamic) control of insulin se-
cretion, thereby highlighting one more
asymmetry in b-cell functional mass de-
fects associated with type 2 diabetes.
4. b-Cell loss-of-function gene variants
are risk factors for type 2 diabetes and
are associated with decreased b-cell
functional mass. Several lines of evi-
dence, including twin studies (67), support
the notion that the phenotype of b-cell
functional mass is determined by genetic
factors to quite a large extent. Over the
last 6 years, genetic variability at .60 ge-
netic loci has been firmly linked to type 2
diabetes risk (68). Many of these loci are
believed to play a role in diabetes etiology
primarily through effects onb-cell function
(69), and indeed, they are associated with
reduced b-cell functional mass in vivo in
humansdeven in patients with type 2 di-
abetes (70–73). However, at this level of
phenotypic resolution and in the absence
of an in vivo method to quantify b-cell
mass, dissecting out the role(s) of b-cell
loss of mass versus loss of function is only
presumptive.

Studies in human islets and isolated
b-cellscanbehelpful. Indeed,glucose-induced

insulin secretion in islets taken from pa-
tients with type 2 diabetes is reduced by
50% after normalization for islet insulin
content, which is a proxy for reduced
b-cell number in diabetic islets (74).
Most importantly, the diabetogenic var-
iants of four loci (TCF7L2, ADRA2A,
KCNJ11, and KCNQ1) were associated
with reduced insulin exocytosis or altered
insulin granule distribution in isolated
b-cells, which implies that part, if not
most, of the diabetogenic influence of
these risk variants is mediated through al-
terations in single b-cell function (74).
Thus, there is converging evidence stem-
ming from distinct experimental settings
that defects inb-cell function underlie and
cause b-cell failure in type 2 diabetes.
However, this does not necessarily rule
out a role, even a prominent one, for
b-cell loss of mass, for which extensive
evidence also exists. The relative roles
played by each defect in b-cell failure re-
main unknown.

Concluding remarks
The conundrum of whether loss of mass
or loss of function underlies the b-cell de-
fects in type 2 diabetes is not likely to be
conclusively solved on the basis of the ev-
idence we have reviewed here. Decreased
cell mass and acceleration of the biologi-
cal processes resulting in b-cell loss have
been described in type 2 diabetes by a
number of laboratories. On the other
hand, several lines of evidence suggest
that b-cell functional defects may exist
in type 2 diabetes.

Both viewpoints tacitly assume that 1)
type 2 diabetes is a rather homogeneous
entity, at least when it comes to b-cell bi-
ology, and 2) overall islet secretory capac-
ity is a linear function of the product
between b-cell number and isolated
b-cell function. It is possible that neither
assumption holds true.

The most likely scenario, indeed, is
that a variable combination of the two
processes, loss of mass and loss of func-
tion, is at work in type 2 diabetes. Indeed,
there appears to be a tight relationship
between mass of pancreatic b-cells and
functional insulin secretion (75) (Fig. 3).
A working model for the potential inter-
action of b-cell mass and b-cell function
is presented in Fig. 4. If true, from the
therapeutic viewpoint this offers an op-
portunity and poses a challenge.

The opportunity is that the defect in
b-cell function is susceptible to improve-
ment, even rapidly, with prompt benefi-
cial effects on the patient, and it may even
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lead to remission of the disease (22,63–
65). The challenge is that the processes
leading to and the defect in b-cell mass
itself need to be, at least partially, corrected
toprevent an otherwise inexorable progres-
sion and to find a cure of this disease.
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