
Fast and robust reconstruction for fluorescence 
molecular tomography via a sparsity adaptive 

subspace pursuit method 
Jinzuo Ye,1 Chongwei Chi,1 Zhenwen Xue,2 Ping Wu,1 Yu An,3 Han Xu,3  

Shuang Zhang,4 and Jie Tian1,* 
1 Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy 

of Sciences, Beijing 100190, China 
2 Chengdu Institute of Huawei Technologies Co. Ltd., Chengdu, Sichuan 611731, China 

3 Beijing Jiaotong University, School of Computer and Information Technology, Department of Biomedical 
Engineering, Beijing 100044, China 

4 Northeastern University, Sino-Dutch Biomedical and Information Engineering School, Shenyang, Liaoning 110819, 
China 

* tian@ieee.org 

Abstract: Fluorescence molecular tomography (FMT), as a promising 
imaging modality, can three-dimensionally locate the specific tumor 
position in small animals. However, it remains challenging for effective and 
robust reconstruction of fluorescent probe distribution in animals. In this 
paper, we present a novel method based on sparsity adaptive subspace 
pursuit (SASP) for FMT reconstruction. Some innovative strategies 
including subspace projection, the bottom-up sparsity adaptive approach, 
and backtracking technique are associated with the SASP method, which 
guarantees the accuracy, efficiency, and robustness for FMT reconstruction. 
Three numerical experiments based on a mouse-mimicking heterogeneous 
phantom have been performed to validate the feasibility of the SASP 
method. The results show that the proposed SASP method can achieve 
satisfactory source localization with a bias less than 1mm; the efficiency of 
the method is much faster than mainstream reconstruction methods; and this 
approach is robust even under quite ill-posed condition. Furthermore, we 
have applied this method to an in vivo mouse model, and the results 
demonstrate the feasibility of the practical FMT application with the SASP 
method. 

©2014 Optical Society of America 
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1. Introduction 

With the solid development of fluorescent probes and reporter technologies [1], the 
application of fluorescence molecular imaging in biomedical study has become a hot spot 
over the past few years [2, 3]. It offers an opportunity for noninvasive visualization of 
biological processes at the cellular and molecular levels. Fluorescence molecular tomography 
(FMT) is a new promising imaging modality, which can three-dimensionally detect 
fluorescence biodistribution in vivo, therefore greatly facilitate its applications in small-
animal research and pre-clinical diagnostics [4, 5]. 

However, it is challenging for FMT to reconstruct the fluorescence biodistribution 
effectively and robustly [6], because FMT presents a challenging inverse problem which is 
quite ill-posed or ill-conditioned due to the following three reasons [6, 7]: 

1. Photons emitted from the fluorescent sources undergo multiple scattering and potential 
absorption in biological tissues. 

2. Only the photon distribution on the surface is measurable. Although increase of the 
measurement data sets can reduce the ill-posedness, the problem may still be ill-
conditioned as it is too sensitive to noise caused by charge-coupled-device (CCD) 
measurement errors and data discretization errors. 

3. Furthermore, the high sampling measurements and the real animal-shape geometry 
modeling usually produce a large amount of data, which lead to large computational 
complexity and big storage capacity. 

Therefore, the FMT reconstruction faces various challenges on its efficiency and 
robustness, and the development of feasible FMT reconstruction approaches plays a unique 
role in the achievement of practical biomedical applications. 

In order to overcome the above challenging problems, some researchers have proposed 
various regularization methods to make the solution stable and insensitive to noise. Among 
different regularization methods, the Tikhonov regularization is one of the most popular 
regularization methods and has been widely applied in resolving FMT problems [8, 9]. It adds 
an L2-norm constraint of the solution to the original problem, and aims to reduce high-
frequency noise in the reconstructed results. The primary benefit of using Tikhonov 
regularization is that the optimization problem can be simplified and efficiently solved by 
using standard minimization tools, such as the conjugate gradient method and Newton 
method. However, it tends to produce an over-smooth solution and loss of some localized 
features during the reconstruction process by using Tikhonov regularization [10]. 

In order to improve the quality of the reconstruction for FMT, more a priori information 
should be included [6, 11]. Over the past few years, considerable attention has been focused 
on the sparse regularization being used in the field of compressed sensing (CS) for signal 
recovery and image processing. According to the CS theory, a sparse or compressive signal 
can be faithfully recovered from far fewer samples or measurements [12]. Considering that in 
the practical applications of FMT, the fluorescent sources are usually sparse because the 
fluorescent probes used in FMT are designed to locate the specific areas of interest such as 
tumors or cancerous tissues, which are usually small and sparse compared to the entire 
reconstruction domain [13]. Hence, the problem of FMT can be regarded as a sparse 
reconstruction problem and the fluorescent source distribution can be recovered by using 
sparse-type regularization (L0-norm and L1-norm) strategies. Inspired by the ideas behind the 
CS theory, several algorithms incorporated with L1-norm regularization have been proposed 
to solve the optical tomography problems in recent years [10, 13–17]. To preserve the sparsity 
of the fluorescent sources, an iteratively reweighted scheme based approach, which was able 
to obtain more reasonable and satisfactory results compared with the Tikhonov method was 
proposed [14]. At the same time, to improve the reconstruction accuracy, an effective FMT 
reconstruction algorithm based on the iterated shrinkage method with the L1-norm (IS_L1) 
was proposed [15], the reconstruction algorithm was able to comparatively acquire accurate 
results even with quite limited measurement data sets. However, the approximate 
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convergence rate of this algorithm is linear since it is a first-order method [16]. Therefore, it 
needs a large number of iterations to reach an acceptable solution, especially when the 
dimension of the FMT inverse problem is quite large. To enhance the reconstruction 
efficiency, the stagewise orthogonal matching pursuit (StOMP) based method was introduced 
to conserve computation time due to the greedy pursuit strategy [17], while it needs to 
estimate the sparsity factor which indicates the number of unknowns in advance. There are 
different sparsity factors for different FMT experiments, therefore it is not always able to 
achieve acceptable results for estimation of the sparsity factor empirically in this method. 
Although the aforementioned reconstruction methods usually work well in some specific and 
highly controlled situation, further study is urgently needed to investigate more general cases 
[18]. 

In this paper, a novel method based on the sparsity adaptive subspace pursuit (SASP) has 
been proposed for FMT reconstruction. This novel method adopts a subspace projection and 
correlation maximization approach to simplify the FMT problem with sparsity-promoting L1-
norm regularization and to treat it as the basis pursuit problem [19]. The proposed method 
performs reconstruction by employing a search strategy in which a number of K (i.e., the 
sparsity factor which indicates the number of unknowns) vectors with the highest correlation 
are selected from the candidate set. Then the search strategy updates the current supporting 
set by merging the newly selected vector set. During each iteration step, a bottom-up 
approach is presented to estimate and update the sparsity factor adaptively and heuristically 
instead of determining it manually or empirically. In addition, our method incorporates an 
effective technique for re-evaluating the reliability of all candidates at each iteration of the 
process, which guarantees the accuracy and reliability for fluorescence reconstruction. To 
better evaluate the proposed method, we compared it to the IS_L1 method and the StOMP 
method both in numerical experiments and in vivo mouse experiments [15, 17]. The proposed 
method is proved to be more accurate, efficient, robust, and reliable for fluorescence 
reconstruction compared to the contrasting methods, which demonstrates its potential for 
practical FMT applications. 

The outline of the paper is listed as following. In section 2, we present the reconstruction 
methodology for FMT. In the beginning, the diffusion approximation for the radiative transfer 
equation is brieñy introduced. Then, the adaptive sparsity subspace pursuit based 
reconstruction method is elaborately formulated. In section 3, numerical phantom 
experiments of the proposed method are performed. In section 4, experimental mouse 
reconstruction in heterogeneous tissue further demonstrates the robustness and feasibility of 
this proposed method. In section 5, we discuss relative issues and conclude our work. 

2. Method 

2.1 Photon propagation model 

Describing photon propagation in biological tissues can be modeled using the integro-
differential equation known as the radiative transfer equation (RTE) [20]. However, it is a 
major endeavor to provide solutions for the RTE and it remains a challenging task in the 
fields of tissue optics and radiological sciences [21]. For photon propagation in biological 
tissues within the near-infrared spectral window, scattering is the dominant phenomenon over 
absorption. Therefore, the diffusion equation (DE) as a low-order approximation of the RTE 
is usually used to model the photon transport in highly scattering media [22, 23]. For steady-
state FMT with point excitation sources, the following coupled diffusion equations are widely 
used as an effective model for photon propagation [23, 24]: 

 
[ ]
[ ]

( ) ( ) ( ) ( ) ( )
( ) ,

( ) ( ) ( ) ( ) ( ) ( )
x x ax x l

m m am m x af

D r r r r r r
r

D r r r r r r

μ δ
μ ημ

∇ ⋅ ∇Φ − Φ = −Θ − ∈ Ω∇ ⋅ ∇Φ − Φ = −Φ
 (1) 

where Ω  denotes the domain of the problem; subscripts x and m denote the excitation 
and emission wavelengths respectively, ,x mΦ  is the photon flux density for excitation 
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(subscript x) and fluorescent light (subscript m); ,ax amμ  denotes the absorption coefficient of 

the tissue and , , ,1 / 3( (1 ) )x m ax am sx smD gμ μ= + −  denotes the diffusion coefficient; ,sx smμ  

denotes the scattering coefficient; and g denotes the anisotropy parameter [25]. afημ  is the 

fluorescent yield to be reconstructed which incorporates the quantum efficiency η  and 

absorption coefficient afμ  of the fluorescent probe. Here, we assume that the absorption and 

scattering of the excitation light caused by the fluorescent probes will have little effect on the 
distribution of xΦ , because the fluorescent probes usually occupy a very small space 

compared to domain Ω . lr  represents the different excitation point source positions with the 

amplitude Θ . For FMT with point illumination, a collimated laser spot is usually modeled as 
an isotropic point source ( )lr rδΘ − , where ( 1, 2, , )r l L

l
= ⋅⋅⋅  is the point one transport mean 

free path into the medium from the illumination spot; Θ  is the amplitude of the point source; 
and ( )rδ  is the Dirac function. 

In order to solve the coupled equations, the Robin-type boundary conditions (RBC) are 
implemented on the boundary ∂Ω  of domain Ω  [25]: 

 , , ,2 ( ) ( ) / ( ) ( ) 0 ( ) ,x m x m x mD r r n r q r r∂Φ ∂ + Φ = ∈ ∂Ω
 (2) 

where n


 denotes the outward normal vector to the surface ∂Ω . q  is a constant that is 

approximated as (1 ) / (1 )q R R≈ + − . R  is a parameter governing the internal reflection at the 

boundary ∂Ω . 

2.2 Linear relationship establishment 

A finite element method is used to calculate solutions of the diffusion Eqs. (1) together with 
the boundary condition (2). We discretize the domain with small tetrahedrons and take the 
base functions as the test functions. Then, the FMT problem can be linearized and the 
following matrix-form equations can be obtained: 

 [ ]{ } { },x x xK SΦ =  (3) 

 [ ]{ } [ ]{ },m mK G XΦ =  (4) 

with ( , ) ( ) ( ) ( ) ,x i jG i j r r r drψ ψΩ= Φ  

where ( )i rψ  and ( )j rψ  denote the base function of node i and node j, respectively; ,x mK  

denotes the system matrix for excitation (subscript x ) and emission (subscript m ); and xS  

denotes the excitation source distribution after discretization. Matrix G  is obtained by 
discretizing the unknown fluorescent yield distribution, while vector X is the fluorescent yield 
yet to be reconstructed. 

For each excitation point source at ( 1, 2, , )lr l L= ⋅⋅ ⋅  during the excitation process, the 

photon density xΦ , which is used as the energy source for the emission process, can be 

obtained by solving Eq. (3). Considering that mK  is symmetrical and positive definite, Eq. (4) 
can be formulated into the following matrix-form equation: 

 1
, ,{ } [ ][ ]{ } [ ]{ }.m l m l l lK G X D X−Φ = =  (5) 

The reconstruction of the fluorescent yield is to recover vector X from the measured photon 
density ,m lΦ  on ∂Ω  in the continuous wave (CW) mode, so ,m lΦ  can be partitioned into 
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measurable boundary values ,
meas
m lΦ  and immeasurable interior values ,

NonMeas
m lΦ . By removing 

the immeasurable entries in ,m lΦ  and the corresponding rows in lD , we have 

 ,{ } [ ]{ }.meas
m l lA XΦ =  (6) 

Then, we assemble Eq. (6) for different excitation positions and obtain the following Matrix-
form equation: 

 { } [ ]{ }.A XΦ =  (7) 

More background and details can be found in [4, 7, 26, 27]. 
Hence the linear relationship between the measured photon density distribution and the 

unknown fluorescent source distribution has been established, and can improve computational 
efficiency. It is worth mentioning that Eq. (7) is an underdetermined system of linear 
equations because the available surface photon density distribution is far more limited than 
the unknown internal fluorescent source distribution, which causes difficulties in the 
following tomographic reconstruction. 

2.3 Reconstruction based on adaptive sparsity subspace pursuit 

The reconstruction for FMT is involved in solving an underdetermined system of linear 
equations. As mentioned above, because tumors are small and sparse compared to the entire 
reconstruction domain in earlier detection, the fluorescent sources, which indicate the 
distribution of tumors, are usually sparse. This can be considered as a kind of a priori 
information of the fluorescent sources. Here, the L1 regularization is incorporated into the 
FMT problem to promote the sparsity of the solution, and Eq. (7) is transformed into the one-
norm regularized least-squares problem: 

 
2

2 1

1
min ( ) ,

2X
E X AX Xλ= − Φ +  (8) 

where λ  is a regularization parameter which is used to govern the sparsity of the solution: 
larger values typically produce sparser results. Here, if the columns of matrix A are regarded 
as a set of atoms coming from an available dictionary and vector X is regarded as the 
coefficient vector, the FMT problem can be considered as the basis pursuit problem and has 
the form as follows: 

 
1

min subject to .X AX = Φ    (9) 

In this case, the optimal solution of Eq. (9) is expected to be a sparse solution (i.e., solution 
where only a small number of entries are nonzero). The SASP method aims to achieve a 
sparse solution to the FMT problem. Next, we will describe its basic ingredients. 

In the SASP method, some innovative strategies including subspace projection, the 
bottom-up sparsity adaptive approach, and backtracking technique are applied to enhance the 
reconstruction accuracy and robustness. The main steps of the proposed algorithm are 
summarized below. 

Algorithm 1 Sparsity Adaptive Subspace Pursuit Algorithm

Input: Matrix A , Vector Φ , Threshold σ , The maximum number of iterations maxN  

Initialization:
0I = ∅ , 0r = Φ , 2S = , K S=  

 n = 1 
 (1) 

1 0T Tc A r A= = Φ  
 (2) 

1 {I = K  indices corresponding to the largest magnitude entries in vector 
1c } . 

 (3) 1 1 1

1 ( , )
I I I

r proj A A A+= Φ − Φ = Φ − Φ  
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 (4) 
1J = ∅  

Iteration( 2n ≥ ): 
 (1) 

1 1n T nc A r− −=  
 (2) 

1 {n nJ I −= ∪ K  indices corresponding to the largest magnitude entries in vector 
1nc − }  

 (3) np J
x A+= Φ  

 (4) {I = K  indices with the largest magnitude entries of projection coefficients 
px }  

 (5) ( , )I p I Ir resid A A A+= Φ = Φ − Φ = Φ − Φ  

 (6) Update the sparsity factor K  
  1) if 

1nr r −>  then 
   K K S= + , 

1n nr r −= , 
1n nI I −=  

  2) else 
   The sparse factor K stays the same, 

nr r= , 
nI I=  

  end if 
 (7) if halting condition true (i.e., 

nr σ<  or maxn N> ), then quit the iteration 

Output: 
 The sparse solution to the FMT problem x̂ , satisfying 

{1,2,3 , }
ˆ 0nN I
x

−
=


 and ˆ n nI I

x A+= Φ . 

The SASP method is a heuristic method. It starts with an empty index set 0I and initial 
residual vector 0r = Φ . The sparsity factor K and the step size S are also initialized. To further 
illustrate how such a method fits into FMT reconstruction, we mathematically derive the 
SASP method using the following five steps. 

Step I 

To make the candidate set of the proposed method by using the maximal correlation test, 
assuming that within an individual iteration of optimization, we have the (n-1)th estimate for 
the residual vector 1nr − . Then, the n-th iteration applies matched filtering to the current 
residual vector, getting a vector of residual correlations to be: 

 1 1n T nc A r− −=  (10) 

which can be considered as a measure of the correlations between the atoms in system matrix 
A and the current residual vector. Then, we select K indices corresponding to the largest 
magnitude entries in the residual correlations vector 1nc −  and merge them with the support set 

1nI −  estimated in the previous iteration, thereby yielding the candidate set: 

 1 1 indices corresponding to the largest magnitude entries in vector }.{ nn nJ KI c− −= ∪            (11) 

Step II 

To form the true support set of the proposed method, we introduce the subspace projection 
approach and the backtracking technique. Next, the observation vector Φ  is projected onto 
the subspace spanned by the columns of nJ

A , where nJ
A  denotes the submatrix of A  with 

indices from the candidate set nJ . The projection of Φ  onto span( nJ
A ) is defined as 

 
,

( , ) ,n n n np J J J J
proj A A A+Φ = Φ = Φ  (12) 

where nJ
A+  denotes the pseudo-inverse of matrix nJ

A . We can see that the subspace 

projection coefficients equal 
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 .np J
x A+= Φ  (13) 

It can be regarded as a new approximation of the sparse solution of the FMT problem. The 
procedure selects K  indices with the largest correlation magnitudes of px  to form the new 

support set: 

 indices with the largest magnitude entries of{ },pI K x=           (14) 

where I  is the new support set estimated in this iteration. 

Step III 

To determine whether the new support set is well suited to build the sparse solution of the 
FMT problem, we need to calculate the new residual. We then perform projection of the 
observations Φ  onto the subspace spanned by the columns of A  belonging to the new 
support set I . Let IΦ  denote the submatrix with columns chosen using index set I , we have 

 , ( , ) .p I I I Iproj A A A+Φ = Φ = Φ  (15) 

Then, the updated residual is computed as: 

 ( , ) ( , ).I Ir resid A proj A= Φ = Φ − Φ  (16) 

Suppose A  is an m k×  high dimensional dense matrix, then computing AA+Φ − Φ  has high 
computational complexity. By exploring the subspace projection strategy and the 
backtracking technique, the computational complexity of r  can be greatly reduced because 
there are only K  columns in IA , which is only a small fraction of the original system matrix 
A . 

Step IV 

To estimate the optimal sparsity factor of the fluorescent sources, the proposed method adopts 
a sparsity adaptive strategy, which alternatively estimates the sparsity and the true support set 
of the fluorescent sources. 

Here, an adaptive one-dimensional search approach is used to get the optimal sparsity 
factor K according to the changes from the previous residual 1nr −  to the new residual r . If 
the norm of r  is smaller than that of 1nr − , the current sparsity factor K is considered to be 
suitable for the reconstruction process in the current iteration and doesn’t need to be changed. 
The residual nr  and the true support set nI , which can be used in the next iteration, are 
replaced by the newly estimated residual r  and support set I  respectively. Otherwise, the 
sparsity factor is estimated to be smaller than the real case, and it is updated by adding the 
step size S , i.e., the new sparsity factor is set as K = K + S. In addition, the residual nr  and 
true support set nI  are replaced by the previous residual 1nr −

and 
1nI − , ensuring that the newly 

generated residual is the minimal residual until the current iteration. 

Step V 

This step is used to determine whether or not it is time to discontinue this proposed method. 
There are many halting conditions for practical FMT reconstruction methods. One common 
approach is to stop the method when the norm of the current residual is below a certain 
threshold value. Another approach is to end the method when the relative residue 
improvement between two consecutive iterations was below a certain threshold, because it is 
not worth it to take more costly iterations if the resulting improvement is too small. In this 
paper, we suggest that the SASP method is finished when the norm of the residual is smaller 
than the threshold σ  or the maximum iteration number maxN  is reached. In our following 
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experiments, the parameters σ  and maxN  were optimized according to experimental 

experience. The threshold σ  was set to equal 0.07 ( )norm⋅ Φ , where ( )norm Φ  denoted the 
Euclidean length of the observation vector Φ . In our experiments, the proposed method was 
good enough to obtain satisfactory results when using 0.07 ( )norm⋅ Φ  as the value of the 

threshold parameter σ . The maximum iteration number maxN  was set to be 25. In our 
experiments, all the reconstructions with the proposed method stopped within 25 iterations. 

We check the halting conditions and, if it is not yet ready to stop, we set 1n n= +  and go 
to the next iteration of the SASP method. In the next iteration, the updated sparsity factor K  
and residual nr  will be employed. If it is time to stop, the current support set nI  is good 
enough to build the sparse solution of the FMT problem. We then output the estimated sparse 
solution x̂ , satisfying ˆ n nI I

x A+= Φ  and 
{1,2,3 , }

ˆ 0nN I
x

−
=


, where N  denotes the length of x̂ . 

To better understand the proposed reconstruction method in our study, further instructions 
on the backtracking technique are given. 

The backtracking technique: Note that there are 2K indices in the candidate set nJ , 
among which some of them do not belong to the correct support set. In Step II of the SASP 
method, a backtracking strategy is adopted to expurgate those indices from nJ  and form the 
new support set I . This backtracking strategy is quite important as it enables the method to 
re-evaluate the reliability of all candidates at each iteration of the process, and it can remove 
the indices that do not belong to the current support set and are added in the previous 
iteration. Those indices are thought to be right in the previous iteration, but they are thought 
to be wrong in the current iteration. If some of the removed indices belong to the final support 
set of the reconstruction method, they will be added to the support set in the following 
iterations. The backtracking strategy will make the method more robust and make the 
reconstruction results more accurate. There is a big difference between the StOMP method 
and the SASP method because the former one generates a list of candidates sequentially, 
without backtracking. This difference makes the SASP method more reliable than the StOMP 
method. 

3. Numerical experiments and results 

In this section, numerical results were presented to demonstrate the feasibility of the proposed 
reconstruction method. The numerical experiments were performed based on a mouse-
mimicking heterogeneous phantom, as shown in Fig. 1. The phantom was a cylinder, which 
was 20mm in diameter and 20mm in height, consisting of four kinds of materials to represent 
muscle (M), lungs (L), heart (H), and bone (B). The optical parameters of each kind of 
materials for both the excitation and emission wavelength are listed in Table 1 [27–29]. 
Figure 1(a) demonstrates a 3D view of the phantom which was discretized into 3756 nodes 
and 21715 tetrahedral elements using the finite-element method and Fig. 1(b) demonstrates 
the cross-section of the phantom in the z = 0 plane. The black dots in Fig. 1(b) represent the 
excitation light sources, which were modeled as isotropic point sources placed at a depth of 
one transport mean free path beneath the surface in the z = 0 plane. Fluorescence 
measurement was conducted in transillumination mode. For each excitation source, the 
emitted fluorescence was measured from the opposite side of the cylindrical phantom with a 
160° field of view (FOV), which is illustrated in Fig. 1(b). As mentioned above, the 
fluorescent sources are usually quite small and sparse for FMT, so, we used small spheres 
with a diameter of 2mm centered in the z = 0 plane to represent the fluorescent sources. 
Figure 2 demonstrates three different phantom setups under the situation of single, double and 
triple sources respectively. The first row of Fig. 2(a), 2(b), 2(c) shows the 3D views of the 
phantom setups and the second row of Fig. 2(d), 2(e), 2(f) shows the corresponding slice 
images in the z = 0 plane. The fluorescent yields of the sources were all set to be 0.6 mm−1. 
The finite element method was used to solve the forward model and the measurements on the 
surface of the phantom were collected [27, 29]. Considering that in practical FMT 
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experiments using a CCD camera, the shot noise always exists. When large numbers of 
photons are collected, the noise will approach a Gaussian distribution. We added 5% 
Gaussian noise to simulate the real case. 

In this paper, in order to better evaluate the proposed method, we compared it with the 
IS_L1 method and the StOMP method. The second reconstruction method of the two contrast 
methods was adopted as it used a greedy pursuit strategy. For the proposed method, the step 
size S was set to 2. For the IS_L1 method, the regularization parameter was set to 2e−5. For 
the StOMP method, the parameter α  was set to 0.8 and the parameter maxP  was set to 100, 
which were the same as the values used by D. Han et al. [17]. For all of the reconstruction 
methods, the zero vector was used as the initial value of the solution. All of the 
reconstructions were performed on our desktop computer with 2.39 GHz Intel Core 2 Duo 
CPU and 2GB RAM. 

 

Fig. 1. A mouse-mimicking heterogeneous cylindrical phantom. Each kind of tissue material is 
labeled by a letter, B for Bone, L for lungs, H for heart, and M for muscle. (a) 3D view of the 
phantom. (b) Cross-section of the phantom in the z = 0 plane. 

 

Fig. 2. Three different phantom setups under the situation of single (a, d), double (b, e), and 
triple (c, f) sources respectively. The first row (a, b, c) shows the 3D views of the phantom 
setups and the second row (d, e, f) shows the corresponding slice images in the z = 0 plane. All 
of the fluorescent sources were set to be spherical and centered in the z = 0 plane. The 
diameters of these fluorescent sources were all set to be 2mm. Arrows in a-f indicate 
corresponding locations of the sources. S1, S2, and S3 respectively, denote the Source No of 
the first source, the second source and the third source in the tissue material of the lungs. 
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Table 1. Optical parameters of the heterogeneous phantom. 

Material 1
( )

−

ax
mmμ  

1
( )

−′
sx

mmμ  
1

( )
−

am
mmμ  

1
( )

−′
sm

mmμ  

Bone 0.0024 1.75 0.0035 1.61 
Lungs 0.0133 1.97 0.0203 1.95 
Heart 0.0083 1.01 0.0104 0.99 

Muscle 0.0052 1.08 0.0068 1.03 

3.1 Experiment 1——evaluation of reconstruction accuracy 

In the first experiment, we reconstructed fluorescent sources with different numbers to 
evaluate the reconstruction accuracy of the proposed method. Three different phantom setups 
for single, double and triple sources were used, as presented in Fig. 2. The fluorescence was 
excited by point sources from 12 different locations in sequence, as presented in Fig. 1(b). 
Every 30°, measurements of emission fluorescence were taken in the transillumination mode, 
then, a total number of 12 data sets were collected to perform the reconstruction of the 
fluorescent yield. In order to simulate the real case, 5% Gaussian noise was added to the 
measurement data sets. The actual fluorescence yield was set as 0.6 mm−1. To validate the 
reconstruction accuracy of the proposed method, we compared it to the IS_L1 method and 
StOMP method. Figures 3, 4 and 5 give the reconstruction results for three different phantom 
setups, demonstrating the 3D view of the reconstructed sources in the phantom setups and the 
slice images in the z = 0 plane. The red circles in the slice images denote the real locations of 
the fluorescent sources. As shown in Figs. 3, 4 and 5, the stable locations of the fluorescent 
sources can be obtained through IS_L1 method, but the maximum values of the reconstructed 
fluorescent yield were smaller than those of the StOMP method and the SASP method. The 
StOMP method could acquire acceptable results when only one or two fluorescent sources 
existed. However, when three fluorescent sources existed, the reconstruction results were not 
satisfactory. Based on the data in Fig. 5(b) and Fig. 5(e), the fluorescent yield of the two 
sources on the left side (i.e., Source S1 and S2) was not well reconstructed. The reason for 
this result may be that the StOMP method didn’t adopt a sparsity adaptive strategy to achieve 
the optimal sparsity factor of the fluorescent sources and the choices of threshold parameters 
α  and maxP  were estimated before the reconstruction process started and mainly came from 
experience. The proposed method could obtain satisfactory reconstruction results in three 
cases. These more accurate results benefited from the backtracking strategy and sparsity 
adaptive strategy. To analyze the reconstruction accuracy quantitatively, we defined the 
relative intensity error to be r t tI I I− , where tI  denotes the true fluorescent yield of the 

source and rI  denotes the maximum reconstructed value of the fluorescent yield. We also 

defined the location error to be 
2r tL L− , where tL  denotes the true location of the source 

center and rL  denotes the location of the finite element node with the maximum 
reconstructed value of the fluorescent yield for that source. Table 2 summarizes the results of 
the quantitative analysis of different reconstruction methods. As shown in Table 2, all the 
three reconstruction methods could acquire satisfactory source localizations; however, the 
relative intensity errors of the proposed method were smaller. Figure 6(a) shows the 
relationship curve between sparsity factor K and iteration step n with a different number of 
sources. The sparsity factor K was updated automatically according to the changes of the 
residual between two consecutive iterations. Simultaneously, the residual was reduced to a 
small value, as shown in Fig. 6(b). If the residual nr  was below 0.07 ( )norm⋅ Φ , the relative 
residual decrement between two consecutive iterations became too small and we thought it 
was not worth to take more costly iterations. 
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Fig. 3. Fluorescent yield reconstruction results by the IS_L1 method (a, d), the StOMP method 
(b, e) and the proposed method (c, f) for a single spherical fluorescent source and 12 
measurement data sets corrupted by 5% Gaussian noise. The first row (a, b, c) shows the 3D 
views of the reconstruction results and the second row (d, e, f) shows the corresponding slice 
images in the z = 0 plane. The red circles in the slice images denote the real locations of the 
fluorescent sources. 

 

Fig. 4. Fluorescent yield reconstruction results by the IS_L1 method (a, d), the StOMP method 
(b, e) and the proposed method (c, f) for the double spherical fluorescent sources and 12 
measurement data sets corrupted by 5% Gaussian noise. The first row (a, b, c) shows the 3D 
views of the reconstruction results and the second row (d, e, f) shows the corresponding slice 
images in the z = 0 plane. The red circles in the slice images denote the real locations of the 
fluorescent sources. 
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Fig. 5. Fluorescent yield reconstruction results by the IS_L1 method (a, d), the StOMP method 
(b, e) and the proposed method (c, f) for triple spherical fluorescent sources and 12 
measurement data sets corrupted by 5% Gaussian noise. The first row (a, b, c) shows the 3D 
views of the reconstruction results and the second row shows the corresponding slice images in 
the z = 0 plane. The red circles in the slice images denote the real locations of the fluorescent 
sources. 

 

Fig. 6. The relationship curves as a function of iteration steps with a different number of 
sources. (a) The relationship curve between sparsity factor K and iteration n. (b) The 

relationship curve between residual 
nr  and iteration n. 

Table 2. Quantitative analysis of the reconstruction accuracy from the results of the 
IS_L1 method, the StOMP method and the proposed method for 12 measurement data 

sets corrupted by 5% Gaussian noise. 

Phantom 
setup 

Source 
No. 

Location 
error (mm) 

(IS_L1) 

Location error 
(mm) 

(StOMP) 

Location 
error (mm) 

(SASP) 

Relative 
intensity 

error (IS_L1) 

Relative 
intensity error 

(StOMP) 

Relative 
intensity 

error 
(SASP) 

1 source S1 0.096 0.096 0.096 46.78% 37.63% 20.47% 
2 

sources 
S1 0.096 0.096 0.096 43.09% 32.28% 25.06% 
S2 0.371 0.371 0.371 57.25% 47.31% 37.28% 

3 
sources 

S1 0.096 0.096 0.096 44.97% 60.73% 20.20% 
S2 0.371 0.371 0.371 64.03% 53.43% 12.90% 
S3 0.148 0.148 0.148 24.71% 4.20% 4.60% 

3.2 Experiment 2——evaluation of reconstruction efficiency 

To examine the reconstruction efficiency of the proposed method, we also compared it with 
the IS_L1 method and the StOMP method, which were two mainstream methods for FMT 
reconstruction. This numerical experiment was performed using a mouse-mimicking 
heterogeneous cylindrical phantom which contained three sources, as presented in Fig. 2 (c, 
f). To better evaluate the time cost of these reconstruction methods, we conducted the 
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numerical experiment on five kinds of volumetric meshes of different sizes. For all these 
reconstruction methods, the zero vector was used to initialize the unknowns. The comparison 
of the reconstruction efficiency was made based on the data in Table 3. It showed the time 
consumed by the proposed method as well as the two other methods compared for 
reconstructing the five groups of data sets whose sizes were determined by the density of the 
discrete volumetric mesh. Each value of the reconstruction time was the average of ten 
independent runs. All three reconstruction methods were coded in MATLAB and performed 
on our desktop computer with 2.39 GHz Intel Core 2 Duo CPU and 2GB RAM. 

The results revealed that: 1. When reconstructing the same data set, the StOMP method 
worked more efficiently than the IS_L1 method, but was less efficient than the proposed 
SASP method; 2. When the size of the data set was increased, the SASP method became more 
computationally competitive; 3. All of the data sets were discretized based on the mouse-
mimicking heterogeneous phantom with three sources in the tissue material of the lungs (L) 
(Fig. 2 (c, f)), which implied that the proposed method was not only time efficient but also 
potential for practical FMT applications. 

Table 3. The comparison of the reconstruction efficiency based on different methods. The 
size of the volumetric mesh equals the number of nodes multiplied by the number of 

tetrahedral elements. 

No. Volumetric mesh size IS_L1 (s) StOMP (s) SASP (s) 
1 2133 × 12010 33.3594 2.2813 1.5938 
2 2970 × 16877 66.1875 3.7031 2.4375 
3 3756 × 21715 88.0156 5.5156 3.2188 
4 4650 × 26722 116.3750 7.7188 4.2969 
5 5255 × 30393 140.8125 8.8438 4.8594 

3.3 Experiment 3——evaluation of reconstruction robustness of limited measurement data 

To verify the reconstruction robustness of the proposed method, the amount of measurement 
data was reduced and the reconstruction of the fluorescent sources was conducted, simulating 
a much worse case scenario. This is quite necessary because long-term measurement is not 
appropriate or feasible in some cases of practical FMT experiments. For example, when 
imaging small animals such as mice or rabbits, the bleaching effect of the fluorescent probe 
caused by long-term measurement must be taken into consideration, as it can affect the 
experimental results. To resolve this problem, it is necessary to reduce the amount of 
fluorescence measurements and reconstruct the fluorescent sources from quite limited 
measurement data. Here, only the measurement data sets generated by excitation point 
sources 1, 4, 7 and 10 were retained by us, as shown in Fig. 1(b). In other words, we 
conducted the reconstruction from only four measurement data sets corrupted by 5% 
Gaussian noise. A mouse-mimicking heterogeneous cylindrical phantom with three sources 
was used to perform the numerical experiment, as shown in Fig. 2(c), 2(f). Figure 7 presents 
the reconstruction results from four measurement data sets, demonstrating the 3D views of the 
reconstructed sources in the phantoms and the corresponding slice images in the z = 0 plane. 
The location errors of the reconstruction results, as well as the relative intensity errors, are 
summarized in Table 4. 

As shown in Fig. 7 and Table 4, the reconstructed sources by the StOMP method were not 
accurately located in the true regions. The IS_L1 method could obtain satisfactory source 
localization for the fluorescent sources S1 and S2, but the location error for the reconstructed 
source S2 was large. On the contrary, the proposed method could recover all three fluorescent 
sources accurately. In addition, the relative intensity errors for the proposed method were 
smaller than the other two compared methods. The above results suggested that the proposed 
method could obtain satisfactory results even under quite ill-posed conditions, and had the 
potential for practical FMT applications. 
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Fig. 7. Reconstruction results from the IS_L1 method (a, d), the StOMP method (b, e) and the 
proposed method (c, f) for 3 spherical fluorescent sources and 4 measurement data sets 
corrupted by 5% Gaussian noise. These results are presented in the form of iso-surfaces for 
30% of the maximum value (a, b, c) and slice images in the z = 0 plane (d, e, f). The red circles 
in the slice images denote the real positions of the fluorescent sources. The white arrows in a-c 
indicate the locations of the reconstructed sources. 

Table 4. Quantitative analysis of the reconstructed accuracy from the results of the IS_L1 
method, the StOMP method and the proposed method for 4 measurement data sets 

corrupted by 5% Gaussian noise. 

Phantom 
setup 

Source 
No. 

Location 
error (mm) 

(IS_L1) 

Location 
error (mm) 
(StOMP) 

Location 
error (mm) 

(SASP) 

Relative 
intensity 

error 
(IS_L1) 

Relative 
intensity 

error 
(StOMP) 

Relative 
intensity 

error 
(SASP) 

3 sources 
S1 0.096 1.273 0.096 49.85% 37.83% 12.79% 
S2 1.174 1.174 0.371 72.25% 13.37% 14.93% 
S3 0.148 1.828 0.148 41.62% 31.53% 13.21% 

4. In vivo experiments 

In this section, to further study the potential of the proposed method in the practical 
application of FMT, an in vivo experiment on an adult Kunming mouse (Laboratory Animal 
Center, Peking University, China), which was implanted with a plastic fluorescent bead in the 
muscle has been conducted using the hybrid optical/micro-CT imaging system developed by 
our group [30–32]. This hybrid imaging system, surrounded in a completely dark 
environment, provides two modalities: multi-view FMT and micro-CT. The schematic 
illustration of the system is shown in Fig. 8, which is mainly equipped with a cooled Charge 
Coupled Device (CCD) camera (Princeton Instruments, PIXIS: 1024), a 671mn continuous 
wave (CW) laser, a set of optical lenses, an x-ray generator (Oxford Instruments, 90 kV 
UltraBright Micro-focus Source), an x-ray detector (Hamamatsu Photonics, C7943CA-02 Flat 
Panel Sensor), and a rotating stage (Beijing Zolix Instruments, RAK). The CCD camera is 
used as an optical detector which was cooled to −70°C. The excitation light source was 
provided by a 671 nm CW laser with an output power of 22 mW and a laser spot diameter of 
1mm, which simulated a point source case. The fluorescence measurements were collected in 
transillumination mode. A band-pass filter with a bandwidth of 10 nm and a center 
wavelength of 700nm was used to allow light transmission at the emission wave-length. 
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Fig. 8. The schematic illustration of the hybrid optical/micro-CT imaging system. It provides 
multi-view FMT and micro-CT. 

The main process of in vivo experiments can be summarized as following. Firstly, the 
mouse was injected through the caudal tail vein with 0.4 ml Fenestra vascular contrast agent 
to enhance the micro-CT images, followed by 0.3 ml of anesthetic at a 0.15g/ml concentration 
via intraperitoneal injection. When the anesthetic set in, a bead filled with cy5.5 solution with 
a concentration of 2000nM was embedded stereotactically into the body of the mouse in the 
vicinity of its liver. This fluorescent solution had an extinction coefficient of 0.019 

1 1mm Mμ− −  and a quantum efficiency of 0.23 at the peak excitation wavelength of 671nm 
[33]. It is worth to mention that the reconstruction accuracy of the proposed method can be 
examined in this study, since the luminescent bead was wrapped in a plastic material, which 
could be easily detected by the micro-CT system. About half an hour after the injection of the 
Fenestra vascular contrast agent, the mouse was placed on the automatic rotation stage, as 
delineated in Fig. 8. Secondly, we began to collect the dual-modality raw data respectively. 
The acquisition time for the entire procedure was within 10min. The fluorescent signals 
emitted from the surface of the mouse body were captured in several different views by the 
cooled CCD camera. And then the cone-beam micro-CT projection data with 360° views was 
scanned using the x-ray generator and detector. 

After collecting the raw data, some essential preprocessing operations were carried out 
and set the data set suitable for posterior FMT reconstruction. 

(1). Micro-CT Reconstruction: The cone-beam micro-CT projection data were 
reconstructed by the Feldkamp-Davis-Kress (FDK) algorithm on commodity GPU 
using an acceleration scheme [34] to yield the 3D volume data, three slices of which 
are shown in Fig. 9 where the yellow squares mark the location of the fluorescent 
bead at the coordinate (34.40, 33.80, 6.40) 

(2). Segmentation: In order to build the heterogeneous mouse model delineated in Fig. 
10, we performed segmentation on six main kinds of organs including muscle, lungs, 
heart, liver, bone, and kidneys through a combination method of interactive and 
threshold segmentation. The optical properties for different organs were calculated 
according to the literature [35] and are listed in Table 5 

(3). Discretization: Prior to solving the FMT inverse problem using the finite element 
method, we performed meshing on the segmented micro-CT data of the mouse body. 
Here, the torso section of the mouse was discretized into a volumetric mesh 
containing 4,659 nodes and 22,667 tetrahedral elements 

(4). Registration: In order to portray the photon distribution on the surface of the mouse 
body, the optical fluorescent images were mapped onto the surface of the volumetric 
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mesh in terms of space and energy. The surface energy mapping was carried out by 
using a 3D surface flux reconstruction algorithm [36], as is seen in Fig. 10(c) 

 

Fig. 9. Three slices of the micro-CT mouse data, where the yellow square marks the location of 
the luminescent bead; (a) the coronal view; (b) the sagittal view; (c) the transversal view. 

 

Fig. 10. The heterogeneous mouse model for the in vivo experiment. (a) The heterogeneous 
mouse body. (b) The heterogeneous mouse torso used for imaging reconstructions, including 
heart, lungs, liver, muscle, kidneys, and bone. (c) The surface view of the mouse torso with the 
front view measurement distribution mapped on it. 

Table 5. Optical properties of the mouse model. 

Material 
Muscle 
(mm−1) 

Lungs 
(mm−1) 

Heart 
(mm−1) 

Liver (mm−1) Kidneys (mm−1) 
Bone 

(mm−1) 

axμ  0.0849 0.1918 0.0574 0.3437 0.0644 0.0593 

′
sxμ  0.4273 2.1720 0.9620 0.6770 2.2480 2.4900 

amμ  0.0563 0.1266 0.383 0.2283 0.0430 0.0393 

′
smμ  0.3792 2.1240 0.9050 0.6480 2.1090 2.3400 

After the above procedures, we used the finite element method to solve the FMT inverse 
problem and used three different reconstruction methods (the IS_L1 method, the StOMP 
method, and the proposed method) to perform the FMT reconstruction. The 3D results 
reconstructed by the IS_L1 method, the StOMP method and the proposed method are shown 
in Fig. 11. The muscle region is set to be translucent, so that the reconstructed sources is not 
covered. Quantitative comparisons of the reconstruction results for the above three methods 
are shown in Fig. 12 and Table 6. It can be perceived that there were more than one 
reconstructed sources inside the torso of mouse reconstructed by the StOMP method, and the 
smaller reconstructed sources were far away from the center of the real source, although the 
reconstructed location center was (34.05, 33.50, 6.07) and had a location error of only 
0.57mm. The reconstructed center position of the fluorescent source was (34.11, 35.33.6.44) 
for the IS_L1 method, and (34.05, 33.50, 6.07) for the proposed method. The corresponding 
location errors were 0.57 mm and 1.56 mm respectively. Although both of the reconstructed 
fluorescent sources had a small distance from the actual source in center position, artifacts 
appeared near the reconstructed fluorescent source in the results of the IS_L1 method, 
whereas artifacts did not appear in the proposed method’s results. The reconstructed location 
error by the proposed method was acceptable, because the errors may have been caused by 
the diffusion equation model, the geometrical approximation, the optical properties’ 
inaccuracy, the surface energy mapping, and so on. The reconstruction time for the proposed 
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method was 5.5625s and was much faster than the two contrasting methods, which 
demonstrated the absolute advantages of the proposed method in efficiency. 

The above findings suggested that the proposed method was able to reconstruct the 
fluorescent source accurately and had the potential to detect the lesions in practical 
biomedical applications. 

 

Fig. 11. The iso-surface 3D views of the reconstruction results using the IS_L1 method, the 
StOMP method and the proposed method. (a) The reconstruction results by the IS_L1 method. 
(b) The reconstruction results by the StOMP method. (c) The reconstruction results by the 
proposed method. 

 

Fig. 12. The comparisons of the reconstruction results for in vivo mouse experiments. The 
cross-sections of the reconstruction results by different methods are compared to the 
corresponding micro-CT slices. The crosshairs of the red dashed lines denote the actual source 
center. (b), (c) and (f) are the lateral cross-sectional views of the reconstruction results at the z 
= 6.4 mm plane by the IS_L1 method (b), the StOMP method (d) and the proposed method (f) 
respectively. (a), (d) and (e) are the corresponding micro-CT slices respectively. 

Table 6. Comparisons of the reconstruction results between different methods. Location 
Error denotes the distance between the center of the real source and the center of the 

reconstructed one. 

Method 
Actual Location Center

(mm) 
Reconstructed Location 

Center (mm) 
Location Error

(mm) 
Reconstruction Time

(s) 
IS_L1 (34.40, 33.80, 6.40) (34.11, 35.33.6.44) 1.56 141.4531 
StOMP (34.40, 33.80, 6.40) (34.05, 33.50, 6.07) 0.57 8.7188 

Proposed (34.40, 33.80, 6.40) (34.05, 33.50, 6.07) 0.57 5.5625 
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5. Discussion and conclusion 

In this paper, a novel sparsity adaptive subspace pursuit method is proposed and analyzed for 
FMT reconstruction. This reconstruction method is proven to be accurate, robust and high-
efficient for fluorescent source reconstruction mainly through using the following three 
strategies: 

(1) A subspace projection and correlation maximization approach has been utilized to 
simplify the FMT problem and treat the FMT problem with sparsity-promoting L1-
norm regularization as the basis pursuit problem. Based on this, a new sparse 
reconstruction problem, with a greatly reduced order compared to the original 
optimization problem is formed between the measurement data sets and the 
permissible coefficients. 

(2) Instead of using traditional methods, which require the sparsity factor as a priori for 
exact reconstruction, a sparsity adaptive strategy has been proposed to estimate the 
sparsity of the FMT problem. This innovative feature makes the proposed method a 
promising candidate for many practical FMT applications when the number of non-
zero coefficients of the fluorescent source distribution is not available. 

(3) A backtracking technique has been proposed to re-evaluate the reliability of all 
candidates at each iteration of the reconstruction process and to remove the wrong 
items added in the previous iteration, which can make the reconstruction method 
more robust and the reconstruction results more accurate. 

Moreover, three numerical experiments based on a mouse-mimicking heterogeneous 
phantom and an in vivo experiment based on an adult Kunming mouse have been conducted 
to evaluate the feasibility of our method in fluorescent source reconstruction. The results 
demonstrate that: 

(1) The reconstruction accuracy of the proposed method has been validated by the 
experiment on different mouse-mimicking heterogeneous phantom setups for a 
single source, double sources, and triple sources, and the results indicate that it is 
able to localize different fluorescent sources with a position bias less than 1 mm. 

(2) The proposed reconstruction method has been proven to be more efficient compared 
to the classical approaches, and it becomes more computationally competitive as the 
data set grows larger. 

(3) The reconstruction robustness of the proposed method has been verified in that it can 
obtain satisfactory fluorescent source reconstruction results even under quite ill-
posed conditions, for example, when the measurement data sets are quite limited. 

(4) The potential of the proposed method on the application of FMT has been further 
validated by an in vivo experiment on an adult Kunming mouse model, in which a 
small fluorescent source in the vicinity of the mouse’s liver has been accurately 
reconstructed. 

For FMT problems, the diffuse approximation model has been extensively used to mimick 
photon propagation in biological tissues. The advantage of this model is computationally 
efficient and has an explicit physical meaning. However, more accurate models to describe 
photon propagation in biological tissues are also necessary for higher quality of 3D imaging 
reconstruction. In recent years, although the computational complexity of these models are 
high, several complex models such as the simplified spherical harmonics approximation 
(SPN) model have been proposed to improve the optical tomography reconstruction quality. 
Our method can also be utilized in these complex models with few modifications. 

Future work will focus on in vivo experiments with probe-marked mouse models, which is 
quite important for tumor detection. In addition, the in vivo experiment will be extended 
further to detect weak optical signals from the internal fluorescent sources at different depths 
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as well as multiple sources instead of only one. The FMT reconstruction for mouse models 
with multiple sources will be conducted in future studies. 
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