Skip to main content
. 2014 Jan 8;5(2):387–406. doi: 10.1364/BOE.5.000387
Algorithm 1 Sparsity Adaptive Subspace Pursuit Algorithm
Input: Matrix A, Vector Φ, Threshold σ, The maximum number of iterations Nmax
Initialization:I0=, r0=Φ, S=2, K=S
n = 1
(1) c1=ATr0=ATΦ
(2) I1={ K indices corresponding to the largest magnitude entries in vector c1}.
(3) r1=Φproj(Φ,AI1)=ΦAI1AI1+Φ
(4) J1=
Iteration(n2):
(1) cn1=ATrn1
(2) Jn=In1{ K indices corresponding to the largest magnitude entries in vector cn1}
(3) xp=AJn+Φ
(4) I={ K indices with the largest magnitude entries of projection coefficients xp}
(5) r=resid(Φ,AI)=ΦΦp=ΦAIAI+Φ
(6) Update the sparsity factor K
1) if r>rn1 then
K=K+S, rn=rn1, In=In1
2) else
The sparse factor Kstays the same, rn=r, In=I
end if
(7) if halting condition true (i.e., r<nσ or n>Nmax), then quit the iteration
Output:
The sparse solution to the FMT problem x^, satisfying x^{1,2,3,N}In=0 and x^In=AIn+Φ.