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Implication of transcriptional repression in compound
C-induced apoptosis in cancer cells

RY Dai'?**7, XF Zhao**”, JJ Li*’, R Chen®, ZL Luo? LX Yu? SK Chen', CY Zhang', CY Duan', YP Liu', CH Feng?, XM Xia®,
H Li', J Fu*? and HY Wang*?®

Compound C, a well-known inhibitor of AMP-activated protein kinase (AMPK), has been reported to induce apoptosis in some
types of cells. However, the underlying mechanisms remain largely unclear. Using a DNA microarray analysis, we found that the
expression of many genes was downregulated upon treatment with compound C. Importantly, compound C caused
transcriptional repression with the induction of p53, a well-known marker of transcriptional stress response, in several cancer
cell lines. Compound C did not induce the phosphorylation of p53 but dramatically increased the protein level of p53 similar to
some other transcriptional inhibitors, including 5,6-dichloro-1--p-ribobenzimidazole (DRB). Consistent with previous reports,
we found that compound C initiated apoptotic death of cancer cells in an AMPK-independent manner. Similar to DRB and
actinomycin D (ActD), two classic transcription inhibitors, compound C not only resulted in the loss of Bcl-2 and Bcl-xI protein
but also induced the phosphorylation of eukaryotic initiation factor-alpha (elF2«) on Ser51. Hence, the phosphorylation of elF2«
might be a novel marker of transcriptional inhibition. It is noteworthy that compound C-mediated apoptosis of cancer cells is
correlated with decreased expression of Bel-2 and Bel-xI and the phosphorylation of elF2« on Ser51. Remarkably, compound C
exhibits potent anticancer activities in vivo. Taken together, our data suggest that compound C may be an attractive candidate
for anticancer drug development.
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Finding therapies that target and kill cancer cells is a
major goal of most cancer therapeutic approaches. Several
cell death modalities, including programmed cell death,
necrosis and mitotic catastrophe can initiate cancer cells
death.’® Irradiation and drugs used for cancer chemotherapy
always result in DNA damage and transcriptional
stress response, which can lead to apoptotic death, in some
cancer cells.*

Transcription is an essential process for gene expression in
both prokaryotic and eukaryotic cells. Genes coding for
proteins in eukaryotes are transcribed by the concerted action
of a number of transcription-related factors, chief among them
is the RNA polymerase 11.5 With the inhibition of transcription
over a certain period of time, cells will be destroyed
by apoptosis.®'! It has been shown that DNA-damaging
agents and transcriptional inhibitors can induce cell apoptosis
in a time-dependent manner.""'? Transcriptional inhibitors
are drugs that inhibit global transcription by different
mechanisms. Transcriptional inhibitors induce apoptosis
partially by inhibiting the expression of labile antiapoptotic

proteins because of their ability to downregulate proteins
of short half-life.'® 13" The accumulation of p53 is one of the
hallmarks of transcriptional stress.'! However, transcriptional
repression results in apoptosis by both p53-dependent
or -independent mechanisms.' Importantly, transformed
cells appear to be more sensitive to transcriptional stress
induced by disruption of RNA synthesis than normal cells. '8
General transcriptional inhibitors may be useful in cancer
therapies and, in some instances, have been shown to work
as antiviral agents.'®'” Some of these drugs, such as
flavopiridol and seliciclib, are potential drugs against different
types of cancer. 823

AMP-activated protein kinase (AMPK) is a principal
intracellular energy sensor, which has an essential role as a
master regulator of cellular energy homeostasis. AMPK is
activated by an increasing cellular AMP/ATP ratio caused by
metabolic stresses that interfere with ATP production or that
accelerate ATP consumption.?2° AMPK maintains the
energy balance through the direct phosphorylation of target
proteins or via transcriptional control of target genes.®3
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Compound C, also known as dorsomorphin, has been
described as a pharmacological AMPK inhibitor that efficiently
blocks metabolic actions of AMPK.32 It has been reported that
compound C attenuates the apoptotic activities of AMPK in
various cell types.®*° In contrast, it has also been suggested
that compound C treatment directly causes apoptosis in some
cancer cells, including breast cancer cells and skin cancer
cells 4043

In this study, we investigated the potential association
between compound C and apoptosis in different cancer cells.
We demonstrated that compound C is a potent apoptosis
inducer in various cancer cells. Interestingly, compound C
initiates transcriptional inhibition and p53 induction in cancer
cells. Further, we found that compound C-mediated apoptosis
is associated with the decreased expression of Bcl-2 and
Bcl-xl, and the phosphorylation of elF2x. Importantly,
compound C exhibits potent anticancer activities in vivo.

Results

Compound C initiates apoptosis in cancer cells. To
investigate the potential role of compound C in the induction
of apoptosis in cancer cells, we first examined the
proapoptotic effects of compound C in A549, SMMC-7721
and Hela cells. Western blot analysis revealed that
compound C treatment induced the cleavage of PARP
and caspase-3 in A549, SMMC-7721 and Hela cells in a
concentration-dependent manner (Figure 1a). Moreover,
compound C resulted in the activation of caspase-3 and
PARP cleavage in A549, SMMC-7721 and Hela cells

in a time-dependent manner (Figure 1b). The effects of
compound C on apoptosis induction in cancer cells in a
concentration- and time-dependent manner were
reconfirmed by annexin V-FITC apoptosis analysis (Figures
1c and d). Importantly, compound C-mediated apoptosis was
obviously inhibited by the pretreatment of z-VAD-fmk, a
specific inhibitor of caspase (Figure 1e). Thus, compound
C induces apoptosis in a caspase-dependent manner.

To make sure whether inhibition of AMPK is involved in
compound C-mediated apoptosis, specific small-interfering
RNA (siRNA) was used to block the expression of MAPKG.
The results showed that AMPKo knockdown had no evident
effects on compound C-mediated apoptosis in A549,
SMMC-7721 and HelLa cells (Supplementary Figure 1).
Taken together, these data suggest that compound C
initiates apoptosis of cancer cells in an AMPK-independent
manner.

Compound C inhibits transcription in cancer cells.
To identify the molecules involved in the proapoptotic
activities of compound C, we compared the gene expression
profiles of compound C-treated A549 cells with physiological
saline-treated A549 cells using microarray analysis.
Using a DNA microarray, we analyzed about 32000 genes
for changes in expression upon compound C treatment.
Statistical analysis indicated that 6030 genes had a
significant change in expression levels, of which 5713
(17.85% of total genes) and 317 (0.99% of total genes) were
more than twofold down- or upregulated (Figure 2a).
We tested some of the downregulated genes, such as
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Figure 1 Compound C induces apoptosis. (a) A549, SMMC-7721 and Hela cells were treated with indicated amounts of compound C for 24 h and cell lysates were
analyzed for the levels of indicated proteins. (b) A549, SMMC-7721 and Hela cells were treated with 10 umol/l compound C for indicated periods and cell lysates were
analyzed for the levels of indicated proteins. (c) A549, SMMC-7721 and HeLa cells were treated with indicated amounts of compound C for 24 h and apoptosis were analyzed
using flow cytometry after staining with FITC-conjugated Annexin V and propidium iodide. (d) A549, SMMC-7721 and HeLa cells were treated with 10 zmol/l compound C for
indicated periods and apoptosis were analyzed using flow cytometry after staining with FITC-conjugated Annexin V and propidium iodide. (e) A549, SMMC-7721 and HelLa
cells were treated with 10 umol/l compound C for 24 h with or without z-VAD-fmk (50 umol/l) pretreatment for 1 h and apoptosis were analyzed using flow cytometry after
staining with FITC-conjugated Annexin V and propidium iodide. Data are presented as mean values + S.D. of three measurements. Columns, mean of three individual
experiments; bars, S.D. * Significantly different from control value; ** Significantly different from *value
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Figure 2 Compound C represses gene expression. (a) A549 cells were treated with 10 umol/l compound C for 24 h and gene expressions were analyzed using DNA
microarray analysis. (b) A549, SMMC-7721 and Hela cells were treated with 10 umol/l compound C for 24 h, and c-Met, EGRR and PCNA mRNA levels were analyzed
using real-time RT-PCR. Data are presented as mean values + S.D. of three measurements. Columns, mean of three individual experiments; bars, S.D. * Significantly different

from control value

hepatocyte growth factor receptor (c-Met), epidermal
growth factor receptor (EGFR) and proliferating cell
nuclear antigen (PCNA), using real-time RT-PCR analysis.
The results reconfirmed that c-Met, EGFR and PCNA were
downregulated in A549, SMMC-7721 and Hela cells after
compound C treatment for 24 h (Figure 2b).

To investigate the impact of compound C on transcription,
mRNA synthesis was measured in compound C-treated cancer
cells in the presence of [*Hluridine. It is noteworthy that
compound C inhibited mRNA synthesis in a concentration-
dependent manner in A549, SMMC-7721 and Hela cells
(Figure 3a), indicating that compound C inhibits transcription in
cancer cells. As endoplasmic reticulum stress (ER stress)
activation can induce the expression of specific mMRNA,*+
such as 78 kDa glucose-regulated protein (GRP78) mRNA, the
impact of compound C on ER stress-induced GRP78 mRNA
synthesis was tested. Importantly, compound C treatment not
only decreased GRP78 mRNA but also blocked ER stress
inducers tunicamycin (Tun)- and thapsigargin (Tg)-induced
GRP78 mRNA synthesis in A549, SMMC-7721 and Hela cells
(Figure 3b). These results reconfirm the function of transcrip-
tional inhibition of compound C. Further, compound C induced
the downregulation of EGFR mRNA, which is not regulated by
ER stress, under ER stress conditions (Figure 3c), suggesting
that the effects of compound C on ER stress-induced
transcription inhibition is nonspecific.

As p53 is one of the hallmarks of global transcriptional
repression, %1147~ it is reasonable to suggest that com-
pound C might initiate the induction of p53. This notion is
supported by the data that compound C resulted in the
accumulation of p53 in A549, SMMC-7721 and HelLa cells
(Figure 3d). In line with DRB, compound C induced the
accumulate p53 proteins that lacks evident phosphorylation
on Ser15 site (Figure 3e). However, ActD efficiently initiated
the phosphorylation of p53 on Ser15 (Figure 3e). Taken
together, these data indicate that compound C is a potent
suppressor of transcription.

Bcl-2 and Bcl-xI downregulation promotes compound
C-induced apoptosis in cancer cells. As transcriptional
stress can initiate cell apoptosis in a p53-dependent or p53-
independent manner,'"%° we assessed whether p53 is
involved in compound C-mediated apoptosis in cancer cells.
It is noteworthy that p53 inhibitor PFT-« pretreatment had no
demonstrable effects on compound C-mediated apoptosis in
A549 and SMMC-7721 cells (Figure 4a). Further, suppres-
sion of p53 expression also had no evident effects on
compound C-mediated apoptosis (Figure 4b). These data
indicate that p53 is not involved in compound C-mediated
apoptosis in cancer cells.

As Bcl-2 and Bcl-xI are essential for inhibiting the activation
of caspases,®™®* we investigated whether Bcl-2 and
Bcl-xI are involved in compound C-mediated apoptosis.
The expression of Bcl-2 and Bcl-xl in compound C-treated
cancer cells was examined. As shown in Figure 5a, compound
C decreased the protein levels of Bcl-2 and Bcl-xl in a time-
dependent manner. More importantly, Bcl-2 and Bcl-xl
inhibitor ABT-263 preincubation promoted compound
C-induced apoptosis in A549, SMMC-7721 and HelLa cells
(Figure 5b). Further, transcriptional inhibitors ActD and DRB
also induced Bcl-2 and Bcl-xl decreasing in A549 and SMMC-
7721 cells (Figure 5c), indicating that the loss of Bcl-2 and Bcl-
xI promotes transcriptional inhibition-mediated apoptosis.
Together, these findings indicate that the compound
C-mediated decreasing of Bcl-2 and Bcl-xl is involved partially
in the apoptosis of cancer cells under compound C-induced
transcriptional stress.

The phosphorylation of elF2x promotes compound
C-induced apoptosis in cancer cells. It is known that the
elF2o pathway, a critical pathway that regulates the
integrated stress response, can be activated by various
stress stimuli.>® We therefore studied whether compound C
regulates the elF2q« pathway in cancer cells. We found that
compound C induced the phosphorylation of elF2« on Ser51

w
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Figure 3 Compound C inhibits transcription. (a) A549, SMMC-7721 and HeLa cells were treated with indicated amounts of compound C or physiological saline for 24 h in
medium containing 0.5% FBS. The cells were pulsed with [H]thymidine (1 xCi per well) for 6 h, and then fixed with 5% trichloroacetic acid and solubilized before scintillation
counting. DRB was used as the positive control. (b) A549, SMMC-7721 and HeLa cells were treated with 2.5 pg/ml tunicamycin (Tun) or 1 umol/l thapsigargin (Tg) for 12 h with
or without 10 umol/l compound C pretreatment for 1 h, and GRP78 mRNA levels were analyzed using real-time RT-PCR. (c) A549 cells were treated with 2.5 g/ml Tun or
1 umol/l Tg for 12 h with or without 10 umol/l compound C pretreatment for 1 h, and EGFR mRNA levels were analyzed using real-time RT-PCR. (d) A549, SMMC-7721 and
Hela cells were treated with indicated amounts of compound C for 24 h and cell lysates were analyzed for the levels of indicated proteins. DRB was used as the positive
control. (e) A549 and HeLa cells were treated with 10 umol/l of compound C for 24 h and cell lysates were analyzed for the levels of indicated proteins. DRB was used as the
negative control and ActD was used as the positive control. Data are presented as mean values = S.D. of three measurements. Columns, mean of three individual
experiments; bars, S.D. * Significantly different from control value; ** Significantly different from *value

in a dose- and time-dependent manner (Figures 6a and b), induced the phosphorylation of elF2« on Ser51 in A549,
indicating the elF2x pathway is implicated in compound SMMC-7721 and Hela cells (Figure 6c), indicating that
C-induced transcriptional stress response. To further test the transcriptional stress activates the elF2o pathway.

role of the elF2o pathway in transcriptional stress response, To make sure whether the phosphorylation of elF2« has a
we investigated the phosphorylation of elF2« on Ser51 upon role in compound C-induced apoptosis, salubrinal, a selective
ActD or DRB treatment. The data showed that ActD and DRB inhibitor of elF2« dephosphorylation, was used in our study.
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Figure 4 The induction of p53 is not involved in compound C-induced apoptosis. (a) A549 and SMMC-7721 cells were treated with 10 umol/l compound C for indicated
periods with or without PFT-oc (20 umol/l) pretreatment for 1h and cell lysates were analyzed for the levels of indicated proteins. (b) After GFP or P53 siRNAs
transient transfection for 48 h, A549 and SMMC-7721 cells were treated with 10 umol/l compound C for indicated periods and cell lysates were analyzed for the levels
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Figure 5 The downregulation of Bcl-2 and Bcl-xl promotes compound C-induced apoptosis. (a) A549, SMMC-7721 and HeLa cells were treated with 10 umol/l compound
C for indicated periods and cell lysates were analyzed for the levels of indicated proteins. (b) A549, SMMC-7721 and HeLa cells were treated with 5 umol/l compound C for
24 h with or without ABT-263 (1 umol/l) pretreatment for 1 h, and apoptosis were analyzed using flow cytometry after staining with FITC-conjugated Annexin V and propidium
iodide. (c) A549 and SMMC-7721 cells were treated with 10 ug/ml ActD or 50 umol/l DRB for 24 h and cell lysates were analyzed for the levels of indicated proteins.
Data are presented as mean values = S.D. of three measurements. Columns, mean of three individual experiments; bars, S.D. * Significantly different from control value;

** Significantly different from *value

As depicted in Figure 6d, salubrinal pretreatment promoted
A549, SMMC-7721 and HelL a cells apoptosis upon compound
C treatment. Further, transfection of A549, SMMC-7721 and
HelLa cells with the phosphorylation-mutant expression
plasmid elF2xS51A, which inhibits the phosphorylation of
elF20 on Ser51, inhibited compound C-mediated apoptosis
(Figure 6e). Taken together, these results suggest
the phosphorylation of elF20 is involved in part in the
apoptosis of cancer cells under compound C-mediated
transcriptional stress.

Compound C suppresses growth of cancer cells in
mice. We assessed the potential of compound C in inhibition
of tumor formation using an in vivo mouse model. The
subcutaneous tumor model was chosen in our experiments

for its high implant survival rate and ease in separating tumor
from host tissue for accurate measurements of tumor growth.
Treatment with compound C significantly reduced tumor
burden of A549 and SMMC-7721 cells as compared with
the control group (Figures 7a and b). These data demon-
strated that compound C suppresses the growth of cancer
cells in xenograft mouse models, which imply a potential use
of compound C in repressing the progression of cancer cells.

Discussion

Although compound C is implicated in the induction of
apoptosis, it remains largely unclear how compound C exerts
its proapoptotic action.**=*® The present work reveals that
compound C represses transcription and initiates apoptosis in

Cell Death and Disease
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Figure 6 The phosphorylation of elF20 promotes compound C-induced apoptosis. (a) A549, SMMC-7721 and Hela cells were treated with indicated amounts of
compound C for 24 h and cell lysates were analyzed for the levels of indicated proteins. (b) A549, SMMC-7721 and HeLa cells were treated with 10 umol/l compound C for
indicated periods and cell lysates were analyzed for the levels of indicated proteins. (c) A549, SMMC-7721 and HeLa cells were treated with 10 zg/ml ActD or 50 zmol/l DRB
for 12 h and cell lysates were analyzed for the levels of indicated proteins. (d) A549, SMMC-7721 and HeLa cells were treated with 10 umol/l compound C for 20 h with or
without salubrinal (25 umol/l) pretreatment for 1h, and apoptosis were analyzed using flow cytometry after staining with FITC-conjugated Annexin V and propidium iodide.
(e) After elF20:S51A expression plasmids transient transfection for 24 h, A549, SMMC-7721 and Hela cells were treated with 10 umol/l compound C for 24 h, and apoptosis
were analyzed using flow cytometry after staining with FITC-conjugated Annexin V and propidium iodide. Data are presented as mean values + S.D. of three measurements.
Columns, mean of three individual experiments; bars, S.D. * Significantly different from control value; ** Significantly different from *value

cancer cells partially by decreasing the expression of Bcl-2
and Bcl-xl, and by inducing the phosphorylation of elF2q.

It has been suggested that compound C induces apoptosis
in some types of cells.*>™*3 In agreement with these reports,
we saw a similar effect in several cancer cell lines upon
treatment with compound C. On the basis of the data that
blocking AMPKo had no effects on compound C-induced
apoptosis, we suggest compound C induces apoptosis in an
AMPK-independent manner in cancer cells. As compound C
induces autophagy through AMPK inhibition-independent
mechanisms,®® it is necessary to address whether
the induction of autophagy is involved in apoptosis of
cancer cells upon compound C treatment. Compound C
induced autophagy in A549 and Hela cells (Supplementary
Figure 2a), but the activation of autophagy was not
responsible  for compound C-mediated apoptosis
(Supplementary Figure 2b). Apoptosis in mammalian cells is

Cell Death and Disease

a multistep process that results in the activation of caspases,
followed by execution of cell death. We found that compound
C-induced apoptosis is caspase dependent.

A noteworthy property of compound C is its ability to inhibit
transcription in various cancer cells. A recent report indicated
that compound C inhibits ER stress-induced transcription
program depending on the glucose deprivation conditions
through a mechanism independent of AMPK.>” However, our
data indicate that compound C blocks ER stress-induced
transcription through nonspecific transcriptional blockade.
A striking feature of compound C-mediated apoptosis is that it
is p53 independent. We have shown that A549, SMMC-7721
and Hel.a cells along with their p53 inhibition or knockdown
undergo apoptosis to the same extent upon treatment with
compound C. This is in agreement with the observation that
p53 is a marker but not a mediator of transcriptional inhibitors
ARC- and flavopiridol-induced apoptosis. °*® However, some
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Figure7 Compound C suppresses growth of cancer cells in mice. (a and b) After mice were subcutaneously inoculated with 1 x 107 A549 (a) or SMMC-7721 (b) cells for
7 days, intratumoral injection was performed to the experimental group mice with 15mg/kg compound C twice weekly. The control group mice were treated by direct
intratumoral injection of physiological saline twice weekly. Representative subcutaneous tumors are shown (left panel). Tumor size was measured every 3 days from day 6
(a) or 9 (b) through days 24 (a) or 27 (b) after inoculation of A549 (a) or SMMC-7721 (b) cells into mice (right panel). Error bars stand for S.D. of six animals

of other transcriptional inhibitors, such as DRB and
o-amanitin, were suggested to induce p53-dependent apop-
tosis.*”*%® It was shown recently that p53 knockdown cancer
cells were much more resistant to compound C-induced
apoptosis.*? In our study, however, although the accumula-
tion of p53 was observed in response to compound C
treatment, it did not lead to enhanced apoptosis. The reason
for this discrepancy is unclear. The differences in the cell lines
or experimental approaches used in studies could be the
reason behind the difference in outcome.

An important question now before us is how compound C
induces apoptosis under transcription stress conditions.
On the basis of our findings that compound C resulted in
Bcl-2 and Bcl-xI decrease, we propose that Bcl-2 and Bcl-xl
might be involved in compound C-mediated apoptosis. This
speculation was demonstrated by the findings that blocking
the function of Bcl-2 and Bcl-xI promoted compound
C-induced apoptosis. In our case, it is reasonable to speculate
that the ability of compound C to downregulate antiapoptotic
proteins, including Bcl-2 and Bcl-xl, has an important role in
transcription repression-induced apoptosis upon treatment
with compound C.

As compound C induced the phosphorylation on Ser51 of
elF20, which is an important regulator of the decision between
survival and apoptosis in response to diverse stress,®® we
focused on the role of elF2x signaling in regulating compound
C-mediated apoptosis. As salubrinal, the selective inhibitor of
elF20 dephosphorylation, pretreatment promoted cancer cells
apoptosis upon compound C treatment, it is reasonable to

suggest that the phosphorylation of elF2x contributed to
compound C-induced apoptosis. This is further supported
by the observation that blocking the phosphorylation of
elF20 by the phosphorylation-mutant expression plasmid
elF20S51A inhibited compound C-induced apoptosis. Inter-
estingly, other transcriptional inhibitors, including ActD and
DRB, also induced the phosphorylation of elF2« on Ser51,
indicating that the elF2« pathway is an important regulator of
transcriptional stress. The fact that compound C repressed
tumor growth in mice models makes a strong case for
consideration of compound C as a potential antitumor agent.
Hence, compound C could be a promising candidate for
in vivo studies.

In brief, the present work reveals that transcriptional
repression has an essential role in compound C-induced
apoptosis in cancer cells. The ability of compound C to inhibit
tumor growth in vivo implies its potent anticancer activities.
More detailed studies on the function of compound C upon
transcriptional repression will contribute to the development of
compound C as anticancer drug.

Materials and Methods

Chemicals and antibodies. AMPK inhibitor compound C, elF2o phospha-
tase enzymes inhibitor salubrinal and autophagy inhibitor bafilomycin A1 were
purchased from Tocris Bioscience (Bristol, UK). Transcriptional inhibitors DRB and
ActD, p53 inhibitor PFT-z, caspase inhibitor z-VAD-fmk and ER stress inducers Tg
and Tun were purchased from Sigma (Lyon, France). Bcl-2 and Bcl-xI inhibitor
ABT-263 was purchased from Selleck Chemicals (Houston, TX, USA). GFP
siRNA, p53 siRNA, AMPKo: siRNA and antibodies against elF2« and f-actin were
purchased from Santa Cruz Biotechnology (Heidelberg, Germany). Antibodies
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against phospho-elF2« (Ser51), phospho-p53 (Ser15), AMPKo, p53, Bel-2, Bel-xl,
PARP, cleaved caspase-3 and LC3A/B were purchased from Cell Signaling
Technology (Danvers, MA, USA). elF20S51A plasmid was purchased from
Addgene (Cambridge, MA, USA).

Cell culture and treatments. Human lung adenocarcinoma epithelial cell
line A549, human hepatocellular carcinoma cell line SMMC-7721 and
human cervical cancer cell line HeLa were cultured in Dulbecco’s modified
Eagle’s medium supplemented with 10% fetal bovine serum and 1% penicillin/
streptomycin in a humidified incubator containing 5% CO, and 95% ambient air at
37°C. The protocol used for p53 and AMPKox knockdown has been previously
described.®® Transfection of vectors for the expression of GFP and elF2¢S51A,
which lacks the phosphorylation site, were performed using Lipofectamine 2000
(Invitrogen, Carlsbad, CA, USA) according to the manufacturer's manual.

Western blot analysis. Cells were lysed in Triton lysis buffer (20mM Tris,
pH 7.4, 137 mM NaCl, 10% glycerol, 1% Triton X-100, 2mM EDTA, 1 mM PMSF,
10 mM sodium fluoride, 5 mg/ml of aprotinin, 20 mM leupeptin and 1 mM sodium
orthovanadate) and centrifuged at 12000 x g for 15 min. Protein concentrations
were measured using the BCA assay. Protein samples were denatured with
4 x SDS-loading buffer (200mM Tris, pH 6.8, 8% SDS, 400mM DTT, 0.4%
bromphenol blue and 40% glycerol) at 100 °C for 5 min and subjected to standard
SDS-PAGE and western blot analysis as previously described.®

Apoptosis analysis. Apoptosis was detected using the annexin V-FITC
apoptosis detection kit (Invitrogen) according to the manufacturers manual.
Annexin V staining was analyzed by flow cytometry within 1h. The experiments
were repeated three times.

Reverse transcription reaction and real-time PCR. Total RNA was
isolated with TRIzol reagent (Invitrogen) according to the manufacturers
instructions. The reverse transcription reactions were carried out using the
M-MLV reverse transcriptase (Promega, Madison, WI, USA) according to the
manufacturer's protocol. Real-time PCR analyses were performed using SYBR
Premix Ex Taq (TaKaRa, Tokyo, Japan). Results were normalized with 18S. The
primers used in this study are shown in Supplementary Table 1.

Thymidine incorporation. Cells (1-2 x 10* per well) were grown overnight
in 24-well plates and treated with 10 M/l compound C for the experimental wells
or physiological saline for the control wells in medium containing 0.5% FBS.
After 24 h, the cells were pulsed with [PHjthymidine (1 uCi per well) for 6h, and
then fixed with 5% trichloroacetic acid and solubilized before scintillation counting.
Experiments were repeated three times.

RNA isolation and microarray analysis. Total RNA was extracted from
cells using the RNeasy Mini kit (Qiagen, Valencia, CA, USA) according to the
manufacturer's protocol. Fluorescent aRNA targets were prepared from 2.5 ug
total RNA samples using OneArray Amino Allyl aRNA Amplification Kit (Phalanx
Biotech Group, Hsinchu, Taiwan) and Cy5 dyes (Amersham Pharmacia,
Piscataway, NJ, USA). Fluorescent targets were hybridized to the Human Whole
Genome OneArray with Phalanx hybridization buffer using Phalanx Hybridization
System. After 16 h hybridization at 50 °C, nonspecific binding targets were washed
away by three different washing steps (wash |, 42 °C for 5 min; Wash II, 42 °C for
5min, 25°C for 5min; Wash lll, rinse 20 times) and the slides were dried by
centrifugation and scanned by Axon 4000B scanner (Molecular Devices,
Sunnyvale, CA, USA). The intensities of each probe were obtained by GenePix
4.1 software (Molecular Devices).

Tumor xenograft experiments. The use of animals in present study has
been approved by the local committee on animal care. Six-week-old NOD/SCID
nude mice were purchased from the Shanghai Experimental Center (CSA,
Shanghai, China). Mice were subcutaneously inoculated with A549 or SMMC-
7721 cells. Approximately 1 x 107 cells in 0.2ml culture medium containing
phosphate-buffered saline were injected subcutaneously into the right flank of the
mice, which were then observed daily for signs of tumor development. Tumor
volume was calculated as below: V (cm®) = width? (cm?) x length (cm)/2. Seven
days after inoculation, mice were randomly divided into two groups (n=6).
Intratumoral injection was performed to the experimental group mice with 15 mg/kg
compound C (compound C were dissolved in physiological saline) twice weekly.

Cell Death and Disease

The control group mice were treated by direct intratumoral injection of
physiological saline twice weekly.

Immunofluorescence staining and confocal microscopy
analysis. Cells were replated on chamber slides. When cultured to 60%
confluence, cells that were incubated with anti-LC3A/B antibodies conjugated to
CY3 (Invitrogen) for immunofluorescence and confocal microscopy assay.

Statistical analysis. Results were expressed as the mean + S.D. Statistical
analysis was performed using Student's ttest. P<0.05 was considered
statistically significant.
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