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Abstract: The aberrantly expressed signal transducer and activator of transcription 3 (STAT3) predicts poor prognosis, primarily in 
estrogen receptor positive (ER(+)) breast cancers. Activated STAT3 is overexpressed in luminal A subtype cells. The mechanisms con-
tributing to the prognosis and/or subtype relevant features of STAT3 in ER(+) breast cancers are through multiple interacting regulatory 
pathways, including STAT3-MYC, STAT3-ERα, and STAT3-MYC-ERα interactions, as well as the direct action of activated STAT3. 
These data predict malignant events, treatment responses and a novel enhancer of tamoxifen resistance. The inferred crosstalk between 
ERα and STAT3 in regulating their shared target gene-METAP2 is partially validated in the luminal B breast cancer cell line-MCF7. 
Taken together, we identify a poor prognosis relevant gene set within the STAT3 network and a robust one in a subset of patients. VEGFA, 
ABL1, LYN, IGF2R and STAT3 are suggested therapeutic targets for further study based upon the degree of differential expression in 
our model.
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Introduction
Breast cancer (BC) is a global health problem and, in 
Taiwan, BC has replaced cervical cancer as the most 
common female cancer.1 The inherent genetic com-
plexity and heterogeneity of breast cancer limits the 
prognostication value of many current model systems, 
as well as the ability to predict specific cancer iden-
tities from generalized information. An increasing 
number of transcription factor regulatory networks 
play unique roles in mammary epithelial develop-
ment and tumorigenesis.2 STAT3 is a transcriptional 
regulator that is involved in mammary gland develop-
ment, and elevated STAT3 has been widely observed 
in breast cancers.3–7 Alterations in STAT3 transcrip-
tion programs may be a major switch in determin-
ing roles and clinical outcomes among breast cancer 
subtypes. To date, the prognostic value of STAT3 in 
human breast cancer remains unclear.8 Dissection of 
the global transcriptome in a clinical breast cancer 
cohort study suggests a role for STAT3 in coupling 
with MYC. And this, in turn, conditions a broad spec-
trum of pathophysiological effects in early develop-
ment of estrogen receptor α negative (ER(−)) breast 
cancers, typically in triple negatives (TN).9 In silico 
studies demonstrate that some STAT3 target genes 
are potentially unfavorable prognostic markers in 77 
breast cancer patients with ER(−) IDCs. However, the 
prognostic features of STAT3 in an ER(−) breast can-
cer setting have not been identified. In order to assess 
the predictive value of STAT3 pathway components, 
we evaluated clinical responses relative to STAT3 
activities in 2 breast cancer patient populations with 
77 ER(−) IDCs9 and 90 ER(+) IDCs, respectively.

STATs are known downstream targets of non-
genomic ER actions in breast cancer cell models.10 
Miller et al11 summarized routes for reciprocal cross-
talk between estrogen receptor (ERα) and growth fac-
tor receptor signaling pathways. They indicated that 
membrane ER might activate oncogenic kinases to 
promote endocrine resistance; however, these mech-
anisms remain to be proven clinically. Importantly, 
the status of STAT3 as a target to treat ER(+) breast 
cancer with TAM resistance remains unclear. Using 
a network approach, it is possible to evaluate interac-
tions between 2 transcription factors (ERα, STAT3) 
in regulating genes that may be causally associated 
with de novo or acquired resistance to endocrine 
therapy. Using this approach, we evaluated the role of 

STAT3 as a survival predictor gene based upon altered 
STAT3 transcriptional regulatory activity in an ER(+) 
breast cancer model system, consisting of 4 subtypes 
(groups IE, IIE, luminal A and B).

STAT3 can be activated by classical and non-
classical mechanisms.12,13 The cooperation of both 
tyrosine (Tyr705) and serine (Ser727) phosphory-
lation is necessary for full classical activation of 
STAT3. For instance, STAT3 can be activated by the 
17-β-estradiol-induced pathway via phosphorylation 
at Tyr705 and Ser727.12 Unphosphorylated STAT3 
transcription factor can also bind DNA according to 
the non-classical model.13 Greten FR et al14 reported 
that a STAT3-dependent transcriptional program, in 
part, is triggered by an excess concentration of acti-
vating cytokines secreted in an autocrine or para-
crine manner by tumor and stromal cells. Cytokine 
activation of STAT3 is constitutively activated 
by JAKs and JAK/STAT3 promotes breast cancer 
progression.15 STAT3 is also down-regulated by the 
chemodrugs 5-fluorouracil and gemcitabine in a 
MCF-7 cell model16 and by dehydrocostuslactone 
(DHE) in MCF-7 and MDA-MB231 cell models.17 
At least 3  signal transduction pathways including 
MAPK, PI3-kinase, and Src-kinase pathways are 
required for 17-β-estradiol induced activation of 
a STAT-regulated promoter.10,18 Hart et  al19 further 
showed that STAT3 activation is essential for trans-
formation in PI3K-transformed cells. Inhibition of 
PI3K prevents STAT3 phosphorylation.

Herein, we find that high STAT3 mRNA levels in 
tumor tissue is a marker for poor prognosis and dis-
sect the STAT3 network interactions as a basis for 
developing a predictive model. Finally, we identify 
major components of the STAT3 transcriptional regu-
latory network in silico that may be prognostic mark-
ers and therapeutic targets in ER(+) breast cancers in 
a subtype relevant manner.

Materials and Methods
Features of surgical specimens  
for generating the dataset
We used the immunohistochemical (IHC) status of 
3 biomarkers (i.e. estrogen receptor α (ER), proges-
terone receptor A (PR) and HER-2/neu (HER)) as 
classifiers to identify 8 intrinsic subtypes. However, 
for ERBB2 (IHC score: 2+), determination of Her-2/
neu gene copy number was done by chromogenic in 
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situ hybridization (CISH) and IHC/CISH status was 
used for determining HER status.

90  specimens from primary infiltrating ductal 
breast carcinomas (IDCs) including group IE (i.e. 
ER(+)PR(+)) (61/90) and group IIE (i.e. ER(+)
PR(−)) (29/90) were subgrouped into luminal A 
(i.e. ER(+)PR(+)HER(−) and ER(+)PR(−)HER(−)) 
(42/90), luminal B (ER(+)PR(+)HER(+) and ER(+)
PR(−)HER(+)) (30/90), ER(+)PR(+)HER(?) (13/90) 
and ER(+)PR(−)HER(?)(5/90) categories. 13, 38, 34 
and 1 samples were from a cancer stage I, II, III and 
IV, respectively. 3 additional samples did not have a 
cancer stage classification. Samples were obtained 
from patients who underwent surgery at the National 
Taiwan University Hospital (NTUH) between 1995 
and 2007. 18 non-tumor samples were also surgically 
removed from breast tissue adjacent to some of the 
90 ER(+) IDC breast tumors as controls. We obtained 
written consent from the patients or their relatives 
for the microarray study. Both clinicopathological 
data and angiograms provided in the article are part 
of their medical records. These medical records were 
originally included in the microarray study. Such 
study has been approved by the institutional review 
board (IRB) at NTUH (IRB number: 200706039R, 
Research Ethics Committee at National Taiwan Uni-
versity Hospital, Taipei, Taiwan). The gene expression 
dataset for this study can be retrieved from the NCBI 
Gene Expression Omnibus (GEO; http://www.ncbi.
nlm.nih.gov/geo) under accession no. GSE24124. 
The abbreviation for each gene expression array data 
was “A”. Classification of datasets was based upon 
group IE (61 A) and group IIE (29 A) for the 90 A 
dataset and luminal A (42 A) and luminal B (30 A) 
for 72 A dataset. The cohorts contain 90 A and 72 A 
datasets that consist of 90 and 72  gene expression 
profiles, respectively. They were designated as 90 A 
cohort and 72 A cohort, respectively.

Microarray data analyses
A genome-wide gene expression profile per breast 
tumor specimen was analyzed using an Agilent Human 
1  A (version 2) oligonucleotide microarray (half 
a genome size: 22  k) (Agilent technologies, USA). 
Quality control data (QC data) was established for 
3 breast cancer biomarker genes—ESR1 (N = 151), 
PGR (N  =  151) and ERBB2 (N  =  151) using the 
same total ribonucleic acid (RNA) samples used for 

generating the gene expression profiles in 181 infil-
trating ductal carcinomas (N = 181). The missing data 
for 30 samples (N = 30) was due to insufficient RNA 
for quantitative polymerase chain analysis (qPCR).

The qPCR procedure was done according to Kuo 
et  al.20 4 primer IDs (Applied Biosystems, Foster 
City, CA, USA) designated as HT-A003, HT-A004, 
HT-A006 and a control primer ID as HH-T001 (TIB 
MOL BIOL, Germany) were used for amplification 
of the complementary deoxyribonucleic acid (cDNA) 
for PR, HER-2/neu, ER and the TATA box binding 
protein (TBP), respectively. Quality control data are 
shown in Figure 8.

The heatmaps were displayed after unsupervised 
hierarchical clustering using R package (version 
2.15.1). The “hcluster” function in the “stats” package 
was utilized to perform the unsupervised clustering. 
The heatmap was produced by the “rect” function 
to generate a customized view of the subcohorts. 
Gene Spring GX7.3.1 was used for generating Venn 
diagrams. ANOVA tests and the statistical methods 
for establishing the STAT3 transcriptional regulatory 
network were performed.9 Kaplan-Meier survival 
analyses21 were done using the “survival” package in 
R (version 2.15.1) for the gene profiles of 90 A cohort, 
91 A cohort, 181 A cohort or the extracted gene pools 
of interest in the assigned cohorts. To quantify the 
weight of hazard ratios associated with the prognostic 
gene signature and the traditional prognostic factors 
in a given cohort of interest, both univariate and mul-
tivariate COX proportional hazard (COXPH) regres-
sion model in R package were performed.

Experimental design
Previously, we demonstrated that a new method, 
combining the coefficient of intrinsic dependence 
(CID) and Galton-Pierson’s Correlation Coefficient 
(GPCC), potentially has significant advantages in 
predicting network responses at the transcriptome 
level when using a systems biology approach.22 We 
found that the nuclear receptor ERα, which is a ligand 
dependent transcription factor, is activated by the 
environmental trigger (i.e. estrogen) in the breast can-
cer specimens. As a result, the relationship between 
the environmental trigger and a phenotype (i.e. the 
ERα transcriptional regulatory network) could be 
functionally dissected from the gene expression pro-
files in the breast tumor population. To specifically 
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classify regulatory mechanisms impacting ERα func-
tional transcription activities, we established the mul-
tivariate space of the ERα transcriptional regulatory 
network using multivariate CID.23

Although this network analysis has proven to be sta-
tistically significant relative to specificity and sensitiv-
ity, the sensitivity of interactions among gene products22 
was not established. This was due to the complexity 
and size of TFs that are potentially functioning in the 
gene expression profile consisting of half a genome 
size, given that the predicted number of human puta-
tive transcription factors genome-wide is between 
1,850 and 4,105.24 Moreover, each transcription factor 
has its unique regulatory mechanism and most have not 
been studied in breast cancers. Therefore, we designed 
a series supervised approach to reduce the confounder 
effects due to sampling, cohort composition and gene 
expression data after processing.

This network analysis is based on the prior data 
related to the functional status of a given TF in a given 
sample population. The method has been modified 
to increase the specificity and sensitivity of network 
analysis. Firstly, we have modified the procedure for 
CID via replacing the quantile clustering by hier-
archical clustering before subgrouping the data for 
CID analysis. Hierarchical clustering mimics the bio-
logical event in which a functional TF with relatively 
similar gene expression levels may regulate its target 
genes in a similar manner under similar environments. 
Secondly, we have designed a dataset consisting of 
2 subcohorts with different features of interest for net-
work analysis. Thirdly, we established the predicted 
networks of a TF, which has transcript variants acting 
as the same target gene regulator, as a function of the 
whole network of the TF. Finally, we optimized the 
subgrouping strategy to be 1/10th for CID analysis. 
This effectively localizes the most relevant transcrip-
tional regulatory mechanism of interest to a small 
subgroup of tumor specimens (i.e. the highest subCID 
value) as compared to that in other subgroups.

Herein, we designed specific subcohort combina-
tions for univariate CIDUGPCC analysis based on data 
from ANOVA tests, hypothesis testing and consider-
ation of the reduction of the confounder effects. For 
instance, we predict a clinically significant transcrip-
tional regulatory network for a TFx by combining sub-
cohorts, which have opposite status of a given clinical 
parameter, to run CIDUGPCC analysis on the TFx. 

CIDUGPCC analysis is an established statistical mea-
sure for building a network based on significance in 
non-linear or in linear associations. Biologically, such 
combined measurements allow the gene expression 
relationship between a transcription factor and its pre-
dicted target gene to be identified in a given population. 
When a gene pool is identified as the potential target 
of a transcription factor, the relationship among them 
can be linked to form a transcriptional regulatory net-
work.9,22 We investigated networks of MYC, STAT3, 
ESR1, ARNT and FOXC1 in this study.

The mRNA expression levels of ESR1 are not 
linearly correlated with ERα protein levels within 
ER(+) IDCs.23 Additionally, STAT3 mRNA levels are 
elevated preferentially in the HER(−) IDCs group. To 
predict subtype-enriched transcriptional regulatory 
programs of ERα and STAT3, we analyzed group IE 
(61 A), group IIE (29 A), luminal A (42 A) and luminal 
B (30 A). The counter cohort (29 A) to these subco-
horts was ERBB2+ (i.e. ER(−)PR(−) HER(+)). Data-
set (119 A), comprised of ERBB2+ (29 A), groups IE 
(61 A) and IIE (29 A) and dataset (101 A) comprised 
of ERBB2+ (29 A), luminal A (42 A) and luminal B 
(30 A) were used for univariate and bivariate network 
studies.22,23 To evaluate crosstalk between ERα and 
STAT3 at the transcriptional level, we used the bivari-
ate CID method to extract shared regulatory network.

Venn diagram analysis was performed to iden-
tify overlapping and/or non-overlapping gene pools 
related to the feature of interest. The combinatorial 
interactions between transcription factors were further 
investigated to dissect the regulatory mechanisms on 
their shared target genes (see examples in Suppl. 2 of 
Additional file 1). Gene annotation was done accord-
ing to the Gene References Into Function (Gene RIFs 
of NCBI) and Gene Spring GX7.3.1.

In vitro validation of estrogen actions  
for predicted ERα target gene 
expression in a cell model and in vivo 
validation of sustained angiogenesis  
by sonograms
Reagents, cell culture and treatments
Estrogen (E2 or 17-β-estradiol) and antiestrogen ICI 
183,780 were obtained from Sigma Chemical Co. 
(St. Louis, MO, USA). Human breast cancer cell line 
MCF-7 was obtained from American Type Culture 
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Collection (ATCC, Manassas, VA, USA). Cells were 
cultured in DMEM supplemented with 5% heat-
inactivated fetal bovine serum from Atlanta Biologi-
cals, Inc. (Norcross, GA, USA). Cells were grown in 
a humidified atmosphere of 95% O2 and 5% CO2 at 
37 °C. 350,000 cells per well were plated in 6-well 
plates for 2 days in DMEM with L-glutamine and phe-
nol red free supplemented with 5% charcoal-stripped 
serum before appropriate drugs were added.

Western blot analysis
MCF-7 cells were treated with appropriate amounts 
of estrogen, anti-estrogen or both for 48 hours before 
cells were harvested for total protein extraction. 
Western blot analysis was performed as described25 
with a few modifications.

To each well dish in 6-well plates, 0.2 ml of the 
ice-cold lysis buffer (20  mM Tris, pH7.5, 150  mM 
NaCl, 1  mM EDTA, 1  mM EGTA, 1  mM sodium 
orthovanadate, 2.5  mM sodium pyrophosphate, 1% 
TritonX100, 1 mM β-glycerophosphate, 1 mg/ml leu-
peptin and aprotinin and 1 mM phenylmethylsulphonyl 
fluoride) was added. The lysed cells were prepared by 
pulse-sonication and centrifugation at 14,000 rpm for 
10 minutes. Cell lysate samples (60 µg total protein/
lane) were loaded in a 7.5% polyacrylamide gel con-
taining 1% SDS (SDS-PAGE) for gel electrophoresis. 
Fractionated proteins were transferred to a nitrocel-
lulose membrane and probed with primary antibodies 
in 5% bovine serum albumin dissolved in Tris-buff-
ered saline with 0.05% Tween 20 and 10% non-fat 
milk. Secondary antibodies conjugated to horserad-
ish peroxidase were then applied. Chemilumines-
cent substrate of horseradish peroxidase was added 
at the final step. The specific protein bands labeled 
with a final chemiluminescent dye were visualized by 
exposing the membrane to X-ray film. Western blot 
analysis to detect p67 was done using polyclonal rat 
p67 antibody.26 β-actin in each lane was probed with 
antiβ-actin antibody (Sigma Diagnostics, St. Louis, 
MO, USA) as the loading control.

In vivo validation and supporting 
documents
Angiosonograms were gathered at NTUH. 
Sonograms of the cohort study and literature docu-
mentations were used to partially validate the net-
work prediction.

Results and Discussion
Network analysis was utilized to biochemical pro-
filing of 12  signal transduction pathway activities, 
the clinical relevance of ten clinical parameters, 
prognosis relevant events, and other malignant phe-
notypes including proliferation, the Warburg effect, 
sustained angiogenesis, and ES like epithelial mes-
enchymal transition. STAT3 is projected to differen-
tially regulate these pathophysiological activities and 
some additional transcription factors are suggested 
as co-regulators of STAT3 to regulate these cellular 
activities. However, further time course studies in 
model systems are required to validate transcriptional 
roles of STAT3 in regulating tumorigenesis because 
clinical tumor samples used in our studies were col-
lected at a single time point.
I.	 STAT3 may be a transcriptional regulator of tum-

origenesis and responses to cancer therapies.
A.	There are major clinical implications of STAT3 

in ER(+) breast cancers.
ANOVA tests (Fig.  1) indicate a significant decrease in 
STAT3 mRNA expression levels during mitotic count 
progression. STAT3 is significantly elevated in ER(+) 
HER(-) IDCs.

a.	 Clinically relevant activities of STAT3 and 
its common partner MYC, condition mitotic 
count, a pathological subindex in ER(+) 
breast cancers.

There are 2,335 probes in the STAT3 cluster selected 
by the ANOVA test that are potential determining fac-
tors of mitotic count (Fig.  2A). Only 41 TFs and/or 
TF subunits are in this cluster, which includes STAT3 
and ARNT (Fig.  2A). However, based upon mitotic 
count relevant STAT3 regulatory network, MYC but 
not ARNT is the target gene of STAT3 (Table S1.1  in 
Suppl. 1 of Additional file 1). Moreover, mitotic count 
relevant MYC regulatory network predicts that MYC 
regulates STAT3 but not ARNT (Table S1.2 in Suppl. 1 
of Additional file 1). Data in Tables S1.5 and S1.8  in 
Suppl. 1 indentify STAT3 as the predicted target gene of 
MYC in both 90 A and 72 A cohorts.

b.	 Clinically relevant, subtype enriched MYC 
and STAT3 may co-contribute 10 clinical 
parameters based on their target gene pools.
The regulatory interactions between MYC 
and STAT3 were further investigated by an 
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Figure 1. Clinical impact of STAT3 in two cohorts of ER(+) IDCs analyzed by ANOVA tests.
Upper panel, ANOVA test results of STAT3 (15013) mRNA levels in 8 clinical indices—progesterone receptor (PR), HER-2/neu (HER), lymphovascular 
invasion (LVI), lymph nodal category (lymph node metastasis status-LYM, No. of lymph node metastasis-LNM), age, tumor size, grade (nuclear pleomor-
phism (NP), mitotic count (MC), tubule formation (TF)) and cancer stage in ER(+) IDCs (90 A; 72 A) (A and B).
Lower panel, ANOVA test results of STAT3 (4836) mRNA levels in 8 clinical indices in ER(+) IDCs (90 A; 72 A) (C and D). 15013 and 4836 are the Agilent 
feature number for STAT3, a STAT3 variant respectively. NP, MC and TF are 3 clinical subindices of the histological grade (grade).

overlapping network of MYC and STAT3 
(6,579 probes in Fig. 2B and Table S1.7 in 
Suppl. 1 of Additional file 1), which was 
determined to be significantly relevant in 
both ER(+) IDCs and in mitotic count.

Relevant to ER positive breast cancers, 
the clinically significant MYC and STAT3 
overlapping network (identified based 
upon approximately  122 TFs and/or their 
subunits in this network as shown in Table 
S1.7 in Suppl. 1 of Additional file 1) shows 
increased regulation of genes associated with 
tumor size (size), mitotic count (MC), lym-
phovascular invasion (LVI) than regulation 

of those associated with histological grade 
(grade) and lymph node metastasis status 
(LYM). These results indicate relatively less 
regulation of genes associated with nuclear 
pleomorphism (NP), cancer stage (stage), 
tubule formation (TF), number of lymph 
node metastasis (LNM) and age (Fig.  2C 
and Suppl. 3). Many TFs (about 144 TFs 
and/or their subunits in Table S1.3; about 
122 TFs and/or their subunits in Table S1.7) 
are partners of STAT3 and possibly partici-
pate in co-regulating those gene pools. We 
summarize the clinically significant gene 
pools in Figure  2C that may be relevant 
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to ER(+) tumor development due to MYC 
and STAT3 regulation of their shared target 
genes.

STAT3 has a large number of transcription 
factors other than MYC as potential regula-
tory partners (Fig. 2B, Table S1.7 in Suppl. 1 
of Additional file 1) and these may control 

tumor fate in multiple pathophysiological 
events (Fig. 2C) and in deregulated biochem-
ical events (Fig.  2D). Notably, Figure  2C 
indicates a broad spectrum of early clinically 
relevant and luminal A subtype enriched 
pathological features affected by transcrip-
tional regulation of STAT3. Unexpectedly, 

Figure 2. ANOVA tests and Venn diagram analyses for finding the main components of the STAT3 network.
(A) shows a gene pool called STAT3 cluster, which is significantly associated with mitotic count (41TFs including STAT3 and ARNT). (B) demonstrates 
the gene pools, which include (1) the MYC and STAT3 overlapping network of the ER(+) IDCs with clinicopathologically significant (CS) and luminal A 
enriched and (2) the non-overlapping gene pools. (C) is a bar chart, which contains 10 bars for the number of probes identified in 10 clinical parameters 
and in the CS and luminal A enriched MYC and STAT3 overlapping network (6,579 probes), with bars displayed in an ascending order. (D) is a bar chart, 
which contains 12 bars for the number of probes identified in 12 signal transduction pathways that are also in the MYC and STAT3 overlapping network of 
the ER(+) IDCs, with bars displayed in an ascending order.
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Figure 3. Functional prediction on roles of STAT3 gene partners in STAT3 subnetworks of ER(+) IDCs.
6 functional subnetworks in 90 A and 72 A cohorts are generated via (1) Predicted networks derived from overlapping genes in Venn diagrams of the 
STAT3 subnetworks in ER(+) breast cancer gene expression profiles from a 90 A cohort (A); (2) 4 feature functionalities (cell proliferation, sustained angio-
genesis, the Warburg effect and ES-like phenotype) of the major STAT3 target genes in 2 STAT3 subnetworks are either commonly co-regulated by MYC 
(C) and/or differentially co-regulated by FOXC1 and/or ARNT (B and D) in the ER(+) IDCs. A subset of genes, which are predicted to be prognostic factors, 
is potentially regulated by multiple combined routes of MYC and STAT3, ARNT/HIF1α and STAT3, ARNT/HIF2α and STAT3 or STAT3 for ES-like pheno-
type (D). E stands for the FOXC1 subnetwork to be a part of activities in cell proliferation. The summary for prognostic features of the STAT3 subnetworks 
in 90 A cohort and 72 A cohort are shown in F. Solid/dashed lines stand for the specific pathway identified as significant/insignificant in gene expression 
relationship between a TF and a target gene. Each arrow points toward its downstream target. The combined routes toward the same target gene are 
labeled with the same color. Relative mRNA expression levels are shown in a color scale (A). Poor prognostic factors are marked by the red rings. Good 
prognostic factors are marked by the light blue rings. If a probe is not significant shown by Kaplan-Meier survival analysis, it is marked with dotted ring.

among 10 clinical parameters we found 
that tumor size shares the largest gene pool 
with the overlapping network of STAT3 
and MYC (Fig.  2C). This suggests that a  

pre-programmed transcriptional event of 
STAT3 in coupling with MYC may slightly 
shift the preferential influence of STAT3 for 
a series of pathophysiological features.
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Table 1. The pathological information (clinicopathological parameters) for group IE, group IIE, luminal A and luminal B.

Clinical index Status Number of patients
Grp IE Grp IIE Luminal A Luminal B

ER 0 0 0 0 0
1 61 29 42 30
NA 0 0 0 0

PR 0 0 29 17 7
1 61 0 25 23
NA 0 0 0 0

HER 0 25 17 42 0
1 23 7 0 30
NA 13 5 0 0

Stage 1 11 2 5 8
2 23 15 15 13
3 25 10 21 9
NA 2 2 1 0

LYM 0 17 8 11 11
1 41 20 29 19
NA 3 1 2 0

LVI 0 16 4 4 7
1 36 20 31 21
NA 9 5 7 2

Age 0 30 8 15 15
1 31 21 27 15
NA 0 0 0 0

Grade 1 19 4 11 3
2 31 12 23 15
3 8 9 6 10
NA 3 4 2 2

TF 1 2 0 2 0
2 21 8 9 12
3 32 16 26 16
NA 6 5 5 2

NP 1 6 0 3 0
2 33 13 21 15
3 16 11 13 13
NA 6 5 5 2

MC 1 35 11 26 10
2 13 9 9 9
3 7 4 2 9
NA 6 5 5 2

Size 1 19 7 10 12
2 33 14 25 14
3 7 6 7 4
NA 2 2 0 0

LNM 0 17 8 11 11
1 18 11 11 10
2 10 4 9 2
3 14 3 9 7
NA 2 3 2 0

In addition, STAT3 with different TF part-
ner pools among different subtypes may offer 
another mechanism for predicting prognos-
tic features of STAT3 in different subtypes 

(Fig. 3F, Tables 2 and 3), based on results in 
Figures  1 and 2, STAT3 may play a central 
role in ER(+) IDCs similar to that in ER(-) 
IDCs.9
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Table 2. The prognostic values for inferred target genes of STAT3 and MYC in the 90 A cohort.

Gene symbol (feature no.) Increased expression level P value Pathways
ABL1 (8019) Poor prognosis 0.046 ERBB2, PDGFRB, cell 

cycle and angiogenesis
IGF2R (1723) Poor prognosis 0.048 Angiogenesis
PRKCB1 (6676) Good prognosis 0.033 ERBB2 and VEGF
MAP2K4 (18954) Good prognosis 0.034 ERBB2
NRG1 (11559) Good prognosis 0.011 ERBB2
LYN (19236) Poor prognosis 0.001 PDGFRB and angiogenesis
STAT3 (4386) Poor prognosis 0.028 PDGFRB and angiogenesis
STAT3 (15013) Poor prognosis 0.002 PDGFRB and angiogenesis
VEGFA (1135) Poor prognosis 0.02 VEGF and angiogenesis
VEGFA (15367) Poor prognosis 0.008 VEGF and angiogenesis
OIP5 (16433) Poor prognosis 0.013 FOXC1 network
NCK2 (3851) Poor prognosis 0.029 ERBB2 and PDGFRB
LDHB (20259) Poor prognosis 0.038 Warburg effect
GRB2 (16731) Poor prognosis 0.019 ERBB2 and PDGFRB
NANOG (C12928.2) Poor prognosis 0.024 EMT
POU5F1 (6057) Good prognosis 0.02 EMT
GRB2 (1952) Poor prognosis 0.03 ERBB2 and PDGFRB

Table 3. The prognostic values for inferred target genes of STAT3 and MYC in the 72 A cohort.

Gene symbol Regulation status Biochemical pathway Prognosis Regulators
GRB2 Up ERBB2 and PDGFRB Poor MYC and STAT3
GRB2 Up ERBB2 and PDGFRB Poor MYC and STAT3
CDKN1A Up p53, cell cycle and ERBB2 Poor MYC and STAT3
ARAF Up ERBB2 Poor MYC and STAT3
NCK2 Up ERBB2 and PDGFRB Poor MYC and STAT3
PAK6 Up ERBB2 Good MYC and STAT3
KRAS Up ERBB2 and VEGF Good MYC and STAT3
IDH3G Up Warburg effect Good MYC and STAT3
ELK1 Up FOXC1 network and ERBB2 Good MYC and STAT3
NANOG Down ES like phenotype (EMT) Good MYC and STAT3
NRAS Up ERBB2 Poor MYC and STAT3
SRC Up ERBB2, VEGF and PDGFRB Poor MYC and STAT3

c.	 Subtype enriched transcription factors—
MYC and STAT3 may co-contribute 12  signal 
transduction pathways based on their target gene 
pools.

The MYC and STAT3 overlapping network 
for an ER(+) breast cancer population (90 A) 
predicts shared target genes to be involved in 
regulating the cell cycle signal transduction 
pathway as compared to those involved in reg-
ulating signal transduction pathways of VEGF, 
ribosome and ERBB2. Breast cancer cell pro-
liferation may be a consequence of STAT3 acti-
vation by autocrine/paracrine signals27 and this 
indirectly supports the network prediction.

B.	STAT3 is critical to ER(+) breast tumor 
development.
A moderate number of genes within this net-
work are predicted gene components in signal 
transduction pathways of p53, PDGFRB, nucle-
otide excision repair (NER) and proteasome. 
Only small numbers of genes within this over-
lapping network are predicted to regulate DNA 
replication, base excision repair homologous 
recombination, and mismatch repair pathways 
(Suppls. 4, 5  in Additional file 1 and Fig. 2D). 
Thus, using the heatmap approach, we have 
identified shared gene pools between the MYC 
and STAT3 overlapping network and twelve 
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signal transduction pathways among non-tumor 
component, groups IE and IIE (Suppl. 5 in Addi-
tional file 1). STAT3 is critical in ER(+) breast 
tumor development.
a.	 Four functional subnetworks are predicted 

to be involved in malignant phenotypes 
enriched in luminal A subtype.
i.	 A metabolic transcriptome involving the 

STAT3 network.
OGDH, PC, IDH3G, SDHA, SDHC, and GLS are 
predicted to be up-regulated by STAT3 coupled 
with MYC in the 72 A cohort. The 90 A cohort has 
the same regulatory subnetwork except GLS is pre-
dicted to be regulated by STAT3 alone (Fig. 3C). 
LDHA and LDHB appear to be down-regulated by 
STAT3 and MYC in both 90 A and 72 A cohorts and 

low LDHB mRNA levels in 90 A cohort are a pre-
dictor of favorable prognosis (Table 2). High lev-
els of IDH3G are a favorable prognosis predictor 
in 72 A cohort (Table 3). ESRRG, PC, a transcript 
variant of MYC, SDHD, and LDHB are highly 
expressed in the non-tumor component (Fig. 4B).

The STAT3 network is predicted to regulate only 
a subset of genes in the Warburg effect. Relatively 
low expression levels of LDHB and LDHA indicate 
that part of the Warburg effect may be suppressed 
in ER(+)BCs (Figs. 3C and 4B). In addition, MYC 
and STAT3 differentially regulate the expression of 
subunits for succinate dehydrogenase (SDH) that 
may alter the enzyme activities of SDH. However, 
the expression pattern of PC and GLS are conserved 
between ER(+) and ER(-) breast cancers (Figs. 5D9 

Figure 4. Heatmaps for the subnetworks of MYC and STAT3 in different subtypes of the ER(+) IDCs. Non-tumor components (NT) serve as the controls. 
Left panel shows the heatmaps for 90 A cohort, which were generated from 61 group IE, and 29 group IIE breast cancer subtypes. Right panel shows the 
heatmaps for 72 A cohort which were generated from 42 luminal A and 32 luminal B breast cancer subtypes. The hierarchically clustered gene expression 
patterns were based on the similar expression levels among genes in the subnetworks of four altered biological events—cell proliferation (upper panel of 
A), sustained angiogenesis (lower panel of A), Warburg effect (B) and ES-like phenotype (C). A FOXC1 subnetwork (D) contains a gene list to be a part of 
the FOXC1 subnetwork in the ER(-) IDCs.9 4E stands for heatmaps of 2 cohorts (90 A, 72 A) for the prognostic factors (17 probes) identified in the STAT3 
subnetworks (4A–D and Fig. 7B) of 90 A cohort. We located 3 subcohorts based on their similarity in gene expression patterns for a prognosis signature 
(17 probes) indicated by feature color bars underneath of the heatmap for Figure 4E. Light red color bar stands for subcohort 1 (N = 14). Light green color 
bar stands for subcohort 3 (N = 17). Light blue color bar stands for subcohort 2 (N = 59).
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and 3C). They do not follow the same regulatory 
route within the STAT3 transcriptional regulatory 
network. Based upon these results, the physiologi-
cal role for high levels of LDHB, PC, SDHD and a 
transcript variant of MYC in non-tumor components 
could be of interest for future study.

ii.	 Phenotype-like mesenchymal stem cells 
in tumor pathogenesis are predicted to be 
regulated by the STAT3 network.

GATA3, OCT4, FOXC1, FOXC2, NOTCH1, 
TWIST1 and MBD3 are predicted to be up-regu-
lated by MYC and STAT3 or ARNT and STAT3 in 
both 90 A and 72 A cohorts. STAT3- and/or MYC-
mediated regulation of WNT9B is different in 90 A 
and 72 A cohorts (Fig. 3D). Both invasiveness and 
proliferation promoting genes are regulated by 
STAT3 but less in ER(+) BCs than in ER(-) BCs. 
For instance, MMP7 and MELK are not in the 
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Figure 5. In vitro validation of an ERα target gene—METAP2 (p67).
The upper left panel shows the results of western blot analysis on protein expression levels of METAP2 (p67) in MCF-7 cell model (A).
Western blot analysis for METAP2 encoded protein indicates it to be regulated by ERα. We found increased p67 protein in MCF-7 with E2 treatment as compared 
to that with fulvestrant (ICI 182, 780 or ICI) treatment, (ICI + E2) treatment and control. MCF-7 cells were deprived of estrogen for 2 days and treated with 10−9 
M E2 (labeled as + E2), 10−7 M ICI183,780 (labeled as + ICI183,780), or a combination of both (ICI + E2) for 48 hours. Total lysate (60 µg/lane) from MCF-7 cells 
was resolved in 7.5% SDS-PAGE and immunoblotted with anti-rat p67. β-actin was as the loading control. The lower blot was probed with anti-β-actin. 
The upper right panel shows that a diagram of the network prediction for interaction between ERα and STAT3 results in a switch in expression mode of 
their potential target gene-METAP2, which is predicted to be subtype relevant in ER(+) IDCs (B).
Moreover, METAP2 is predicted to be shared target genes due to the combinatorial interaction of 2 given transcription factors (see the overlapping net-
work of MYCnSTAT3 and ESR1nSTAT3 in Table S2.4 of Suppl. 2) but it is neither in the overlapping network of ESR1 and STAT3 nor in that of MYC and 
STAT3 (Table S2.6 in Suppl. 2). Based on the network analysis results, the proposed interplay between promoter use pathways of ESR1 nSTAT3 and 
MYCnSTAT3 in luminal A and B in regulating METAP2 is proposed (B).
The lower left panel demonstrates that DNA sequence of promoter region for rat METAP2 (p67) (GenBank: U37710) includes 5 3′ ERE half-sites45 and 
a 5′Am2Tp2 variant site46 (C). This indicates rat METAP2 to be a target gene of ERα due to the half-ERE sites to be the candidate binding sites of ERα. 
The lower right panel demonstrates that DNA sequence of promoter region for mouse METAP2 (p67) includes two 5′ ERE half-sites and two 3′ ERE 
half-sites (D). This indicates mouse METAP2 to be a target gene of ERα due to the half-ERE sites to be the candidate binding sites of ERα.
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STAT3 network (Figs.  3D and 4C). Both GATA3 
and OCT4 (POU5F1) are up-regulated by MYC 
and STAT3 in 90 A and 72 A cohorts. Siegel PM 
et al2 demonstrated that high GATA3 mRNA levels 
corresponded to a strong propensity for luminal 
breast cancer subtype and Sano H et  al28 found 
that increased OCT4 (POU5F1) levels suppressed 
invasion and metastasis in MCF−7. A small subset 
of ER(+)BCs shows 3 core regulatory factors 
(OCT4, SOX2 and NANOG) to be co-expressed 
at relatively high levels and this may maintain 
pluripotency and a self-renewal phenotype (ES-
like; Fig. 4C).

Based on the network prediction for ES-like 
phenotypes, STAT3 interactions with HIF and MYC 
has more impact on ER(+) BCs than on ER(-) BCs 
relative to development of a less invasive malig-
nant phenotype. Further in vitro studies and a net-
work approach in silico are required to identify the 
cooperative regulatory relationships among STAT3, 
OCT4 and GATA3 in order to fully distinguish 
tumor fate in luminal subtypes and basal subtypes.

iii.	 An increased tumor survival mechanism 
via sustained angiogenesis involving 
STAT3.
We find functionally sustained angiogenesis to be 
mainly regulated by STAT3 in conjunction with 
MYC. Both 90 A and 72 A cohorts share major 
STAT3 network architecture for sustained angio-
genesis, except that FOXC1 is predicted to be an 
additional partner of STAT3 in the 72  A cohort 
that includes both the IGF2-IGF2R-PLC_2 axis 
and VEGF signaling (KEGG database; Fig. 3B). 
Increased expression of VEGFA, ABL1 and 
IGF2R, and decreased expression of PRKCB1 (or 
PRKCB) are poor prognostic factors in the 90 A 
cohort (Table 2 and Fig. S5.2 in Suppl.5 of Addi-
tional file 1).

It is of interest that the sustained angiogenesis 
network in ER(+) BCs shares the same architecture 
with ER(-) BCs (Figs.  5C9 and 3B) except that 
FOXC1 is an additional partner of STAT3 (Fig. 3B, 
Tables S1.10 and S1.11). Importantly, we found that 
the mechanism for sustained angiogenesis driven 
by the STAT3 network in ER(−) BCs (Fig.  7B9) 
is partially relevant in ER(+) BCs (Fig. 3B). This 
may suggest that different transcriptional regula-

tors interact with STAT3 to control tumor angio-
genesis dependent upon different BC subtypes. 
Other in vitro studies29,30 support the concept that 
FOXC1, ARNT and FOXC2 are transcriptional 
regulators in angiogenesis. Further investigations 
of co-regulatory subnetworks involving these 
transcription factors and their relationship with 
patient angiosonograms will be explored in the 
future. Figure 6 shows that 43.75% of sonograms 
do not match with the gene expression signature of 
sustained angiogenesis based upon heatmaps. This 
could be due to limitations in sampling of gene 
expression profiles that reduce the accuracy of pre-
diction9 or an alternative mechanism(s) controlling 
sustained angiogenesis. Therefore, more regulatory 
components of sustained angiogenesis are expected 
to be discovered in vitro, in vivo and in silico.

iv.	Tumor proliferative activities are pre-
dicted to be regulated by the STAT3 and/
or other TF(s) network.
Both METAP2 and MELK are positive determi-
nants of mitotic count in 90 A and 72 A cohorts 
(Figs. S7.1 and S7.2  in Suppl. 7 of Additional 
file 1). Lower tumor proliferative activities in 
ER(+) IDCs (Figs.  3A and 4) are indicated by 
METAP2 and MELK, which are down-regulated by 
MYC and STAT3 in both 90 A and 72 A cohorts. 
METAP2 and MELK show high mRNA expression 
levels when the expression of STAT3 decreases 
(Figs. 3A and 4A).

FOXC1 is a shared target gene of MYC and 
STAT3 (Fig. 3D). We first reported the overexpres-
sion of OIP5, E2F8 and BIRC5 that are possibly 
regulated by FOXC1 in triple negatives.9 These 
genes and FOXC1 are positive determinants of 
histological grade and mitotic count in ER(-) BCs. 
The proliferation activities in tumors due to FOXC1 
transcriptional regulation appear to be less in ER(+) 
IDCs as compared to ER(-) IDCs. A transcript vari-
ant of FOXC1 (FOXC1*) is potentially regulated 
by MYC (Fig.  3F). Interestingly, high expression 
levels of one FOXC1 transcript variant (FOXC1*) 
is a predictor of good prognosis in ER(+) IDCs 
(Fig. S6.3  in Suppl.  6 of Additional file 1). The 
STAT3 network in 77 A and 90 A cohorts is similar 
except that MELK is down-regulated by MYC and 
STAT3 in the 90 A cohort, and by MYC, STAT3 and 
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Figure 6. Further evaluation on a gene set predicted to be involved in tumor angiogenesis.
Upper panel, 2 heatmaps are displayed for the overlapped subnetworks of MYC and STAT3 differentially coupling with ARNT/HIF1α and/or ARNT/HIF2α 
in two subtypes of breast cancer (group IE and IIE) (A). Non-tumor components (NT) are the controls.
Lower panel, their related clinicopathological phenotype—vascularity (B and C) are demonstrated.

FOXC1 in the 72 A cohort. The STAT3 mediated 
tumor proliferative activity response is different 
in ER(-) IDCs “(Figs. 5C, F, 6A and D in article,9 
Figs, 3B, E, 4A and D).

Figure  3E shows partial activities of the 
FOXC1 subnetwork to be conserved between 90 A 
and 72 A cohorts. Only E2F8 is down-regulated by 
FOXC1 in both 90 A and 72 A cohorts as compared 
to those in the 77 A cohort of ER(-) IDCs (Figs. 5F9 
and 3E). Decreased expression of OIP5 is a good 
prognostic factor (Table 2 and Fig. 3F) in the 90 A 
cohort. Heatmaps for the FOXC1 subnetwork indi-
cate that FOXC1 is differentially regulating a set 
of genes between non-tumor and tumor compo-
nents. However, no obvious differences in the gene 
expression patterns of FOXC1 subnetwork were 
observed among subtypes (Fig. 4D).

We further compared the functional sub-
network of FOXC1, which is an indicator of 
high mitotic count in triple negatives (Fig.  6D9), 
between 90 A and 77 A cohorts. FOXC1 is prefer-
entially increased in ER(+)HER(-) breast cancers.  

However, it down-regulates E2F8, BIRC5 and 
OIP5 in the 90 A cohort, while, in turn, it up-reg-
ulates them in the 77 A cohort. In addition, both 
SP5 and MTA1 are not in the STAT3 network of 
ER(+) BCs. Such dramatic changes may reduce 
its influence on enhancing tumor proliferation and 
metastasis. Multiple possibilities may explain how 
a malignant phenotype (e.g. proliferation activities) 
is altered due to the same regulator(s) in different 
BC subtypes and this remains to be evaluated by 
additional research.

C.	STAT3 may have a critical role in ER(+) breast 
tumors in response to cancer therapies.
a.	 Hypothesis testing for cancer-related activi-

ties of the STAT3 and/or MYC and STAT3 
overlapping network.
i.	 A hypothesis and the contradictory 

findings.
The ANOVA test suggests that STAT3 is 
preferentially increased in HER(-) BCs. 
Thus, we hypothesize that TN or luminal 
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A patients have a lower propensity for 
ERBB2  interaction. Surprisingly, STAT3 
regulates 59% (60/101) of ERBB2  sig-
naling molecules in the 90 A cohort. The 
expression patterns of these signaling 
molecules shown in heatmaps (Fig.  7B) 
indicate that STAT3 mediated regulation 
of these 6 signaling molecules (PRKCB1, 
MAP2K4, NRG1, NCK2, ABL1 and 
GRB2) provides a good prognostic 

indicator in the 90  A cohort (Table  2). 
This regulatory event may be involved 
in the crosstalk between ERα and STAT3 
that enhances a TAM resistance mecha-
nism. This mechanism may be due to 
aberrant STAT3 activities on up-regulat-
ing key components in the PI3K, MAPK 
and c-SRC signaling pathways in ER(+) 
BCs. Interestingly, the gene expression 
for a few target genes (e.g. ABL1, GRB2, 

Figure 7. Heatmaps for the subnetworks of MYC and STAT3 and the proposed TAM resistance mechanism.
We described the levels of gene expression for both ERα and STAT3 by coloring with green for low and blue for high. The thickness of line indicates the 
degree of activities that are predicted to depend on the expression level of ERα when STAT3 is elevated in triple negatives and ER(+) infiltrating ductal 
breast carcinomas.
ERα is weakly expressed in triple negatives. Thus, it is possible that crosstalk between ERα and STAT3 in TN is relatively weak. To this subset of patients, 
TAM treatment is not applied as one of the cancer therapies. On the other hand, the high possibility of TAM resistance in a subset of luminal A is proposed. 
The proposed mechanism of TAM resistance due to crosstalk between ERα and STAT3 has been described in the main text. Figures 7A and B show the 
gene profilings of ERBB2 signaling molecules predicted to be regulated by STAT3 in coupling with MYC in triple negatives/ERBB2+, groups IE/IIE, respec-
tively. Two corresponding non-tumor (NT) components are as the control gene profilings in this case (A and B).
Both MYC and STAT3 differentially up-regulate the mRNA expression for a subset of ERBB2 signaling molecules among and/or within subtypes (A 
and B). The estrogen action on crosstalk between ERα and STAT3 is mainly seen in luminal A (see arrows with thick lines colored with orange or dark 
blue in Fig. 7D) but is weak in TN (see arrows with thin lines colored with orange or dark blue in Fig. 7C). We describe phosphorylation at serine/threonine 
residues (The p is high-lighted by orange color), tyrosine residues (The p is high-lighted by yellow color) and the mixed types (The p is not high-lighted).  
(C and D) are summarized from current review articles10,18 with a few modifications derived from our findings. In Figures 7C and D , the example of the 
most relevant target genes of STAT3 and/or ERα are from our findings in Tables S1.4, S2.1, S2.3, S2.4 and S2.6.
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MAP2K4 and ERBB2) in the ERBB2 sig-
nal transduction pathway mediated by 
STAT3 are conserved between ER(+) and 
ER(-) BCs (Figs. 7A and B). With differ-
ent TF partners of STAT3 among differ-
ent subtypes, it may condition different 
mechanisms for predicting prognostic 
features of STAT3 in different subtypes. 
For instance, we found the expression 
levels of GRB2, NCK2, STAT3, PRKCB1, 
MAP2K4, ABL1, IGF2R, LYN, and 
VEGFA in the STAT3 network to be pre-
dictors for poor clinical outcome in the 
90 A cohort. Alternately, the expression 
levels of NANOG, OIP5, LDHB, NRG1 
and POU5F1 in the STAT3 network are 
predicted to be good prognostic factors 
in the 90 A cohort (Fig. 3F and Table 2). 
Moreover, there are 6 poor and 5  good 
prognostic factors in the STAT3 network 
of 72 A cohort (Fig. 3F and Table 3).

ii.	A new hypothesis based on network 
prediction.
Gene expression of ERBB2  signal transduction 
pathway components may, in part, involve regula-
tion by STAT3. Although STAT3 is predominantly 
elevated in breast tumors with HER(-), we found 
that the ERBB2  signal transduction pathway is 
activated by STAT3 in HER(-) tumors (Fig. 7). For 
those tumors expressing a low amount of ERBB2 
(HER-2/neu), STAT3 enhances the growth fac-
tor stimulated basal activity of ERBB2  signaling 
via regulating expression of its essential compo-
nents (i.e. 60 probes in Fig.  7B). We reason that 
the ERBB2  signal transduction pathway shares 
many enzymes and adaptors with other oncogenic 
signal transduction pathways, including the ERα-
mediated signal transduction pathway that promotes 
a malignant phenotype.18 As a result, it is proposed 
that crosstalk between ERα and STAT3 enhances 
a mechanism of tamoxifen (TAM) resistance. 
This possible regulatory mechanism may include 
two parts (Fig.  7D). Part 1 is defined by aberrant 
gene expression regulation by STAT3 via a loop 
connecting non-genomic ERα activities, genomic 
ERα activities, and genomic STAT3 activities after 
exposure to estrogen: (A) pre-existing protein cas-
cade along with the extranuclear ERα to activate 

STAT3 via phosphorylation; (B) aberrant transcrip-
tional activities of STAT3 (either following the 
non-classical ERα pathway or STAT3 alone) up-
regulate a subset of key components in the PI3K, 
MAPK and c-SRC signaling pathways; (C) aber-
rant protein cascade enhances (A) and (B). Part 2 is 
defined by the effect of aberrant regulation of ERα 
and/or cofactors via phosphorylation after exposure 
to estrogen. Taken together, STAT3 is predicted to 
regulate the gene expression of key components in 
the pre-existing protein cascade. It may indirectly 
induce conformational changes of cofactors and/or 
ERα via phosphorylation that, in turn, cause tumor 
resistance to TAM treatment.

b.	 Roles of STAT3 in ER(+) breast tumors in 
response to cancer therapies.
Figure  7  shows the hypothesized mechanism of the 
pathological roles of ERα extranuclear signaling, 
growth factor receptor signaling, cytokine receptor sig-
naling and non-receptor tyrosine kinases in activation 
of STAT3 transcriptional activities in HER(-) breast 
cancer subtypes.

A possible effect of elevated STAT3 on responses to 
chemotherapy that may condition TAM resistance are 
provided in Figure 7. Elevated STAT3 expression may 
induce anti-estrogen resistance through up-regulating 
key components (e.g. adaptors and enzymes) in the 
MAPK/ERK, PI3K/Akt, PDGFR and ERBB2  signal-
ing pathways.

Figure  7  includes the recent research findings by 
others that predict the constitutive JAK/STAT pathway 
in all breast cancer subtypes being sensitive to chemo 
drugs—5FU, Gentamine16 and DHE.17 STAT3 sup-
presses the expression of NANOG in the cohorts (90 A 
and 72 A; Fig. 3D). Only a subset of ER(+) BCs show 
relatively high NANOG and STAT3 levels (Fig. 4C) that 
may determine drug resistance due to up-regulation 
on MDR (multiple drug resistance) gene expression.31 
Another chemotherapeutic drug resistance marker up-
regulated by the STAT3 network is RAF1 (Fig. 7B and 
Table S1.4  in Suppl. 1 of Additional file 1). In breast 
cancer cells, activated Raf confers resistance to the che-
motherapeutic drugs doxorubicin and paclitaxel. Raf 
induces the expression of the multidrug resistance pro-
tein 1(Mdr-1) and the Bcl-2 anti-apoptotic protein.32

More network studies will help in mapping the rel-
evant effects of STAT3 as a poor prognostic factor in 
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ER(+) BCs. For instance, cyclins including CCND1 are 
STAT3 target genes that have been identified in vitro18 
and are indentified herein (Fig. S5.1 in Suppl. 5 of Addi-
tional file 1). Ishii Y et al33 suggested a mechanism that 
STAT3 can stimulate tumor growth in CCND1 overex-
pressing ER(+) breast cancer cells in response to TAM 
treatment. This supports our data that TAM resistance 
occurs in a luminal A subtype relevant manner whereby 
a subset expresses high levels of CCND1 and STAT3.

D.	STAT3 transcriptional regulatory network pre-
dicts combinatorial interactions between STAT3 
and other transcription partner(s) in a subtype 
enriched manner based upon Western blot anal-
ysis and previous literature.
The STAT3 transcriptional regulatory network offers the 
opportunity for dissecting the potential mechanism(s) of 
STAT3 as a poor prognostic predictor. The entire array of 
STAT3 transcriptional activity includes both univariate 
(STAT3 alone) and multivariate (STAT3 and other TF(s)) 
regulatory networks. We proposed that the specific prog-
nostic features of STAT3 in a subtype relevant manner may 
be, in part, due to multiple routes that STAT3 interacts with 
other TF(s) to differentially regulate target gene expres-
sions among subtypes.

In this study, we identify the potential interactions 
(ERα, STAT3), (MYC, STAT3) and (ERα, MYC, STAT3) 
in relation to poor prognostic value of STAT3 in an ER(+) 
breast cancer model system A relatively small gene pool 
in the STAT3 network is regulated by ERα in ER(+) 
BCs (Tables S2.3 and S2.4  in Suppl. 2 of Additional file 
1) comparing the total probe numbers in the STAT3 net-
work that interact with MYC (13,712 probes) and ESR1 
(12,146 probes; Tables S2.5 and S2.6 in Suppl. 2 of Addi-
tional file 1). This suggests that STAT3 is a master TF in 
addition to ESR1 and MYC in ER(+) breast cancers. The 
multivariate space of the STAT3 network predicts that both 
ERαnSTAT3 and MYCnSTAT3 promoter pathways may 
cooperatively suppress the METAP2 mediated prolifera-
tive activities in luminal A subtype via down-regulating 
the METAP2 expression. For example, STAT3 is predicted 
as the major transcription regulator of METAP2 via active 
involvement in these promoter use pathways that are func-
tionally significant in the majority of luminal A subtypes. 
Conversely, ERα is predicted to principally promote pro-
liferative activities by up-regulating METAP2 expres-
sion in the luminal B subtype where STAT3 and MYC are 
expressed at low levels.

Western blot analysis of METAP2 (p67) in a luminal B 
breast cancer cell model-MCF-7 suggests it is an estrogen 
responsive gene. This is supported by the demonstration of 
differential METAP2 (p67) expression in estrogen and/or 
antiestrogen treated MCF-7 (Fig.  5A). Estrogen induces 
and antiestrogen suppresses METAP2 (p67) expression. 
Although no published promoter sequence for human 
METAP2 is available, we analyzed the rat34 and mouse35 
DNA sequences and determined that they contain mul-
tiple half ERE sites indicating they are ERα target genes 
(Figs.  5C and D). Another line of indirect evidence for 
human METAP2 via CART model 2 prediction, suggests 
it to be an ERα target gene following an indirect tethering 
mechanism.36 These data support our network prediction 
that METAP2 is a component of the multivariate portion 
of the STAT3 transcriptional regulatory network (ESR1n-
STAT3) in ER(+) breast cancers. The regulatory mode of 
both ESR1 and STAT3 on METAP2 appears to be, in part, 
due to the expression ratio of ESR1 and STAT3. Further 
evaluation of the detailed mechanisms involved between 
ERα and STAT3 in regulating METAP2 will be needed to 
identify the cause(s) determining tumor development in a 
luminal A subtype-enriched manner.

II.	Validation of the major functional STAT3 subnet-
works in groups IE, IIE, luminal A and luminal B.
A.	Identification of functional components of 

STAT3 network as potential prognostic markers 
and therapeutic targets in ER(+) breast cancer.
We further evaluated 5 functional STAT3 sub-
networks and a FOXC1 subnetwork for their 
prognostic values. Table  2  shows the results 
from survival analyses of 4 functional STAT3 
subnetworks (Figs. 3B–D), the FOXC1 subnet-
work (Fig. 3E) and the genes in the ERBB2 sig-
nal transduction pathway (Fig.  7B). These 
pathways are potentially regulated by the STAT3 
network in ER(+) IDCs. We found 9 poor prog-
nostic factors and 5 good prognostic factors of 
the STAT3 network in the 90 A cohort (Fig. 3F 
and Table  2). Results for the 72 A cohort are 
listed in Table 3 and Figure 3F.

The prognostic feature for STAT3 in ER(+) 
breast cancer was demonstrated by the compo-
nents of functional STAT3 subnetworks that are 
also predictor(s) for clinical outcomes (Fig. 3F 
and Suppl. 6  in Additional file 1). Some were 
already validated by the literature, including 
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BIRC5,37 IGF2R,38 VEGF,39 LYN,40 OCT4 
(POU5F1),41 NANOG,41 GATA342 and NRG1.43

Several drug targets, including VEGFA, 
IGF2R, ABL1, LYN and STAT3, are in the 
STAT3 network. Blocking their gene activities 
may improve the clinical outcome for a subset 
of ER(+)HER(-) BCs containing elevated 
STAT3. METAP2 and MELK may be drug tar-
gets in a subset of ER(+) HER(-) BCs with low 
STAT3 expression levels. Importantly, ERBB2 
is a STAT3 target gene.44 It is down-regulated by 
STAT3 in HER(-) BCs based upon data using 
the network approach. However, STAT3 mRNA 
is moderately expressed in some of HER(+) 
BCs, which have moderate ERBB2 mRNA lev-
els regardless of ERBB2 amplification based 
upon chromogenic in situ hybridization (CISH). 

Therefore, STAT3 and the oncogenic target 
genes of the STAT3 network may be candidate 
drug targets for treating a subset of HER(+) 
patients.

III.	 Dynamic changes of network activities medi-
ated by STAT3 or by STAT3 and MYC in 90 A 
cohort predominantly show in luminal A 
subtype.
Figures 3, 4, 7 and 9 identify the STAT3 subnet-
works involved in the ERBB2 signal transduction 
pathway, proliferation, sustained angiogenesis, 
Warburg effect, ES-like phenotype, and progno-
sis in ER(+) breast cancers. Gene expression pat-
terns of 90 A and 72 A cohorts were compared 
in Figures 3, 4 and 9 and comparisons between 
ER(-) BCs (77 A cohort) and ER(+) BCs (72 A 
cohort) are in Figure 7.
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Figure 8. Quality control evaluation on 151 gene expression dataset.
The evaluation was made by the scatter plot analysis using data from hybridization (log2 ratios) and qPCR (-∆Cps). The Pearson’s correlation coefficient 
was used to find the linear relationships between mRNA expression levels derived from both log2 ratios and -∆Cps for the gene of interest. A good correla-
tion is indicated between array gene expression (log2 ratio) and their corresponding qPCR data (-DCp) for ESR1(5561), PGR(11809) and ERBB2(764), 
respectively. The Agilent feature numbers are listed within the parenthesis next to the corresponding gene symbols. The 60 mer for PGR on array is for 
hybridizing with transcripts of PGR. The primer used for qPCR analysis only amplifies transcript variant 1 of PGR.
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Heatmaps (Fig. 6A) show the dynamic tran-
scriptional activities of MYC and STAT3 condi-
tioning sustained angiogenesis in a luminal A 
relevant manner. Luminal A subtype locates in 
a large portion of group IE and a small portion 
of group IIE. 16 sonographic imaging results for 
groups IE and IIE are presented. The sonograms 
in Figures  6B and C with the corresponding 
heatmaps show partial validation in vivo for a 
subnetwork of sustained angiogenesis regulated 
by STAT3. We found that 56.25% (9/16) of sono-
grams match with the heatmap display. Results 
in heatmaps that do not match (IDs 5383, 1667, 
5315, 5389, 1687, 1643 and 5377) indicate the 
presence of false negatives (see potential causes 
described in I_B_a_iii of the “Results and Dis-
cussion” section).

Heatmaps in Figure  4 of network activities 
following gene expression show small variations 
in cell proliferation (Fig. 4A), and the Warburg 
effect (Fig. 4B) among subtypes but are enriched 
in luminal A. The FOXC1 subnetwork (Fig. 4D) 
shows increased transcriptional dynamics 
between non-tumor and tumor components as 
opposed to among tumor subtypes. However, the 
heatmaps for the ES-like phenotype (Fig.  4C) 
in the ER(+) breast cancer population scattered 
with little dynamic change in gene expression 
patterns among subtypes. Heatmaps in Figure 4E 
show that approximately one third of the 90 A 
population (designated as subcohorts 1 and 3) 
have a distinct pattern of dynamic changes in a 
prognostic signature. To elucidate activities of 
this STAT3 subnetwork in relation to prognostic 
features of STAT3, we divided ER(+)IDCs (90 A 
cohort) into three subgroups based on the dif-
ferential expression patterns of genes within the 
prognostic signature predicted to be controlled 
by STAT3 (Fig. 4E).

Here, we suggest this 15 gene signature to be 
different from other published signatures. First, 
each functional transcription factor (e.g. STAT3) 
has its own transcriptional mechanisms predicted 
by network analysis. The target gene activities 
of STAT3 may also be regulated by other regu-
lators. For instance, both MYC and STAT3 share 
target genes within the MYC and STAT3 tran-
scriptional regulatory network. Network analysis 

allows dissection of STAT3 mediated transcrip-
tional activities, although we only analyzed half 
a genome due to the microarray limitations. The 
most relevant STAT3 transcriptional regulatory 
network is predicted in a breast cancer model 
system that has a relatively small N number for 
8 molecular subtypes. Second, the network anal-
ysis is a qualitative method. We observed a vari-
able expression pattern of STAT3 target genes. 
As a result, the heatmaps (Fig. 9) show the tran-
scriptional dynamics for the prognostic signature 
ruled by STAT3 only between subcohorts 1 and 3. 
Kaplan-Meier survival analysis predicts a poor 
prognostic feature in subcohort 1 (P = 0.001) as 
compared to subcohort 3. Table S6.1 shows only 
univariate COXPH analysis of subcohort 1/non 1 
to be significant but not those of subcohort 1/3, 
subcohort 2/3, subcohort 1/2, subcohort 2/non 
2, subcohort 3/non 3 and nine major traditional 
prognostic factors. Additionally, no multivari-
ate COXPH analysis of tested prognostic factors 
shows significance.

There are 15 prognosis predictors identified within the STAT3 
subnetwork of the 90 A cohort. Dynamic changing in tran-
scriptional activities of STAT3 for the 15 probes between 
two tumor sample populations (subcohorts 1 and 3) suggest 
that STAT3 may differentially regulate the consensus gene 
cluster that promotes tumor activities, drug resistance, and 
conditions poor prognosis in subcohort 1 (Fig.  9). Impor-
tantly, subcohorts 1 and 3 do not show a dramatic change in 
the expression pattern of the most relevant STAT3 prognos-
tic subnetwork but are a robust poor prognostic signature. 
This signature has altered expression patterns of POU5F1, 
OIP5 and NRG1 compared to the established prognostic sub-
network (Fig. 3F). Such deviation can be due to the differ-
ence in each gene expression data distribution within a given 
cohort. The results from the COXPH model indicate that the 
15 gene signature is not prognostic relevant when comparison 
is made between 2 subsets of ER(+) IDCs that show differ-
ential gene expression pattern of this gene signature (i.e. sub-
cohort 1/3). However, there is a significant difference relative 
to early tumor development with the 15 gene signature ver-
sus other expression patterns (i.e. subcohort 1/non 1) in the 
90 A cohort. These results suggest that this signature alone 
may have importance to identify the subset of ER(+) breast 
tumors that have a poor prognosis. However, based upon the 
multivariate COXPH model in the 90 A cohort, neither the 
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tested prognostic factors nor the 15 gene signature in the 90 A 
cohort are independent prognostic factors.

The heterogeneity of breast cancers and the unique regula-
tory mechanisms of STAT3 can be dissected, in part, by network 

analysis. Kaplan-Meier and COXPH analyses of the 15 gene 
signature suggest that it may be an unfavorable prognostic 
factor. However, further investigations of a large population is 
necessary to establish prognostic value of this gene signature.

Figure 9. STAT3 regulated unfavorable prognosis signature in a subset of ER(+) IDCs (subcohort 1).
Upper panel shows the heatmaps of a prognosis relevant gene set in 3 sample groups—NT, subcohorts 1 and 3 (A).
Subcohort 1 has the STAT3 subnetwork (total 17 probes) that is predicted to be activated due to high levels of STAT3. Subcohort 3 has the STAT3 sub-
network (total 17 probes) that is predicted to be suppressed due to low levels of STAT3. NT stands for non-tumor components. Light red color bar stands 
for subcohort 1 (see Fig. 7E). Light green color bar stands for subcohort 3 (see Fig. 7E). The functional annotation of 17 probes (Y axis) and clinical array 
IDs (X axis) are displayed along with the heatmaps generated by unsupervised clustering (A).
Lower panel shows the significant difference in the clinical outcome of subcohort 1 as compared to that of subcohort 3.
Kaplan-Meier curves estimate the association between 2 subcohorts and their overall survival probabilities (see method). To correlate clinical outcomes, 
we calculated the probability of “cancer specific overall survival” in 2 subcohorts (1 and 3) in the ER(+) infiltrating ductal carcinomas. Overall survival was 
defined as the time interval between the first date of breast tumor surgery and the last follow-up date or date of death. The numerical number within the 
parentheses next to each subcohort means the total patient number in each subcohort.
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Conclusions
The prognostic value of STAT3 in an ER(+) breast 
cancer cohort model (90  A cohort) is unfavorable. 
This is indicated by a prognosis relevant gene signa-
ture within the STAT3 network, which is also relevant 
to the development of malignant phenotypes and bio-
chemical responses in an ER(+) breast cancer popula-
tion enriched in luminal A subtype.

In this study, we have successfully dissected the 
functional transcriptome, which includes statistically 
identified STAT3 target genes, to establish poor prog-
nostic features of STAT3 in a subtype enriched breast 
cancer population. We conclude the most relevant 
mechanisms contributing to the prognosis and/or sub-
type relevant features of STAT3 in ER(+) breast cancers 
are associated with multiple activities mainly crosstalk 
between and among (STAT3, ERα), (STAT3, MYC), 
(STAT3, MYC, ERα) and the action of STAT3.

2 novel findings from network analysis establish the 
mechanisms that support an interpretation for a STAT3 
role in treatment response and in ER(+) breast cancer 
development. First, tamoxifen resistance is enhanced 
by crosstalk between ERα and STAT3. ERα plays a 
major role in activating STAT3 via the non-genomic 
pathway. Activated STAT3 is predicted to prefer-
entially up-regulate genes coding for enzymes and 
adaptors shared by many key oncogenic signal trans-
duction pathways including MAPK/ERK signaling. 
As a result, this may enhance ER(+) tumor resistance 
to 4-hydroxyl tamoxifen treatment predominantly in 
the luminal A subtype. Second, the competitive regula-
tory mode between ERα and STAT3 that differentially 
regulates shared target genes is subtype enriched. For 
instance, METAP2 is up-regulated in luminal B and 
down-regulated in luminal A via the subtype relevant 
promoter pathways (Fig.  5C). Importantly, we have 
validated this transcriptional regulatory mechanism 
via the combinatorial interaction between ERα and 
STAT3 in regulating METAP2 (p67) protein expres-
sion in a luminal B breast cancer cell model.

Another major control mechanism is triggered by 
crosstalk between STAT3 and MYC. We demonstrate 
that the overlapping network of MYC and STAT3, 
identified in ER(+) breast cancers, involves 4 malig-
nant phenotypes: proliferation, sustained angiogen-
esis, ES-like phenotype and the Warburg effect. In 
addition, we identify network genes that overlap with 

genes contributing to the development of 10 clinical 
parameters and 12 cancer related signal transduction 
pathways. However, these gene expression patterns 
are less aggressive than those in ER(-) BCs. This 
may, in part, be due to different pre-programmed TF 
partners of STAT3 that differentially determine tumor 
cell fate between ER(+) and ER(-) subtypes.

Additionally, 3 important findings identify STAT3 
as a central regulator in ER(+) BCs, including its 
action contributing to the prognosis and/or subtype 
relevant features of STAT3 in ER(+) breast cancers. 
They are (1) the major clinically relevant STAT3 
partner is MYC and more than 100 TF partners are 
the components of STAT3 network; (2) high expres-
sion of NANOG or RAF1 in the STAT3 network may 
cause chemodrug resistance and elevated levels of 
CCND1 by STAT3 regulation may cause TAM resis-
tance, which have been supported by numerous in 
vitro studies;34–36 (3) the prognostic relevant gene set, 
which is also the target gene set of STAT3, is poor 
clinical outcome predictor in 2 ER(+) breast cancer 
subcohorts. It contains relatively high levels of GRB2, 
LYN, IGF2R, VEGFA, STAT3, NCK2, OIP5 and ABL1 
and low levels of MAP2K4, PRKCB, POU5F1 and 
NRG1, indicating poor prognosis. Low levels of 
LDHB and NANOG predict good prognosis. Several 
potential therapeutic targets have been identified (e.g. 
VEGFA, STAT3, ABL1, IGF2R and LYN) within this 
prognostic relevant gene set.

List of Abbreviations
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oncogene homolog; NRG1-neuregulin 1; OGDH, oxo-
glutarate (alpha-ketoglutarate) dehydrogenase (lipo-
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protein (Cdc42/Rac)-activated kinase 6; PC, pyruvate 
carboxylase; PDGFRB, platelet-derived growth fac-
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homeobox 1; PR(−), progesterone receptor negative; 
PRKCB(PRKCB1), protein kinase C, beta (protein 
kinase C, beta 1 polypeptide); SNAI1—snail homolog 
1 (Drosophila); SNAI2, snail homolog 2 (Drosophila); 
STAT5a, signal transducer and activator of transcrip-
tion 5 A; STAT5b, signal transducer and activator of 
transcription 5B; TAM, Tamoxifen; TWIST1, twist 
homolog 1 (Drosophila); VEGFA, vascular endothe-
lial growth factor A; ZFHX3(ATBF1), the official 
name is zinc finger homeobox 3 (other designation 
was AT motif binding factor 1).
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