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Abstract

Disruptions in functional connectivity and dysfunctional brain networks are considered to be a neurological hallmark of
neurodevelopmental disorders. Despite the vast literature on functional brain connectivity in typical brain development,
surprisingly few attempts have been made to characterize brain network integrity in neurodevelopmental disorders. Here
we used resting-state EEG to characterize functional brain connectivity and brain network organization in eight males with
fragile X syndrome (FXS) and 12 healthy male controls. Functional connectivity was calculated based on the phase lag index
(PLI), a non-linear synchronization index that is less sensitive to the effects of volume conduction. Brain network
organization was assessed with graph theoretical analysis. A decrease in global functional connectivity was observed in FXS
males for upper alpha and beta frequency bands. For theta oscillations, we found increased connectivity in long-range
(fronto-posterior) and short-range (frontal-frontal and posterior-posterior) clusters. Graph theoretical analysis yielded
evidence of increased path length in the theta band, suggesting that information transfer between brain regions is
particularly impaired for theta oscillations in FXS. These findings are discussed in terms of aberrant maturation of neuronal
oscillatory dynamics, resulting in an imbalance in excitatory and inhibitory neuronal circuit activity.
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Introduction

Fragile X syndrome (FXS) is the most common inherited

neurodevelopmental disorder caused by a single gene defect, and

provides a unique opportunity to study the neurobiological

mechanisms of brain development and cognitive function. Despite

the vast literature on functional brain connectivity in typical brain

development, surprisingly few attempts have been made to

characterize brain network integrity in neurodevelopmental

disorders. In this study we employed a systems-neuroscience

approach to characterize functional brain connectivity and brain

network organization in FXS males based on resting-state EEG

time-series.

The neurobiological hallmark of FXS is the silencing of a single

gene (FMR1) located on the X-chromosome [1,2], resulting in

reduced or absent levels of its gene product – the fragile X mental

retardation protein (FMRP) [3]. Both humans and rodents with

the FXS full mutation consistently display an excess of long and

thin dendritic spines, resembling immature cortical networks [4–

7]. This observation is suggestive of abnormal dendritic pruning

processes, which compromise normal brain development via

aberrant synaptic plasticity [8,9]. Neurobiological studies have

revealed that absent or reduced FMRP expression can be linked to

imbalanced cortical excitatory (glutamatergic) and inhibitory

(GABAergic) circuit activity in fmr1 knockout mice [10,11].

Specifically, excess signaling of glutamate receptors contributes

to spontaneously occurring neuronal firing states (UP states), as

well as exaggerated long-term depression [12,13]. In typical

development, long-term depression decreases synaptic strength

and long-term potentiation increases synaptic strength. Both

processes work in concert in response to neural signal transmission

mechanisms for regulating synaptic plasticity – a key biological

mechanism during brain development [14]. Disturbed glutama-

tergic and GABAergic activity is argued to disrupt these

neurobiological processes, resulting in cortical hyperexcitability

FXS [10,15].

To date, it remains unclear how these neurobiological

alterations change the functional connectivity between local and

distant brain regions as well as the overall organization of large-

scale brain networks. Such information is paramount to better

understand how the aforementioned neurobiological changes

affect neurocognitive processes and the attentional and behavioral

abnormalities frequently reported in FXS [16–18]. Given the

apparent changes in neuronal excitation and inhibition [10,19],

and the notion that glutamatergic and GABAergic circuit activity

serves a critical role in the gating of neuronal oscillations and

synchrony [20], investigating neuronal oscillatory activity and
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functional connectivity could shed light on the integrity of local

and global neuronal communication in the FXS brain.

In the current study, we examined the integrity of functional

brain connectivity in various spectral bands of the electroenceph-

alogram (EEG). In addition, we employed graph theoretical

network analyses, which allows for a systematic investigation of the

network architecture governing neuronal oscillations. Using graph

theory, the neural architecture of the brain can be parceled into

networks of nodes and links. Nodes are generally referred to as

processing units, whereas links represent the (anatomical or

functional) connection between the nodes. The organization of

nodes and links in a graph is purported to reflect the integrity and

efficiency of brain networks [21,22]. The clustering coefficient (a

measure of local connectedness of a graph) and path length (for

unweighted networks: the number of edges in the shortest path

between two vertices in a graph) are two indices that reflect the

complexity of the graph or brain network [21], and can be used to

classify brain network topology. Human brain networks have been

shown to resemble the ‘small-world’ properties - characterized by

high clustering and short path length that optimize information

transfer within the brain network [21,22]. It has been shown that

the brain becomes less random and shows increased small-world

characteristics with ongoing development [23,24]. Furthermore, it

has been shown that shorter normalized path length is associated

with higher levels of full-scale IQ [25,26], suggesting that path

length is crucial for information processing efficiency within the

network.

Based on evidence of immature neuronal networks in both the

fmr1 knock-out mice and FXS human brain [5], and aberrant

theta and alpha oscillatory power during resting-state EEG [27],

we tested the following hypotheses in the current study: (1)

functional connectivity was expected to be increased for theta

oscillations, whereas a decrease in alpha oscillatory functional

connectivity was hypothesized; (2) we anticipated to find evidence

of altered organization of functional brain networks in FXS

individuals, which would be more reflective of immature random

organization rather than the more optimal small-world, organized

topologies. In line with the more random network topologies

found in early childhood [24], the anticipated pattern of findings

would be a manifestation of the alleged immature state of cortical

networks in FXS.

Method

Participants
Eight male participants diagnosed with the FXS full mutation

(mean age = 26.25, SD = 8.00) and 12 healthy age-matched male

controls (mean age = 26.75, SD = 4.05) participated in this study.

Prior DNA testing was performed by clinical geneticists and

confirmed the diagnosis of the FXS full mutation (i.e., CGG repeat

size .200) in the FXS participants. The number of CGG repeats

was not available for all FXS participants, but the full mutation

was confirmed by prior diagnostic testing. None of the FXS

participants had a prior history of epileptic seizures, or any other

neurological complications. For both groups, non-verbal intelli-

gence was assessed using the Raven Standard Progressive Matrices

[28]. Raw scores were significantly lower in FXS males

(mean = 21.00, SD = 8.60) than in control participants

(mean = 56.25, SD = 2.38).

Average Raven-IQ of the control participants was 121.50

(SD = 25.79). IQ of the FXS participants was equivalent to an

average mental age of 7.73 years (SD = 1.59). For the FXS

individuals, non-verbal and verbal mental age has been previously

assessed [17] using more suitable intelligence tests for individuals

with developmental disorders. Performance on the Snijders and

Oomen Non-Verbal Intelligence Test [29] corresponded to an

average non-verbal mental age of 5.29 years (SD = 1.22), whereas

performance on the Dutch version of the Peabody Picture

Vocabulary Test third Edition [30] corresponded to an average

verbal mental age of 9.65 years (SD = 3.20). FXS participants were

recruited with the help of the Dutch Fragile X Parent Network.

Control participants were recruited from or within the proximity

of the university, and received course-credit or a monetary

compensation for their participation. None of the participants

were on medication during the experiment. All participants were

reported to have intact hearing and had normal or corrected-to-

normal vision.

Ethics statement
The protocol for this study was reviewed and approved by the

ethical review committee of the department of Psychology of the

University of Amsterdam. Signed informed consent was obtained

prior to the experiment from control participants. For the FXS

participants, written informed consent was obtained from their

parents or primary caregivers.

EEG recordings and preprocessing
Closed-eye resting-state EEG was collected prior to two

attentional paradigms [31,32], and the procedure for obtaining

resting-state epochs is similar to our previous EEG power study

[27]. EEG recordings were collected at home locations for all FXS

participants. For half of the control participants, EEG recordings

were collected at home locations, for the other half at the

University lab. Participants were first instructed to refrain from

moving and asked to close their eyes for a 5-minute period. EEG

was recorded using an EasyCap electrode cap with 26 Ag/AgCl

sintered ring electrodes using the 10/20-system placement.

Recording electrode positions included: Fp1, Fp2, F7, F3, Fz,

F4, F8, FC1, FCz, FC2, FC6, T7, C3, Cz, C4, T8, CP1, CP2, P7,

P3, Pz, P4, P8, O1, Oz, and O2. Electrodes placed at the left and

right mastoids were used for linked reference. FT9 served as

ground. Horizontal eye movements (HEOG) were recorded using

bipolar electrodes placed at the outer canthi of the eyes. Electrodes

for recording vertical eye movements (VEOG) were placed just

above and under the left eye. Electrode impedances were kept

below 10 kV. Signals were recorded with a BrainAmp DC

amplifier (Brain Products) using Brain Vision Recorder software,

at a sampling rate of 500 Hz and an online filter between 0.3 and

70 Hz.

Closed-eyes continuous resting-state EEG recordings were

offline filtered at 0.5–50 Hz using Brain Vision Analyzer software

(Version 1.05, � Brain Products) and visually inspected for

artifacts (e.g., eye blinks, eyes and body movement, muscle

contractions, low-quality channels). Resting state EEG was

thereafter converted to six artifact free epochs containing 4096

time samples and exported to ASCII files. Subsequent analyses

were performed separately for the delta (0.5–4 Hz), theta (4–

8 Hz), lower alpha (8–10 Hz), upper alpha (10–13 Hz), beta (13–

30 Hz), and gamma (30–45 Hz) bands, with BrainWave software

v0.9.76 (developed by C.S.; freely available at http://home.kpn.

nl/stam7883/brainwave.html). Figure 1 depicts an overview of the

steps employed in the normalized graph analysis of the EEG time

series.

Functional connectivity: the phase lag index
Functional connectivity between all 26-electrode pairs was

calculated using the phase lag index (PLI), a measure of the

asymmetry of the distribution of phase differences between EEG
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signals. A detailed method for calculating the PLI is described in

previous work [33]. In order to compute phase synchronization,

the instantaneous phase of two signals needs to be determined.

This can be accomplished by using the analytical signal based on

the Hilbert transformation [33]. Subsequently, the PLI is obtained

from time series of phase differences Dw(tk),k~1:::N by means of:

PLI~ Ssign Dw tkð Þ½ �Tj j ð1Þ

in which Dw represents the phase difference and S:::T denotes the

average over time t. The PLI performs at least as well as the

synchronization likelihood [34] or phase coherence [33] in

detecting true changes in synchronization but is less affected by

the influence of common sources and/or active reference

electrodes [35]. This is due to the fact that the zero-lag

synchronization is removed from the analyses, and that the PLI

only quantifies the relative phase distribution’s asymmetry, which

refers to the likelihood that the phase difference Dw is in the

interval {pvDwv0 is different from the likelihood that it is in

the interval 0vDwvp. PLI values range between 0 and 1. A PLI

value of zero indicates either no coupling or coupling with a phase

difference centered around 0 mod pð Þ. A PLI value of 1 indicates

perfect phase locking at a value of Dw different from 0 mod pð Þ.
The more consistent this nonzero phase locking is, the larger is the

PLI. It should be noted that the PLI does not provide an index of

causal interaction between synchronized electrodes. To test the

robustness of our PLI findings, we also calculated the functional

connectivity based on the directed phase lag index (dPLI) [36]. In

contrast to the PLI, the dPLI takes into account the asymmetric

phase relations. dPLI values can range from 0 to 1. Values 0.5

reflect phase lagging, whereas values of .0.5 reflect phase leading.

Similar results were obtained using the dPLI. Only the PLI results

will be reported in this study, since the PLI was used as weight

definition in the graph analyses.

Figure 1. An overview of the method used to calculate weighted graphs. (A) EEG time-series from the 26 scalp electrodes were separately
filtered for the delta, theta, alpha low, alpha high, beta, and gamma frequency bands. Higher alpha (10–13 Hz) is shown here as largest group
differences were found for this frequency band. (B) Functional connectivity between all 26626 electrode pairs was calculated based on the phase lag
index, yielding connectivity values between 0 and 1 (higher values reflect more synchronization between electrodes). (C) When using graph
theoretical analysis on EEG time series, electrodes represent ‘‘nodes’’ and the distance between these nodes represent the ‘‘edges’’ in the graph. PLI
scores were used to calculate the path length (distance between the nodes) and the clustering coefficients (the degree in which nodes cluster
together). In addition, a randomization procedure is employed to obtain measures independent of network size. From each original graph, random
networks were derived by randomly shuffling the edge weights. Mean values of weighted graphs are then determined by dividing the original graph
measures by these ‘surrogate’ measures.
doi:10.1371/journal.pone.0088451.g001
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Graph Analysis
By using EEG time series for graph analyses, the electrodes

represent nodes or vertices in the graph and the strength of the

synchronization between EEG time series recorded at these

electrodes can be taken as a measure of association between the

vertices. This association between vertices can be assigned a

weight 0wij
0 that reflects the either strength of the relation between

vertices i andj (when computing the weighted clustering coeffi-

cient) or the inverse of the strength (when computing the weighted

path length). The 26 EEG electrodes represent the vertices in the

graph and the matrix of PLI values between all pairs of electrodes

is used to specify the association between vertex i andj. This

produces weighted graphs for which a detailed description has

been reported in previous work [37,38]. Two fundamental aspects

in a graph are the clustering coefficient and the path length [39].

For a vertex i the clustering coefficient Ci is a measure of local

connectedness of a graph. The clustering coefficient represents the

likelihood that neighbors of vertex i are also connected to each

other. For calculating the weighted clustering coefficient, the

method as described by Stam et al. (2009) was used, which states

that the weights between node i and other nodes j should be

symmetrical wij~wji

� �
and that 0ƒwijƒ1holds [37]. Both

conditions are met when using the PLI as weight definition for

the clustering coefficient (i.e., wij~PLI). The weighted clustering

coefficient of node i is defined as:

Cw
i ~

P
k=i

P
l=i
l=k

wikwilwkl

P
k=i

P
l=i
l=k

wikwil

ð2Þ

Note that in equation (2) terms with i~k, i~l, and k~l are not

included. For isolated vertices (i.e., vertices that do not have any

connections), the clustering coefficient is defined as Ci~0 [37].

The mean weighted clustering coefficient of the total network is

defined as:

Cw
mean~

1

N

XN

i~1

Cw
i ð3Þ

In equation (3), N represents the number of vertices. For a given

node i in the graph, the shortest path algorithm finds the path with

the lowest cost (i.e., the shortest path length) between that node

and every other node. The weighted path length represents the

distance between pairs of vertices of the weighted networks and is

calculated following the approach of Latora and Marchiori (2001)

who define the length of an edge as the inverse of the weight [40].

The average shortest path length for node i to all other nodes is

defined as:

Lw
i ~

1

N{1

XN

i=j

minfLw
ijg ð4Þ

In equation (4), min Lw
ij

n o
is the weighted shortest path length Lij

between node i andj, and N represents the number of vertices. For

the weighted path length based on PLI weights, Lij , the path

between nodes i and j is found by minimizing the sum of the

‘‘distance weights’’ dij

� �
assigned to the edges on their path. Such

distance transformation dij

� �
was defined as the inverse of the PLI

values (i.e. dij~1=wij ). Dijkstra’s algorithm (Dijkstra, 1959) was

used to find the shortest path length with the lowest possible sum

of the distance weights [41,42]. Notice that dij

� �
is a positive value

since 1/PLI is used as the edge weight. Average path length

(average of all Lij ) was based on the arithmetic mean. The mean

weighted shortest path length can be computed by:

Lw
mean~

1

N

XN

i~1

Lw
i ð5Þ

In equation (5), N represents the number of vertices. Note that a

path consists of two (or more) edges which each their own weight.

A path is shorter (i.e., more efficient) when the sum of these

weights dij

� �
is higher.

Normalization
As indicated in prior work [37], individual networks vary in

terms of structure, edge weights, and size, which affect the graph

parameters of interest (i.e., path length, clustering size, and weight

dispersion). In order to obtain graph parameters that are

independent of individual differences in PLI and network size,

the weighted clustering coefficients Cw
mean

� �
and path length

Lw
mean

� �
were compared to its surrogate values derived from

random networks (i.e., Cw
surrogate and Lw

surrogate). In contrast with

small-world networks (which best characterize the topology of

neural networks by high clustering and short average path length),

random networks display low heterogeneity. That is, pairs of

vertices in a random network have an equal probability of being

connected [21]. These random networks are not representative for

models of complex networks, such as the brain, but can be used as

a null-model for comparison [21,43]. Random networks were

derived by randomly shuffling of the original edge weights. This

procedure was performed for 50 randomized networks. Normal-

ized clustering coefficients ĈCw

� �
and path length L̂Lw

� �
were then

defined by dividing the actual values by the randomized values

(i.e., ĈCw~Cw
mean=Cw

surrogate and L̂Lw~Lw
mean=Lw

surrogate). The small-

world characteristics of the network can be represented by the

small-world index S [44], which can be calculated by the

following: S~ Cw
mean=Cw

surrogate

� �
= Lw

mean=Lw
surrogate

� �
. If both

Cw
mean=Cw

surrogateww1 and Lw
surrogate=Lw

surrogate*1, a network can

be defined as a small-world network. Thus, Sw1 defines the

‘‘small-worldness’’ of a network.

Statistical analyses
All statistical analyses were carried out using SPSS version 19.

The PLI and graph measures (clustering coefficient and path

length) were log-transformed (due to a non-normally distribution)

and two-tailed t-tests for independent samples were used to assess

group differences. Alpha was set at 0.05 for significance testing.

Due to the small sample size of the FXS group, we ran power

analyses to determine a sufficient sample size. Results showed that

a minimum of 26 participants per group is required to detect a

significant difference (alpha .05) with an appropriate level of power

(i.e., 0.80).

Results

Functional connectivity as indexed by the phase lag
index

Figure 2 depicts an overview of the functional connectivity

results for the various EEG spectral bands. A first step was to
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analyze group differences in overall PLI values (averaged over all

pairs of EEG channels) per spectral band. In panel A of Figure 2, a

clear difference can be observed in the PLI values between FXS

and controls for the alpha spectral band. That is, functional

connectivity was lower in FXS individuals for alpha oscillations,

but these differences were only significant for the upper alpha

spectral band (10–13 Hz), t(18) = 22.56, p = .020, gp
2 = .27. Since

low spectral power could be an indication of confounded PLI

estimation, we examined the correlations of the PLI per spectral

band with their corresponding spectral power values. We only

observed a negative correlation between PLI and spectral power of

Beta oscillations (13–30 Hz), r = 2.725, p = .04, which could

possibly have underestimated the functional connectivity in the

Beta band in FXS individuals. In addition, functional connectivity

was lower in FXS individuals than in controls for beta oscillations

(13–30 Hz), t(18) = 22.19, p = .042, gp
2 = .21. Higher functional

connectivity was observed for FXS males in the theta band (4–

8 Hz), but this difference was not significant. The overall

functional connectivity results suggest differences in slow (theta)

and faster (alpha and beta) oscillatory networks, which could be

reflective of aberrant maturational processes, since functional

connectivity in the alpha and beta bands are known to reach peak

values at later stages during development [45].

To investigate the integrity of short-range vs. long-range

connections, a frontal and a posterior cluster were created by

pooling of the FP1, PP2, F7, F3, Fz, F4, F8, and P3, Pz, P4, O1,

Oz, O2 electrodes, respectively [27]. Short-range and long-range

connections were analyzed for the theta, upper alpha, and beta

band. Preliminary analyses confirmed the absence of laterality

differences for the PLI values within the clusters. Laterality was

therefore disregarded as a separate factor in the analyses. This

analysis could shed further light on the putative discrepancies in

short- vs. long-range connectivity in neurodevelopmental disorders

[20,46]. Results of this analysis are depicted in Figure 3. Lower

short-range and long-range connectivity was observed for FXS

individuals compared to controls for lower alpha oscillations in the

short-range frontal, t(18) = 23.02, p = .007, gp
2 = .33, and poste-

rior, t(18) = 24.20, p = .001, gp
2 = .50, clusters, as well as the long-

range frontal-posterior cluster, t(18) = 22.98, p = .008, gp
2 = .33

(Figure 3, panel B). Also, posterior short-range connectivity was

lower in FXS individuals than in controls for upper alpha

connectivity in the posterior cluster, t(18) = 2.31, p = .033, gp
2 = .23

(Figure 3, panel C). In contrast, functional connectivity was higher

in FXS individuals than in controls for theta oscillations in the

short-range posterior, t(18) = 2.62, p = .017, gp
2 = .28, and long-

range frontal-posterior cluster, t(18) = 2.62, p = .018, gp
2 = .28

(Figure 3, panel A). This impairment of long-range functional

connectivity in FXS can be particularly ascribed to networks

governing alpha oscillations at rest. In addition, the current data

suggest that short-range frontal and posterior connectivity for

alpha oscillations is also diminished in FXS individuals. However,

increased long-range frontal-posterior and short-range posterior

connectivity was observed in the theta spectral band in FXS,

which may be a manifestation of the alleged immature cortical

network characteristics reported in FXS [27].

Normalized graph parameters: clustering coefficient and
path length

A subsequent step was to characterize the network architecture

that governs neuronal oscillations using graph theory. The

clustering coefficient and path length were the parameters used

to characterize the local segregation (clustering) and the global

integration (path length) within the network [39]. In particular,

clustering is an important parameter in neurobiological systems

because it highlights the functional organization of the brain,

whereas the path length constitutes a valuable index of integration

of networks in the brain [47].

Figures 4 and 5 depict the normalized weighted clustering

coefficients and normalized weighted path length, respectively, for

FXS males and controls. Local segregation as represented by the

clustering coefficient did not differ significantly between the groups

(Figure 4). A decrease of the clustering coefficient is typically

interpreted to reflect local connection loss, whereas an increase

may reflect increased connectivity [48]. For normalized path

length, larger normalized path length was observed for the theta

spectral band in FXS individuals relative to controls, t(18) = 2.70,

p = 0.02, gp
2 = .29. The small-world index S for all spectral bands

(except for gamma) was smaller in FXS than controls but these

differences were not significant (see Table 1). This suggests that

brain networks in FXS still display small-world properties.

However, the differences in path length for the theta band, shows

that global information transfer within the network may be

particularly compromised in neuronal networks that govern theta

oscillatory activity. This finding could mirror the excess of

neuronal connections found in neurobiological studies [9] and

could compromise the efficiency of information transfer within the

network. This notion is in line with our present connectivity results

and previous findings of augmented theta power activity in FXS

individuals [27]. Notably, the current network parameters are not

likely to be confounded by spectral power or PLI, as the

normalized path length and clustering coefficients were compared

to its surrogate networks indices [37].

Discussion

Abnormalities in brain functional connectivity have been

hypothesized to be a neurological hallmark of neurodevelopmental

disorders [49]. Here we investigated brain functional connectivity

and network topology using a resting-state EEG characterization

of ongoing neuronal oscillations in fragile X syndrome males and

age-matched male controls. A key finding of this study is that the

previously reported augmentation in theta power and a reduction

in upper alpha power [27] were matched by higher functional

connectivity in the theta band, and lower functional connectivity

for higher-frequency oscillations (i.e., alpha and beta). These

altered neuronal oscillatory dynamics could be indicative of

aberrant neuronal maturation, an interpretation that is in line with

neurobiological studies showing uncontrolled synaptic overgrowth

or ‘‘soft-wiring’’ of synaptic connections in FXS [50].

In typical brain development this synaptic growth is followed by

stages of pruning and rewiring, enabling the formation of efficient

structural and functional brain networks [51]. Neuronal oscillatory

activity plays a critical role in the activity-dependent organization

of cortical networks, and synchronization of oscillations provides

an index of cortical maturation [45,52]. This can be observed by

the gradual shift from low to high frequency synchronization

during development [53,54]. In particular, delta and theta power

density continues to decrease during adolescence, whereas long-

range alpha synchronization shows a prolonged increase during

development, processes that have been hypothesized to reflect

ongoing synaptic pruning of the cortex [53]. The current

connectivity findings in the alpha band show that both short-

range and long-range synchrony is compromised in FXS, a

putative signature of immature cortical networks.

Our functional connectivity results are furthermore adding an

interesting dimension to the recently observed heightened

synchrony of cortical network activity in fmr1 knockout mice.

Gonçalves and colleagues [55] observed that fmr1 knockout mice

Resting-State EEG Oscillatory Dynamics in Fragile X Syndrome
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displayed abnormally high synchrony in the firing of cortical

neurons. This finding was interpreted to explain the propensity for

seizures in humans with FXS. Our current findings of elevated

theta driven functional connectivity suggest FXS neuronal

hyperactivity may be specific for the theta band.

A second major finding was that graph theoretical analyses of

the EEG resting-state data provided additional evidence of

immature topological organization of neuronal networks govern-

ing theta synchronization. FXS males displayed longer path length

than controls in theta driven oscillatory networks. Generally,

shorter path length is believed to facilitate information transfer

within the network, whereas information transfer is hampered with

longer path length [22]. Although it is difficult to draw conclusions

about the underlying pathophysiological aspects that cause the

longer path length in FXS, it is tempting to speculate that longer

path length reflects excess neuronal connectivity, resulting in

uncoordinated information transfer within brain networks.

Based on the evidence of an imbalance in excitatory (glutamate)

and inhibitory (GABA) neurotransmission in FXS [10,15],

we hypothesize that the current EEG spectral and network

Figure 2. Global functional connectivity as indexed by the Phase Lag Index (PLI). (A) Functional connectivity matrices are presented for
theta, alpha and beta bands, as group differences were largest for these spectral bands. (B) Group differences in PLI for the delta, theta, alpha, beta
and gamma bands. As can be seen from these data, FXS males show significantly less functional connectivity in the upper alpha and beta frequency
bands. Asterisks represent significant differences at p,.05. Error bars represent standard error of the mean.
doi:10.1371/journal.pone.0088451.g002
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abnormalities are reflective of immature cortical networks that

most likely govern theta frequency oscillations, driven by

exaggerated excitatory glutamatergic circuit activity. Interestingly,

there is evidence of a strong relation between the glutamatergic

system and theta oscillatory activity. For example, it has been

shown that glutamatergic concentration in the hippocampal

region is predictive of theta activity in long-range cortical networks

connecting the hippocampal region with frontal cortex [56].

Isolation of glutamatergic pathways in hippocampal areas,

furthermore, eliminates theta oscillatory activity in similar neural

regions [57,58]. The current finding of higher long-range theta

functional connectivity may reflect the excess functioning of the

excitatory glutamatergic system in FXS. Although the underlying

neurobiological mechanisms may differ from those in FXS,

modeling work in Alzheimer’s Disease suggested that neuronal

disinhibition is a likely explanation for an initial increase in spike

Figure 3. Matrices of local and long-range functional connectivity in frontal and parietal/occipital clusters for the theta and upper
alpha power bands. In FXS males, significant increased local functional connectivity was found in the parietal-occipital cluster for theta oscillations,
whereas a decrease in local functional connectivity was found in this cluster for alpha oscillations. A significant increase in long-range (frontal-
parietal/occipital) theta functional connectivity was found in FXS males. Asterisks represent significant differences at p,.05. Error bars represent
standard error of the mean.
doi:10.1371/journal.pone.0088451.g003
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density of main excitatory neurons, and may furthermore account

for higher incidence of epileptic activity in this disease [59].

Although the current sample of FXS participants had no history of

epileptic seizure activity, evidence suggests that at least 10% of

FXS males are at risk of experiencing epileptic seizures,

particularly in early childhood [60]. The susceptibility to epileptic

seizures has been linked to heightened neuronal circuit activity

and decreased synchronous network inhibition [55], most likely

caused by a failure to modulate the exaggerated glutamatergic

response in the absence of FMRP. This may be a primary cause of

increased neuronal circuit activity in FXS [61].

An interesting avenue for future research is to link the functional

connectivity and network indices derived from the EEG resting-

state to the attentional deficits frequently reported in FXS [18,62–

64]. For example, the current findings raise the hypothesis that the

previously reported failure to habituate to sensory stimulation [32]

may be a result of uncoordinated neuronal synchronization

patterns [20]. Imbalanced synchronized slow and fast oscillatory

activity has been found in psychiatric populations with known

attentional and/or behavioral inhibitory deficits similar to those

observed in FXS [19,65,66]. For example, increased power and

synchronization in the theta band is a consistent finding in the

Figure 4. Mean normalized clustering coefficients over all epochs for FXS and controls participants in the delta (0.05–4), theta (4–
8 Hz), lower alpha (8–10 Hz), upper alpha (10–13 Hz), beta (13–30 Hz), and gamma (30–45 Hz) frequency range. Error bars represent
standard error of the mean.
doi:10.1371/journal.pone.0088451.g004

Figure 5. Mean normalized path length over all epochs for FXS and controls participants in the delta (0.05–4 Hz), theta (4–8 Hz),
lower alpha (8–10 Hz), upper alpha (10–13 Hz), beta (13–30 Hz), and gamma (30–45 Hz) frequency range. Path length in the theta
band is significant longer in FXS males as compared to controls. Asterisks represent significant differences at p,.05. Error bars represent standard
error of the mean.
doi:10.1371/journal.pone.0088451.g005
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ADHD literature [65,66]. This EEG marker is present in both

children and adults with ADHD, and is purported to reflect

disturbed central nervous system functioning, causing the well-

known hyperactive behavior [67]. Interestingly, it has been

demonstrated that medical intervention with stimulating drugs

(i.e., dexamphetamine) normalized slow wave activity in ADHD

patients to a certain degree [67]. Based on the high overlap in

pathophysiology and attentional deficits, FXS individuals may well

benefit from therapeutic interventions that alleviate attentional

deficits in ADHD patients. Indeed, a recent therapeutic interven-

tion study using Minocycline, a tetracycline antibiotic that

normalizes synaptic strength in fMR1 knock-out mice [68],

showed improved habituation to auditory stimuli in FXS

individuals after they where treated with Minocycline [69]. Future

studies should investigate the effects of pharmacological interven-

tion on neuronal synchrony and network topology in the FXS

brain.

Notably, the results of the current study are preliminary as they

are limited by the small sample size. Although resting-state EEG

recordings are relatively non-invasive, and easily acquired in

typical populations, they are still difficult to obtain in individuals

with a severe intellectual disability. The challenge will be to obtain

larger sample sizes in future studies in order to replicate the

current findings, but also to examine the implication of these

resting-state EEG abnormalities for attentional, behavioral, and

cognitive function in FXS. Future studies should preferably

employ resting-state EEG assessments with larger electrode

densities. Although a similar, or even more limited, number of

electrodes have been used in previous studies, high-density EEG

recordings would provide a more optimal investigation of short-

range and long-range connectivity patterns, and results from graph

theoretical analyses could yield a more reliable pattern of findings

with regard to neural networks organization (e.g., clustering and

path length).

Irrespective of these limitations, the present investigation may

set the stage for an interesting line of research that could address

the following questions. For example, how does the topology of the

networks influence the dynamical processes that occur within the

networks? How does this change during development, and how do

the dynamical processes that occur within the network change the

architecture of the network [22]. Based upon the current results,

the topological alterations in theta driven functional connectivity

may well hinder the dynamic switching between neural networks

that govern sensory information processing or task-related

operations, as well as neural networks that inhibit such operations.

For example, it has been shown that functional brain connectivity

indexed by BOLD coherence in widely distributed cortical regions

is inversely related with alpha oscillatory power during the resting-

state EEG [70]. Periods of high alpha power were found to disrupt

BOLD coherence patterns, thus, resulting in a decrease in brain

activation. This corroborates earlier findings of an inverse relation

between BOLD activation with EEG oscillatory alpha power [71–

73], and could be taken to suggest periods of neuronal inhibition.

A similar pattern of findings has been found for beta oscillations,

were power is inversely related to BOLD activation [74]. This

could reflect the suppression of activity in sensory-motor cortices

[75]. Albeit speculative, the active inhibition of cortical networks

in FXS could be compromised due to diminished alpha and beta

synchronization, and higher theta synchronization. The alleged

aberrant dynamic switching between slow and fast oscillatory

neural networks may not only be related to the activation of

networks implicated in wakeful attentional processes, but may also

play an important role in neural networks implicated in sleep [76].

Evidence suggests that slow-wave synchronization shows optimal

small-world topologies during the sleep state [77]. Recent evidence

of high neuronal synchrony in fMR1 knockout mice was

particularly evident during non-REM sleep and quiet wakefulness,

and was suggested to have critical consequences for neuronal

computations governing memory consolidations, and may explain

the frequent sleep disturbances in FXS individuals [55,76].

In conclusion, the current study shows that investigating the

resting-state EEG in a well-defined neurodevelopmental disorder

provides important information on the integrity of functional

connectivity in EEG band-specific neuronal oscillations. Detailed

characterization of resting-state network topologies using longitu-

dinal investigations in future investigations, including both humans

and rodents with the FXS mutation, may provide additional

insights into the crucial stages in which FXS etiology compromises

neural network formation. Given the evidence of distinct

developmental changes in power and synchrony of neuronal

oscillations in various spectral bands [45,52], resting-state EEG

investigations may aid in delineating FMR1-dependent critical

periods during brain development.
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