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Abstract

Inferring parameters for models of biological processes is a current challenge in systems biology, as is the related problem
of comparing competing models that explain the data. In this work we apply Skilling’s nested sampling to address both of
these problems. Nested sampling is a Bayesian method for exploring parameter space that transforms a multi-dimensional
integral to a 1D integration over likelihood space. This approach focusses on the computation of the marginal likelihood or
evidence. The ratio of evidences of different models leads to the Bayes factor, which can be used for model comparison. We
demonstrate how nested sampling can be used to reverse-engineer a system’s behaviour whilst accounting for the
uncertainty in the results. The effect of missing initial conditions of the variables as well as unknown parameters is
investigated. We show how the evidence and the model ranking can change as a function of the available data.
Furthermore, the addition of data from extra variables of the system can deliver more information for model comparison
than increasing the data from one variable, thus providing a basis for experimental design.
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Introduction

Mathematical modelling has become an important tool in many

areas of science and beyond as a means of summarising our

current state of knowledge, challenging our understanding and

making predictions. In the field of systems biology, mathematical

models [1,2] play a key role in finding patterns in ‘omics data,

putting forward and evaluating hypotheses to help explain

complex biological phenomena as well as guiding new experi-

ments. Often the systems approach is a highly iterative process as

models are generated, falsified, updated, validated, and refined as

a function of increasing data. Numerous modelling approaches are

used in practice, ranging from topological network structure

analyses to stochastic partial differential equations on complex

geometries. The techniques are appropriately aligned to the

question at hand, the resolution one wishes to achieve, and the

available data. In all but the simplest cases, a challenge to the

modeller is the choice of a useful parameterisation of the problem

and, often in discussion with experimentalists, to devise ways of

obtaining reasonable estimates for the parameters of the system.

Depending on the method, these parameters may be inherent to a

machine learning approach, so-called black box parameters, and

of little interest to the biologist or for mechanistic models they may

actually correspond to biological entities such as concentrations,

dissociation constants, or degradation rates that may be used for

validation purposes and the design of further experiments. Recent

approaches for performing parameter estimation include simulat-

ing annealing [3], spline techniques [4], regression [5], particle

swarm [6], multiple shooting [7], and Bayesian approaches

[8–10]. An effective method for parameter estimation is the

Kalman filter technique, and recent variations of this method have

been shown to perform well for examples of biological models

[11,12]. Overviews of some of these methods are available [13–

16].

We focus here on dynamic mechanistic modelling for which the

parameters themselves are of interest and not merely a means to

an end. Many mechanistic modelling studies in biology have

employed ordinary differential equations (ODEs) as the mathe-

matical framework of choice. The reasons for this include the

natural way that many biological problems can be posed as the

study of the behaviour of a dynamic system of interacting

components over time and the well-established numerical routines

for solving such systems. For instance, converting a genetic

regulatory network into a mathematical formalism can be

achieved using established enzyme kinetics and following standard

conventions [17]. This approach gives rise to a mechanistic model

with (in principle) measurable, kinetic parameters. Unfortunately,

however, these parameters are often unknown experimentally, or

determined under in vitro conditions for analogous systems, and so

have to be estimated from available data. This is a major hurdle

that has received a lot of attention from systems biologists

[14,15,18]. A common approach is to use optimisation algorithms

[13] to find the best fit to the data [3,14,18–20]. This approach

can be motivated by invoking maximum likelihood arguments.

Local optimisation is very well established and numerous high-

performance packages are available, often based around variants

of Newton’s method such as trust-region optimizers or conjugate-

gradient approaches [21], nevertheless the non-linearity of

biological systems can lead to multimodal fitness landscapes [22]

that require global optimisation techniques to avoid getting

trapped in local minima. Global optimisation [13], however,
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remains a challenge and despite a number of powerful approaches,

such as genetic algorithms, simulated annealing and particle filters,

finding a global optimum can rarely be guaranteed in practice.

Furthermore, it has been noted that the global minimum may not

result in biologically realistic parameters [23].

A known problem with maximum likelihood and, in general,

optimisation approaches is that without further precautions they

can lead to the overfitting of a model to the data, i.e. the

parameters are far more sharply defined than is justified from the

information content of the data [24]. These are well-documented

problems with established solutions such as Bayesian methodology

and information theory based corrective terms to maximum

likelihood such as the Akaike information criterion (AIC) [25,26].

A nice short review of these approaches applicable to systems

biologists is given by Kirk et al. [27]. Another issue is that the best-

fit set of parameters to a model may not be representative of

parameter space [28]. An optimisation algorithm may miss

important solutions or contributions from other parts of parameter

space. Furthermore, it has been shown that in systems biology that

not all parameters are uniquely identifiable [29]. There are issues

of sloppiness and correlations between parameters [29,30].

Parameters have also been shown to behave differently between

corresponding deterministic and stochastic systems [31].

The scarcity of large quantities of high quality data is a common

problem faced by computational biologists seeking to model an

experimental system. The Bayesian framework [32,33] is an

attractive way of dealing with this issue in a way that reduces the

risk of over-fitting. Bayesian inference naturally encompasses

Occam’s razor [34,35] and so inherently accounts for the trade-off

between the goodness of fit of a model and its simplicity [36]. The

Bayesian approach doesn’t aim to produce a point estimate for

quantities of interest but captures the full uncertainty of the

problem that is reflected in the posterior probability distribution.

In particular for non-unimodal distributions point estimates can be

misleading. Bayesian techniques are gaining interest in numerous

research areas and finding increased application in computational

biology [37,38] due to the availability of state-of-the-art develop-

ments [8,9,22,39–45]. Recent further advances have shown that

multi-dimensional biophysical problems can be tackled successfully

within the Bayesian framework; for example Markov chain Monte

Carlo (MCMC) was employed for suitably approximating a prior

distribution for studying the insulin secretion rate [46], thermo-

dynamic integration for biochemical oscillations [22], and copula-

based Monte Carlo sampling was used for comparing models of

human zirconium processing [47]. However, the computational

demands for such approaches often make them prohibitive for

many problems. A main reason for this computational effort is in

the calculation of high-dimensional integrals that arise through the

process of marginalisation and normalisation in Bayesian inference

[28,32]. Monte Carlo techniques are the established way to

compute such integrals, however, can require many thousands of

cycles to deliver adequate results and there are known issues with

MCMC sample decorrelation times [40]. Nested sampling [48]

was put forward as a Bayesian variant of this approach and was

shown to perform well for simple test examples [49]. Recently this

approach has been used with success for astronomical data

analysis [50,51], for exploring configurational phase space of

chemical systems [42], for parameter inference of a circadian clock

model [52] and for one of the most challenging problems in

biophysics, namely the exploration of protein folding landscapes

[43].

In this contribution we explore the use of Skilling’s nested

sampling [48,49] for biological models, an area that has received

little exposure to this method to date [42,43,52]. Nested sampling

has shown encouraging results and efficiency gains over other

sampling techniques [50,51,53]. We show how the procedure

produces samples from the posterior probability distribution of the

parameters to compute the normalisation constant of the posterior,

which is termed the evidence [28]. This evidence is used in the Bayes

factor and hence in contrast to standard MCMC methods we

obtain the key quantity for model comparison simultaneously with

the posterior samples for parameter estimation. We demonstrate

this approach with various biological models for sparse, noisy data.

Methods

Bayesian parameter inference
For parameter inference the task is to infer the probability over

the parameters, v, for the hypothesis or model, M, given some

data D from an experiment and capturing also all relevant

information I . This can be done within the setting of Bayes’

Theorem which states

P(vDD,M,I)~
P(DDv,M,I):P(vDM,I)

P(DDM,I)
, ð1Þ

where P(vDD,M,I) is the posterior probability, P(DDv,M,I) is the

likelihood, P(vDM,I) is the prior probability and P(DDM,I) is the

evidence. We make use of the following shortened notation [49]:

P(v) represents the posterior, L(v) the likelihood, p(v) the prior

and Z the evidence, hence (1) becomes

P(v)~
L(v)p(v)

Z : ð2Þ

Maximum entropy arguments lead to the assignment of a normal

distribution for the errors in the data [33], and if the nD data

points are independent the log-likelihood function resembles a

least-squares residual

logL~{
XnD

i~1

di{yið Þ2

2s2
i

ð3Þ

where di is the given data at timepoint i, si its corresponding

standard deviation and yi the value computed from the model at

that point. More complex error models can be used if information

is available or justified from the underlying experiment.

Bayesian model comparison
Bayes’ theorem not only enables us to infer parameter

distributions but also provides a framework for model comparison.

The posterior probability of a model M is

P(MDD,I)~
P(DDM,I):P(MDI)

P(DDI)
P(M)~

Z:p(M)

P(DDI)
: ð4Þ

To compare models we take the posterior odds of two models, Mi

andMj , by taking the ratio and cancelling the term P(DDI). Thus

P(Mi DD,I)

P(Mj DD,I)
~

P(DDMi,I):P(Mi DI)

P(DDMj ,I):P(Mj DI)

P(Mi)

P(Mj)
~
Zi
:p(Mi)

Zj
:p(Mj)

: ð5Þ

If we have no prior preference for either model, i.e.

p(Mi)~p(Mj), then these terms cancel out and the models are

compared according to their respective evidences, which is

identical to the normalisation constant in (1). This ratio of
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evidences is called the Bayes factor [54],

Bij~
P(DDMi,I)

P(DDMj ,I)
~
Zi

Zj

: ð6Þ

Thus the evidence Z is the key quantity that can be computed by

marginalising the likelihood L(v) over parameter space,

Z~

ð
L(v)p(v)dv: ð7Þ

The evidence embodies the so-called Occam factor [28]. This is

a measure of the extent to which the prior parameter space

collapses to the posterior space after seeing the data. A model with

more parameters typically has a greater volume of prior parameter

space, and if the data are well described by only a small region of

this space it will be penalised for this extra complexity. So a less

complex model (fewer parameters) that fits well to the data for a

larger region of its parameter space would be preferred by the

Bayes factor calculation (Figure S1 in File S1). For most

applications this quantity has to be estimated through the use of

MCMC [55,56], which is a computationally costly procedure for

many Bayesian problems as high-dimensional numerical integra-

tion remains a challenge despite recent advances [53,57].

Nested sampling is a Monte Carlo technique constrained
by the likelihood

Skilling [48,49] showed that the evidence can be calculated by a

change of variables that transforms the (possibly) multi-dimen-

sional integral (7) over parameter space into a one-dimensional

integral over likelihood space. Following Skilling [48,49], we

denote the elements of prior mass as dX~p(v)dv then X (l) is

the proportion of the prior with likelihood greater than l so that

X (l)~

ð
L(v)wl

p(v)dv: ð8Þ

The evidence can then be expressed as

Z~

ð1

0

L(X )dX , ð9Þ

where L(X (l)):l. The basic algorithm proceeds as follows:

1. Sample the prior n times to generate an active set of objects

v1, . . . ,vn and calculate each object’s likelihood.

2. Sort the objects based on likelihood.

3. Withdraw the point with lowest likelihood (L �) from the active

set, leaving n{1 active samples.

4. Generate a new sample point from the prior subject to the

likelihood constraint L(v)wL�.
5. Add the new sample vnew to the active set to return the set to n

objects.

6. Repeat steps 2–5 until termination.

So by focussing on the evidence rather than the posterior

distribution, a, potentially, high-dimensional integral can be

replaced by a sorting problem of the likelihood [49], although

high-dimensional sampling around each point remains. With the

generated samples, the integral (9) can be approximated using

basic quadrature as

Z&
XN

k~1

hkLk, ð10Þ

where hk~Xk{1{Xk,(X0~1) is the width between successive

sample points and N is the total number of samples i.e. the

number of objects discarded from the active set plus those

remaining in the active set at termination.

There is no rigorous termination criterion to suggest when we

have accumulated the bulk of Z [49]. Skilling [48] suggests three

ways and importantly notes that when to stop is a matter of user

judgement. The MultiNest code [58] we make use of here

terminates by approximating the remaining evidence that can be

accumulated from the posterior. This amount can be estimated as

DZi~LmaxXi, where Lmax is the maximum likelihood value of the

active set and Xi is the remaining prior volume [58,59]. We use a

tolerance of 0.5 in log-evidence as used in example problems [58]

and found little difference in evidence estimates compared to using

a higher precision of 0.1. In the materials applications of Burkoff

et al. [43] and Partay et al. [42] they set their convergence criteria

to reflect the nature of protein folding, based on the bounded

nature of the energy, whereas Aitken & Akman [52] compare log-

weight (log hkzlogLk) values 50 iterations apart.

With the constraint upon the likelihood, the method moves up

the likelihood gradient to regions of higher likelihood even if these

regions become disconnected in parameter space. This is

demonstrated in Figure 1 (Figure S2 in File S1). As the algorithm

moves through iterations there is a narrowing of the regions of

higher probability as the worse samples are removed and better

ones that satisfy the constraint on the likelihood survive. In this

case all the objects left in the active set are located in one small

cigar-shaped region of parameter space. This is where the bulk of

probability mass is located for this model and data. This region

includes the true parameters, Figure 1 F (red circle). If the

procedure was run for even more samples, the objects would

continue to move up towards the peak of the posterior probability

distribution, and cluster closer together. The posterior parameter

distribution allows for identification of possible areas where

parameters are either stiff or sloppy. Figure 1 demonstrates how

in one direction the posterior distribution is wide (sloppy) whereas

in the perpendicular direction it is well defined (stiff). This example

demonstrates the point made in Figure 1 of Erguler & Stumpf

[29]. Disperse parameter sets are commonly found in systems

biology yet can lead to useful predictions [30,60]. Notwithstanding

the technical difficulty of visualising multiple dimensions the

multimodal posterior parameter space can reveal these regions of

parameter space that lead to high probability yet may be

disconnected. Using the posterior samples from nested sampling

it is possible to gain an understanding of the underlying posterior

distribution [49]. Staircase sampling can be used to generate

equally-weighted posterior samples [49] (implemented by default

in MultiNest [58]) and we make use of this later on.

For the nested sampling algorithm a greater sampling density

from the prior distribution will increase the chances of highly

probable areas being explored. In the study of protein folding [43]

a set of 20000 prior objects was used to provide a wide selection of

conformations. At the other end of the scale it has been shown that

maintaining a set of 25 active points can produce accurate

parameter mean and standard deviations that are relatively

insensitive to the prior size [52]. All our results are based upon

1000 active points.

Nested Sampling in Systems Biology
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Estimating summary statistics of the posterior distribution is

straightforward given the posterior samples from nested sampling

[48,49]. For example the mean m and standard deviation s of a

parameter h from N samples is calculated as

mh~
XN

k~1

hkLk

Z hk, sh~
XN

k~1

hkLk

Z h2
k{m2

h

 !1=2

,

where each sample point, hk, is assigned a weight, hkLk, that

corresponds to how much it contributed to the evidence. For our

likelihood function choosing a larger value of s leads to greater

evidence and larger variance of the inferred parameters in most

cases.

Implementation
All results in the following section used MultiNest (v3.0) [58]

which can also perform the new importance nested sampling

technique [59] (see also Table S1 in File S1). The Fortran wrapper

around CVODE from the Sundials suite (v2.5.0) of ODE solvers

[61] was employed as the main routine for solving the ODEs. All

plots were produced using R [62] (. = v2.15.0) or ggplot2 [63]

(v0.9.3.1). Pippi (v1.0) [64] was used for parsing the MultiNest

output. The comparisons to MCMC were done using the PyMC

library [65] (v2.3). Scripts are available from the authors.

Results

Nested sampling and MCMC
We compared the output of nested sampling with that of

MCMC for Bayesian inference of two test problems. We compute

the evidence and obtain posterior samples as a by-product within

the nested sampling framework [48]. For MCMC, however,

computing the evidence is known to be a complicated task [28,48].

Other modern approaches that attempt to do this using MCMC

are AIS and thermodynamic integration [22,40,53]. These

approaches are reviewed by Friel & Wyse [66]. With nested

sampling and MCMC we get the full posterior distribution and

Figure 1. The migration of objects to higher likelihood regions. From an initial uniform parameter distribution (A), nested sampling selects
points that are in regions of higher likelihood. The sample sets are shown after (B) 1800, (C) 2700, (D) 5400 and (E) 9000 sampling iterations, with (F) a
close-up of the final (9000 iterations) sample set and the true value of the parameters indicated with a red circle (a~125 and b~2). In this case,
disconnected regions of high likelihood (B,C,D) are first explored before the sampling ends up in a single region of high probability (E,F). The
underlying model is the repressilator, Equation (11), and the samples are from the posterior over the respressilator parameters a and b.
doi:10.1371/journal.pone.0088419.g001
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thus are able to quantify our uncertainty which we are unable to

do with optimisation techniques.

In the first case data were generated from the curve

y~3 tanh
x

2

� �
from ½{5,5� at intervals of 0.5 to give 21 data

points. Noise from a standard Gaussian was added to the

generated data. As expected from this low dimensional problem

both nested sampling and MCMC find similar solutions with

identifiable parameters whose means are good summaries of their

distributions given the level of noise, Figure 2.

In the second example, we took expression data of the flowering

time genes TFL1 and FT, determined by quantitative PCR of the

whole rosette in Arabidopsis upon the floral transition (Figure 2

[67]). Three different models between the antagonistic genes TFL1

and FT are investigated: a linear model, a quadratic or a sigmoidal

relationship. The measurement errors are not known but modelled

as a normal distribution with s~0:5 (data in arbitrary units) which

we found to be consistent with estimated noise from the data

(Figure S3 in File S1). We also used simulated annealing to

optimise the parameters for a comparison with the means of our

posterior parameter distributions. The fits to the data using the

mean values for the three models are shown on the right in

Figure 2. All methods find a very similar solution for the linear

model, and equally for the three parameter quadratic curve.

For the four parameter sigmoid model y~k4z(k1{k4)=(1z

exp({k2(x{k3))) the results are also comparable. The optimi-

sation procedure fits the data well, with a steeper gradient than the

inference methods. The means and standard deviations of the

parameters from nested sampling and MCMC are in good

agreement (Table 1). The log-evidences from nested sampling were

found to be: logZlin~{8:8,logZquad~{14:1,logZsig~{5:7,

thus preferring the four parameter sigmoid model.

Nested sampling and parameter inference
The repressilator [68] is a frequently used system to evaluate

parameter estimation developments [8,11,12,69]. The repressila-

tor is a synthetic network of transcriptional regulators comprising

three genes in a feedback loop that is capable of producing

oscillations. It is also the core structure of recent circadian clock

models [70]. The governing equations used are as follows

dmi

dt
~{miz

a

1zpn
j

za0

dpi

dt
~{b pi{mið Þ

8>><
>>: ð11Þ

where i~flacI ,tetR,cIg and j~fcI ,lacI ,tetRg. a0 was set to 0

and n~2 so that our prior contained both stable and unstable

domains [68]. Initial conditions and parameters were chosen that

produce oscillations in the synthetic data (Table 2). To show the

power of nested sampling for this example we use data from just

one variable, pcI (cI protein), collected at two-minute intervals for

50 minutes. The data has Gaussian noise added to it with a

Figure 2. Nested sampling produces equivalent estimates to MCMC. (Left) Nested sampling (orange solid line) and MCMC (skyblue dashed)
produce a similar estimate of the parameter means given noisy data (white diamonds) generated from y~3 tanh x

2

� �
(green line). The solution using a

point estimate of the parameters from simulated annealing is shown as a black dotted line. (Right) Using three different relationship models for
flowering gene expression data nested sampling, MCMC and simulated annealing produce near identical estimates for a linear model of the
experimental data (purple diamonds) and for a three parameter quadratic model. Curves are offset by one line width for clarity. For a four parameter
sigmoidal model MCMC and nested sampling infer comparable parameter means (given in Table 1).
doi:10.1371/journal.pone.0088419.g002
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standard deviation of 10% of the range. It is assumed we do not

know, or cannot measure, the initial conditions for the five other

variables, and attempt to infer these too. Uniform priors were used

for all parameters with a*U(0,1000),b*U(0,100) and the initial

conditions are drawn from U(0,50). We choose a constant value of

si in (3) that is equivalent to the amount of noise added. When

standard deviations can be estimated from the experimental data

these values should be used in the error model. Either better

quality (less noise) or greater quantity of data are both able to

increase the accuracy of estimates of the parameter posterior

probability distributions, as one would intuitively expect.

Using nested sampling we can produce an estimate of the means

and standard deviations of the inferred parameters as explained in

the Methods section. The actual values and inferred values are

shown in Table 2. The system with these mean values as the actual

parameters is shown in Figure 3 along with a ribbon representing

+s. As can be seen, despite not estimating the initial conditions

well, they are not that important for capturing the qualitative

dynamics of the entire system. This is because the repressilator has

a limit cycle and is therefore insensitive to most initial conditions.

After the first peak the inferred oscillations match very closely to

the true solution for all variables even though the algorithm only

had a few, noisy data points available for one variable. The log-

evidence for this model and data is {34:3.

A lack of accuracy in parameter estimations but well captured

systems dynamics is a phenomenon that has been well studied in

recent years [29,30,60]. In this case the unknown initial conditions

and a lack of parameter identifiability has little overall effect on the

quality of the reproduced data, whereas the two parameters a and

b are estimated more accurately—the standard deviations in

Table 2 are much lower relative to the prior size than for the initial

conditions. Figures S4 & S5 in File S1 show the marginal and joint

distributions for all parameters from this example. This enables us

to see which parameters are more or less restricted and their

correlations.

If we consider the model dynamics with 10 pairs of the

parameters a and b randomly drawn from the uniform prior there

is a wide range of dynamics, Figure S6 in File S1, compared to the

known solution (dashed black lines). In contrast, after the data

have arrived, we can use the posterior samples to see how

informative the data were about the parameters. Figure S7 in File

S1 shows the dynamics from 100 posterior parameter sets. The

data have constrained the parameter distribution significantly such

that all sets closely match the true parameters’ dynamics (dashed

black lines).

In this example, the data significantly reduced the probable

volume of parameter space from a wide prior distribution to a

narrower posterior (Figure S8 in File S1). Even though the data

were few and noisy the posterior distribution shows us that the

data were informative enough to reconstruct the system’s

dynamics accurately.

Nested sampling and model comparison
In this section we use synthetic data to compare four coupled

ODE models:

N the Lotka-Volterra model of population dynamics [71,72]

dF

dt
~aF{bFR,

dR

dt
~{cRzdFR,

8>><
>>: ð12Þ

N the repressilator system in Equation (11),

Table 1. Comparison of parameter means and standard deviations.

Hyberbolic tangent Linear Quadratic Sigmoid

h1 h2 m c c b a k1 k2 k3 k4

NS 5.0561.84 0.2660.24 0.1260.05 0.2060.26 0.0160.02 0.0260.23 0.3760.44 1.3760.53 2.0661.42 5.5362.00 0.4560.22

MCMC 5.0161.80 0.2760.32 0.1260.05 0.2260.27 0.0160.02 0.0260.23 0.3860.43 1.3960.55 2.0961.42 5.6861.98 0.4660.23

SA 4.36 0.24 0.12 0.22 0.01 0.02 0.38 1.21 5.00 5.57 0.44

The mean (+ standard deviation) values of the parameters from nested sampling (NS), MCMC and the point estimates from simulated annealing (SA). The data came

from y~3 tanh x
2

� �
with additional noise and from Jaeger et al. (Figure 7 [67]) to which we fit three models: Linear y~mxzc; Quadratic y~cx2zbxza; Sigmoid

y~k4z(k1{k4)=(1zexp({k2(x{k3))).
doi:10.1371/journal.pone.0088419.t001

Table 2. Parameters and initial conditions of the repressilator model.

a b placI ptetR pcI mlacI mtetR mcI

True 125.00 2.00 5.00 0.00 15.00 0.00 0.00 0.00

Estimated mean 128.47 2.02 33.38 15.34 - 7.21 2.66 43.21

Estimated SD 5.88 0.05 8.46 10.73 - 5.26 1.73 4.67

The values of the parameters a, b and initial conditions of the six variables used to generate the simulated data prior to addition of Gaussian noise, and the inferred
means and standard deviations (SD) from the routine. p: protein, m: mRNA. The initial amount of cI protein was assumed to be known.
doi:10.1371/journal.pone.0088419.t002
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N the Goodwin model of protein-mRNA interactions [1,73]

dM

dt
~

1

1zE
{a,

dE

dt
~M{b,

8>><
>>: ð13Þ

N the trimolecular two-species Schnakenberg model [2,74]

du

dt
~a{u{u2v,

dv

dt
~b{u2v:

8>><
>>: ð14Þ

We generate data from one variable of the repressilator system

with known parameters, then add Gaussian noise. To ease

comparison between different systems the data were scaled so that

the amplitude is maximally one. All models are mechanistically

different, however as all models are capable of oscillatory solutions,

any of them could be used to describe the chosen data set if no

further information was available. Our task is to evaluate if, and

how well, we can choose between competing models given little

data. Figure 4 shows 3000 samples from the posterior of all models

(except Goodwin) along with the mean and best-fitting sample

point from the four models. These fits for the Goodwin model

have much higher frequency than the others, yet can still give a

good least-squares error. Note that the concentration falls below 0

for this model with these parameters, which is clearly unbiological.

The other three models pick out the correct frequency in the data.

The mean of the Lotka-Volterra system, Figure 4, is not a good

summary statistic for this distribution though the best-fit likelihood

line for this model in Figure 4 shows a good fit to the data. This

indicates care should be taken when summarising distributions.

However merely relying on the best fitting parameters is essentially

a maximum likelihood approach, and may miss important

contributions from other parts of parameter space. To visualise

this in Figures S9 & S10 in File S1 we show the marginal and joint

distributions (with means and best-fit solution parameters indicat-

ed) for the Lotka-Volterra system which demonstrates the non-

Gaussian shape of its posterior. The log-evidence values attained

for the four models are shown in Table 3 indicating a very strong

preference for the Lotka-Volterra model.

Given the nature of the sparse and noisy data it is not too

surprising that a simpler model with two variables and six

parameters is given preference over the model with six variables

and eight parameters from which the data were actually

generated. If the data are of better quality i.e. no noise and of

greater density, we can see the repressilator model gaining more

Figure 3. The inferred dynamics of the repressilator. Given just 26 noisy data points of cI protein (vermillion diamonds, bottom left) we were
able to capture the full dynamics of the repressilator system with high accuracy, even when the mean estimates for the initial conditions of the other
variables were not reflective of their true values. True solution, dashed black line; estimated dynamics using mean parameters, solid coloured lines;
mean +s, filled ribbons.
doi:10.1371/journal.pone.0088419.g003
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support (Figure 5) relative to the Lotka-Volterra system, but until

an unreasonable amount of data is available (500 data points) the

Lotka-Volterra model is preferred due to the it being the more

parsimonious explanation of the data — visually both systems can

fit the given data very well. Perhaps counter-intuitively, the

evidence decreases with the increasing quantity of data. This is due

to the log-likelihood function. As there are now more data points,

unless the fit is exceptionally good, the least-squares residual

increases due to summing up more errors. The evidence comprises

both the Occam factor and the best fit likelihood (at least assuming

the posterior is approximately Gaussian) [28]. Hence a worse

likelihood score will similarly affect the evidence.

During this test we normalised the amplitudes and assumed

none of the initial conditions were known, whereas in practice they

can be normally be measured or taken to be the first time point.

With the initial condition included for the repressilator variable

measured, cI protein (as in Figure 3), and with unnormalised

amplitudes, the log-evidence improved to {34:3 compared with

{41:8 without knowledge of the initial point.

Figure 4. Fit to noisy data of four different oscillatory models. Clockwise from top left: Lotka-Volterra, repressilator, Goodwin and
Schnakenberg models. Using the same noisy data (diamonds) 3000 equally-weighted samples (purple) were drawn from the posterior distribution of
each model (except the Goodwin where we show a representative sample as all solutions were similar). The mean of the Lotka-Volterra system’s
posterior is not a good summary statistic for this distribution due to its non-unimodality (Figures S9 & S10 in File S1). The best-fit solution, dashed
yellow line; solution using mean parameters, black dotted line.
doi:10.1371/journal.pone.0088419.g004

Table 3. Log-evidence of the four models for noisy data.

Model log Z

Lotka-Volterra 223.4

Repressilator 241.8

Schnakenberg 244.8

Goodwin 2165.6

The log-evidence computed by nested sampling for each model using the 25
noisy data points shown as diamonds in Figure 4. Using the interpretation
given by Kass and Raftery [54] the data provide very strong evidence for the
Lotka-Volterra model (12) and against the Goodwin model (13) compared with
the other models. The repressilator (11) has positive evidence for it over the
Schnakenberg model (14).
doi:10.1371/journal.pone.0088419.t003
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Taking fluorescence data from the original repressilator paper

[68] as a proxy for one of the variables in the system it was

investigated whether this was sufficient to support the known

model. The data were extracted from Figure 2C [68] and a linear

increase in fluorescence equal to (45=600)|t was removed. As the

data are in arbitrary units it was rescaled to be maximally one

again and the algorithm was used on the four models as before.

Table 4 shows the results which now give positive to strong

evidence for the Schnakenberg model. The experimental data and

mean and best-fit parameter’s solution are plotted in Figure S11 in

File S1 which shows that although there is perhaps a fair fit in

terms of residuals, in terms of the period of the data the posterior

estimates are generally not at all close. If the frequency domain is

known a priori, the likelihood function could be adjusted from a

simple least-squares measure to take this into account.

If there was some uncertainty as to the model or its parameters,

designing experiments that can maximise the information in the

data is an approach that has been explored recently [75].

Experimentally it can be hard to increase the resolution of a

timecourse so focussing on other genes or proteins of interest can

be fruitful. With this in mind we looked at the effect of gathering

data from another variable of interest rather than trying to

increase the quantity of data available from one variable. As

previously the repressilator system (11) was used to generate the

timepoints, but now with two variables of 25 timepoints each and

additional Gaussian noise. (The same random seed was used so as

not to introduce this potential bias in generating the noise.) The

four oscillatory models chosen before are used with nested

sampling for model comparison. The results are presented in

Table 5. There is now much stronger support, compared to just

having data from one variable, for the repressilator model—the

log-Bayes Factor has gone from 18 in favour of the Lotka-Volterra

model over the other models to 72 in favour of the repressilator.

This is regarded as decisive evidence for the repressilator [54]. For

these example models the use of data from two variables gives far

more information than increasing the quantity of data from one

variable and enables us to prefer the known model. We are thus

able to suggest this interesting aspect should also be considered

when designing experimental research, and may be very useful for

Bayesian model comparison.

Discussion

Bayesian methodology offers a number of advantages over other

inference techniques that include a consistent framework for

including prior information and updating knowledge as more data

become available, whilst appropriately accounting for the uncer-

tainty in our inferences. The process of marginalisation is a

powerful tool that enables parameters that are unknown or not of

interest to be integrated out, thus allowing the Bayesian modeller

to focus on key relevant quantities. The price to pay for these

advantages is compute time. In particular for large problems that

require the computation of complex integrals in high-dimensional

space, this cost can be prohibitive.

Nested sampling is an effective way of calculating the evidence

for a model and producing samples from the posterior distribution

of the model’s parameters. Nested sampling can be viewed as a

Bayesian version of Monte Carlo for which initially the prior and

then the likelihood are used to guide parameter space exploration.

The 1D integral over the likelihood is solved by treating it as a

sorting problem. As with other Bayesian approaches and in

contrast to optimisation-based methods, samples are obtained

Figure 5. Evidence changes as a function of data quantity. As
the resolution of the time course improves the Goodwin model
(skyblue, diamonds) and the Schnakenberg model (green, circles) lose
support faster than the Lotka-Volterra (orange, squares) and repressi-
lator (black, triangles) systems. The known model—the repressilator—
gains preference only for a larger number of data points (500 points
with a time gap of 0.1), even when using noiseless data.
doi:10.1371/journal.pone.0088419.g005

Table 4. Log-evidence of the four models for experimental
repressilator data.

Model log Z

Schnakenberg 2101.7

Repressilator 2104.8

Lotka-Volterra 2124.2

Goodwin 2166.7

The log-evidence computed by nested sampling for each model using the 60
experimental data points given in Figure 2C of the original repressilator paper
[68]. The linear increase in fluorescence with time was removed and as the
original data is in arbitrary units, it was rescaled the data to be maximally one.
Using the interpretation given by Kass and Raftery [54] the use of experimental
data now provides positive to strong evidence for the Schnakenberg model
against the repressilator and very strong evidence against the other two
models.
doi:10.1371/journal.pone.0088419.t004

Table 5. Log-evidence of the four models for noisy data from
two variables.

Model log Z

Repressilator 277.4

Schnakenberg 2149.2

Lotka-Volterra 2339.1

Goodwin 2468.0

The log-evidence computed by nested sampling for each model using 25 noisy
data points from two repressilator variables. For these example models, it was
found that the use of data from two variables gives more valuable information
than an increase in the quantity of data from one variable. Using the
interpretation given by Kass and Raftery [54] the data provide decisively strong
evidence for the repressilator.
doi:10.1371/journal.pone.0088419.t005
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from a full distribution of the parameters of interest rather than

merely a point estimate for the parameter (and possibly an

estimate of the variance depending on the method used). These

posterior sample points can be used for further analysis. We have

shown that the method of nested sampling can produce good

estimates for the parameters in systems of ordinary differential

equations under typical biological scenarios of sparse noisy data.

Nested sampling was also shown to produce comparable

parameter estimates to the established workhorse of Bayesian

inference, namely MCMC, for a biological problem with

experimental data. Nested sampling additionally has the advan-

tage of calculating the evidence as its main focus, thus readily

providing us with the quantity required for model comparison. For

systems biologists this ability to achieve both parameter inference

and model comparison with the same algorithm is clearly

applicable to many current challenges in the field.

Using Bayes’ theorem helps reduce overfitting. In our example

above the plasticity of the Lotka-Volterra model meant that the

single variable data set available was not good enough to prefer the

repressilator model that the data were generated from. However

when we introduced data from a further variable this was able to

constrict the parameter space further to then convincingly prefer

the repressilator. As the mechanisms of these two models are quite

different the modeller may have background knowledge to prefer

one system over another and certainly Bayes factors or any other

metric for model comparison should not replace intelligent

reasoning about the problem being studied.

Bayesian methods are growing in popularity amongst compu-

tational biologists and bioinformaticians [38] because they are

suited to many varied problems; from short, noisy experimental

time-series [10] to the problem of protein folding [43] as well as

large data sets such as microarray data [39] or phylogenetics [37].

As more data, both in quantity and quality, becomes available to a

Bayesian learning scheme this can be taken into account to update

the posterior distribution over the parameters or model space.

With the development of efficient routines, such as variants of

nested sampling [59,76] or thermodynamic integration [40] for

calculating the evidence, Bayesian analysis is becoming more

tractable and accessible.

If we have only a small number of models we wish to evaluate,

the approach of separating each model to provide an individual

prediction that can be used to guide experimental validation is

tractable. Bayes factors can be used to compare and select amongst

models. For prediction purposes, however, the full hypothesis

space is of interest to take into account parameter and model

uncertainty. Model averaging is thus an important concept that

provides a canopy above the layers of parameter and model

inference [28,77]. In terms of the least biased prediction,

multimodel inference is therefore the approach of choice

[28,37,77,78]. After the new data arrive, these can be used to

update the probability distributions over each model’s parameter

space and furthermore to then update the probabilities of the

models themselves by computing the posterior distribution over

model space. Conceptually, we could be totally open about our

choice of model space and consider an infinite number of models.

In terms of prediction, the model itself could be seen as a nuisance

parameter over which we need to integrate to marginalise and

make inferences. This idea leads to a Bayesian neural network [79]

and intriguingly the approach of integrating over infinite neural

networks leads naturally to so-called Gaussian Processes [79,80].

This methodology relies on the form of the covariance between

data points but no longer on any specific network structure or

single model of the underlying process, but is more akin to

regression [28,80]. Thus, if prediction rather than a specific model

is the goal of the inference, the Bayesian framework would lead to

approaches similar to those established in the machine-learning

community. For biological systems of such complexity that we are

unlikely to obtain sufficient data to robustly proceed with

mechanistic modelling, black-box approaches may therefore be a

fruitful and efficient way forward [16].
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42. Pártay LB, Bartók AP, Csányi G (2010) Efficient sampling of atomic

configurational spaces. J Phys Chem B 114: 10502–12.
43. Burkoff N, Várnai C, Wells S, Wild D (2012) Exploring the energy landscapes of

protein folding simulations with Bayesian computation. Biophysical Journal 102:
878–886.

44. Calderhead B, Girolami M (2011) Statistical analysis of nonlinear dynamical

systems using differential geometric sampling methods. Interface Focus 1: 821–
35.

45. Eydgahi H, Chen WW, Muhlich JL, Vitkup D, Tsitsiklis JN, et al. (2013)
Properties of cell death models calibrated and compared using Bayesian

approaches. Molecular systems biology 9.
46. Heuett W, Miller B, Racette S, Holloszy J, Chow C, et al. (2012) Bayesian

functional integral method for inferring continuous data from discrete

measurements. Biophysical Journal 102: 399–406.
47. Schmidl D, Hug S, Li WB, Greiter MB, Theis FJ (2012) Bayesian model

selection validates a biokinetic model for zirconium processing in humans. BMC
Systems Biology 6: 95.

48. Skilling J (2006) Nested Sampling for General Bayesian Computation. Bayesian

Analysis 1: 833–860.

49. Sivia D, Skilling J (2006) Data Analysis: A Bayesian Tutorial. Oxford Science

Publications. Oxford University Press.

50. Mukherjee P, Parkinson D, Liddle AR (2006) A nested sampling algorithm for

cosmological model selection. The Astrophysical Journal Letters 638: L51.

51. Feroz F, Hobson M (2008) Multimodal nested sampling: an efficient and robust
alternative to Markov Chain Monte Carlo methods for astronomical data

analyses. Monthly Notices of the Royal Astronomical Society 384: 449–463.

52. Aitken S, Akman O (2013) Nested sampling for parameter inference in systems

biology: application to an exemplar circadian model. BMC Systems Biology 7:
72.

53. Murray I (2007) Advances in Markov chain Monte Carlo methods. PhD thesis,

Gatsby computational neuroscience unit, University College London.

54. Kass R, Raftery A (1995) Bayes factors. Journal of the American Statistical
Association: 773–795.

55. Brooks S, Gelman A, Jones GL, Meng XL (2011) Handbook of Markov Chain

Monte Carlo: Methods and Applications. Chapman & Hall/CRC Handbooks of

Modern Statistical Methods. CRC Press.

56. Han C, Carlin BP (2001) Markov Chain Monte Carlo Methods for Computing
Bayes Factors. Journal of the American Statistical Association 96: 1122–1132.

57. Andrieu C, Doucet A, Holenstein R (2010) Particle Markov chain Monte Carlo

methods. Journal of the Royal Statistical Society: Series B (Statistical Method-
ology) 72: 269–342.

58. Feroz F, Hobson M, Bridges M (2009) MULTINEST: an efficient and robust

Bayesian inference tool for cosmology and particle physics. Monthly Notices of

the Royal Astronomical Society 398: 1601–1614.

59. Feroz F, Hobson M, Cameron E, Pettitt A (2013) Importance nested sampling
and the MULTINEST algorithm. arXiv preprint arXiv:13062144.

60. Ashyraliyev M, Jaeger J, Blom J (2008) Parameter estimation and determin-

ability analysis applied to Drosophila gap gene circuits. BMC Systems Biology 2:

83.

61. Hindmarsh AC, Brown PN, Grant KE, Lee SL, Serban R, et al. (2005)
SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers.

ACM Transactions on Mathematical Software 31: 363–396.

62. R Core Team (2013) R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria.

Available: http://www.R-project.org.

63. Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer New

York. Available: http://had.co.nz/ggplot2/book.

64. Scott P (2012) Pippipainless parsing, post-processing and plotting of posterior
and likelihood samples. The European Physical Journal Plus 127: 1–4.

65. Patil A, Huard D, Fonnesbeck CJ (2010) PyMC: Bayesian Stochastic Modelling

in Python. Journal of Statistical Software 35: 1–81.

66. Friel N, Wyse J (2012) Estimating the evidence a review. Statistica Neerlandica
66: 288–308.

67. Jaeger KE, Pullen N, Lamzin S, Morris RJ, Wigge PA (2013) Interlocking

feedback loops govern the dynamic behavior of the oral transition in arabidopsis.

The Plant Cell Online 25: 820–833.

68. Elowitz MB, Leibler S (2000) A synthetic oscillatory network of transcriptional
regulators. Nature 403: 335–8.

69. Vyshemirsky V, Girolami M (2008) Bayesian ranking of biochemical system

models. Bioinformatics 24: 833–839.

70. Pokhilko A, Fernández A, Edwards K, Southern M, Halliday K, et al. (2012)

The clock gene circuit in Arabidopsis includes a repressilator with additional
feedback loops. Molecular Systems Biology 8.

71. Lotka A (1925) Elements of physical biology. Baltimore: Williams & Wilkins.

72. Volterra V (1926) Variazioni efluttuazioni del numero d’individui in specie

animali conviventi. Memorie della R Acc dei Lincei 2: 31–113.

73. Goodwin B (1963) Temporal organization in cells: a dynamic theory of cellular
control processes. London: Academic Press.

74. Schnakenberg J (1979) Simple chemical reaction systems with limit cycle

behaviour. Journal of Theoretical Biology 81: 389–400.

75. Liepe J, Filippi S, Komorowski M, Stumpf MPH (2013) Maximizing the

information content of experiments in systems biology. PLoS Comput Biol 9:
e1002888.
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