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Abstract

Androgens are thought to cause prostate cancer, but the precise mechanisms by which they do so

are unclear. Data, mostly from animal studies, suggest that for androgens to cause prostate cancer

they must be aromatized to estrogen and act in concert with these estrogen metabolites. Androgen-

receptor mediated activity of androgens and estrogen receptor-mediated effects of estrogen

metabolites are likely to be necessary, but estrogen genotoxicity appears to be a probable critical

factor as well. Only when all these mechanisms are active, may prostate carcinogenesis result.

Convincing proof-of-concept studies are needed to definitively test this concept which, if proven,

may lead to clinically feasible chemoprevention approaches interfering with these mechanisms.
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1. Introduction

Prostate cancer is the leading non-skin malignancy detected in US males and the second

cause of death due to male cancer in the US [1]. The causes of this major male malignancy

are not entirely clear, but the idea that androgenic hormones play a major causative role in

prostate carcinogenesis has been around for decades [2]. The basis for this assumption is that

the prostate gland is an androgen-dependent tissue and that prostate cancer is an androgen-

dependent malignancy [2]. The underlying mechanism has been postulated to be androgenic

stimulation of cell proliferation resulting in an increased risk of oncogenic genetic

alterations [3]. However, the human and biological evidence for this is indirect and very

limited at best. There is no evidence that androgens cause sustained cell proliferation in the

prostate. This is illustrated in rats that are surgically castrated, which causes involution of

the prostate gland by apoptosis and cessation of secretory activity, and after a couple of
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weeks are given androgen back at physiological levels; this treatment causes a few waves of

cell proliferation in the prostate, but after about four days, cell proliferation returns to levels

found in intact control rats [4]. The further growth of the prostate upon continued androgen

treatment is caused by increased secretion, not cell proliferation [4; 5]. There are no human

data of the effects of androgen treatment on prostatic cell proliferation; this would be

extremely difficult to investigate. There are only data on the effects of androgen treatment

on serum levels of prostate specific antigen (PSA), but these do not necessarily reflect cell

proliferation and are more likely to indicate effects at the level of PSA production by the

prostate and prostate cancer cells [6]. Thus, if androgens indeed cause prostate cancer, the

mechanisms by which they do this are currently not understood.

2. Androgens

There is no evidence that circulating hormone levels are associated with later risk of prostate

cancer [7; 8]. Serum hormone levels provide no information about hormone concentrations

in prostate tissue, which are controlled by intraprostatic metabolism of androgens [9; 10].

There is also no convincing evidence that functional polymorphisms in genes involved in

intraprostatic metabolism of androgens are associated with risk of prostate cancer [11; 12;

13; 14; 15; 16; 17; 18; 19]. However, these genetic studies also do not address potentially

important intra-prostatic factors affecting androgen metabolism and hormone concentrations

in prostate tissue. Studies of genetic factors and serum hormone levels also do not reflect in

which epithelial or stromal cell type androgens are metabolized or act on androgen receptors

(AR) [9; 10].

Indirect evidence that androgens are involved in prostate carcinogenesis is derived from

human studies with 5α-reductase inhibitors which reduce the formation of 5α-

dihydrotestosterone (DHT) from testosterone (T) by this enzyme in the prostate and

peripheral fat tissue. The 5α-reductase-type 2 inhibitor finasteride and dual 5α-reductase-

type 1 & 2 inhibitor dutasteride have been tested in large clinical trials [20; 21] and both

reduced risk of developing prostate cancer by 23-24% over a 4-7 year intervention period

[22; 23]. Although these studies provide evidence in support of androgen action as an

important factor of prostate cancer development, the duration of the intervention was short

in view of the known slow growth of prostate cancer and the study subjects were middle-

aged men who have a high frequency of small cancers in their prostates [24]. Thus, these

studies are unlikely to provide much insight in whether androgens are involved in the

process of carcinogenesis as such or only influence growth and progression of pre-existing

cancer. It is not clear whether treatment of aging men with T to ameliorate effects of

declining androgen levels increases risk of prostate cancer [25; 26]. Although meta-analyses

of T-treated men did not indicate elevated risk [27; 28], there was a significant increased

risk of any prostate-related problems identified in one of these studies [28]. It is important to

note that the sample sizes of the studies included in these meta-analyses were small and the

treatment duration short. Thus, the observed lack of elevated risk of prostate cancer in T-

treated aging men should be considered very preliminary [6; 27; 28]. There are no adequate

studies of exposure to anabolic steroids and prostate cancer risk; only some case reports of

prostate cancer in anabolic steroid users exist [29].
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The most direct and convincing evidence that androgens can cause prostate cancer comes

from experiments with rats treated with T. Treatment of the inbred NBL rat strain (also

known as Noble or Nb rats) with subcutaneously implanted cholesterol pellets containing T

propionate at 6-8 week intervals caused grossly visible prostate adenocarcinomas in 19% of

animals [30]. We extended this observation in an experiment with NBL rats treated with

subcutaneously placed Silastic tubing implants containing T (not testosterone propionate

often used by others) which hardly elevated circulating T and found that 11 of 30 rats (37%)

developed histologically confirmed adenocarcinomas in the dorsolateral prostate

[unpublished data]. We also applied the same treatment to outbred Wistar Cpb:WU rats and

18% developed prostate tumors [unpublished data]. Subcutaneous Silastic tubing implants

containing T propionate (not T) induced prostate cancer in 7-15% of Lobund Wistar (LW)

rats and some other rat strains [31; 32; 33; 34; 35]. T propionate is fairly rapidly released

from Silastic tubing implants and results initially in high circulating T levels that later

decline [33], while for unknown reasons T is far less rapidly released from Silastic implants

and a sustained stable marginal elevation in circulating T is possible and has been used by us

[36]. Thus, chronic T treatment, even when elevating circulating androgen levels only

slightly, results in development of prostate adenocarcinomas in at least five different rat

strains in incidences ranging from 7 to 37%, with the NBL rat being the most sensitive.

If androgen administration described above is preceded by treatment with a prostate-targeted

chemical carcinogen, high prostate cancer incidences can be induced in rats, demonstrating

that T is a strong tumor promoter [35; 36; 37; 38]. This tumor promoting effect of T in rats

is evident even at circulating T concentrations that are well within the physiological range

[31; 36; 39] and may be a significant factor in the carcinogenic activity of T by itself for the

rat prostate summarized above.

3. Estrogens

T can be converted to 17β-estradiol (E2) by the enzyme aromatase (CYP 19), which is

expressed in fat tissue and in the human and rodent prostate [40]. Therefore, estrogen may

be involved in the aforementioned induction of prostate cancer by T in rat models. We have

shown that when T treatment of NBL rats is combined with E2, prostate cancer incidence is

increased from 35–40% with androgen alone to 90–100% [41; 42]. Even a short course of

estrogen treatment is sufficient to result in a high incidence of prostate cancer in NBL rats if

chronic low-dose T treatment is given, while the T metabolite DHT cannot be aromatized to

estrogen and does not induce prostate cancer [unpublished data]. These results indicate that

estrogen plays a critical role in prostate carcinogenesis, at least in the rat. Of note, estrogen

treatment alone results in shutdown of luteinizing hormone (LH) production and endogenous

androgen production, resulting in prostatic atrophy.

Interestingly, T plus E2 also induces cancer in BPH-1 human prostate epithelial cells that are

grafted under the renal capsule of nude mice together with inductive rat or mouse urogenital

sinus mesenchyme [43; 44]. These BPH-1 cells are immortalized by SV40-T-antigen, but

are by themselves not tumorigenic (with or without the inductive mesenchyme) [43; 45].

The cancers that are induced by T plus E2 in these human prostate cells are capable of

metastasis [43]. Besides the T+E2-treated NBL rat model, this is the only other model in
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which these two steroid hormones in concert have been shown to cause cancer in prostate

tissue.

Aromatase knockout mice [46] and mice overexpressing aromatase [47; 48] suffer from

androgen metabolism abnormalities that limit their potentially interesting use for

carcinogenesis studies [49]. Aromatase knockout mice lack estrogen production, but have

elevated circulating T levels and their prostate is enlarged but does not develop cancer [46].

In aromataseoverexpressing mice estrogen production is elevated, while T levels are

considerably reduced and no neoplastic or preneoplastic prostate lesions develop [26; 50].

These observations are consistent with the idea that both hormones are necessary for

prostate carcinogenesis.

In humans, however, there is no direct evidence of an association between circulating

estrogens levels and risk of prostate cancer [7; 8; 51], with the possible exception of African

American men [52]. There is also no evidence of an association of risk with single

nucleotide polymorphisms (SNPs) in the aromatase (CYP19A1) gene that are associated

with altered serum levels of total and free E2 [53]. Interestingly, the ratio of E2 to T

increases with age in parallel with a decrease in T levels and an increasing prevalence of

prostate cancer in men, which has been suggested to point to a role of estrogen in prostate

carcinogenesis [54].

Both estrogen receptors (ER)-α and ER-β are expressed in the rat and human prostate and

they may mediate some or all of the prostatic effects of estrogens [55; 56; 57]. Treatment of

NBL rats with the antiestrogen ICI182,780 inhibits the induction by T plus E2 of

development of prostatic dysplasia (a putative preneoplastic lesion comparable to human

prostatic intraepithelial neoplasia or PIN) [58]. In contrast, the antiestrogen tamoxifen did

not affect prostate cancer yield in rats treated with low-dose T after exposure to a prostate-

targeted carcinogen [59] , but the effect of tamoxifen has not been examined in rats treated

with T plus E2. Of note, the dysplasia in NBL rats treated with E2 plus T occurs in a

different region of the prostate (dorsolateral prostate) than where carcinomas are found

which originate from the periurethral prostatic ducts [41] and this dysplasia rarely

progresses to cancer [unpublished data]. Mice lacking the ER-β have been reported to

develop enlargement and focal hyperplasia of the ventral prostate [60; 61], but this has not

been confirmed in other studies [49; 62; 63] and prostate enlargement by itself is not

associated with prostate carcinogenesis [5]. We observed in immunohistochemical studies

that the regions of the NBL rat prostate which are most susceptible to the carcinogenic

effects of T+E2 have relatively low ER-α expression and very high ER-β expression

[unpublished data]. Overall, these data suggest that estrogen receptors may play a role in the

hormonal induction of prostate cancer in rats, but conclusive studies are lacking at present.

In contrast, it has been suggested that in the human prostate ER-β, which is selectively

expressed in epithelial cells, may mediate inhibition of the progression of cancer [28; 64],

but this is not a generally accepted or validated concept. There are some studies suggesting

associations between SNPs in the ER-α and ER-β genes [65], but their results still need

confirmation.
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4. Estrogens as Chemical Carcinogens

Evidence has been reported of enzymatic conversion of E2 and estrone to 2- and 4-

hydroxyestradiol and -estrone mediated by CYP1A1 and CYP1B1 from studies of rodent

[66] and human prostate tissue [E. Cavalieri & E. Rogan, personal communication] and

analyses of levels of estrogen metabolites and adducts in the urine of men with or without

prostate cancer [67]. These so-called catecholestrogens can be converted to highly reactive

estrogen semiquinones and estrogen quinones by the process of redox cycling. These

reactive intermediates can adduct DNA and redox cycling itself causes generation of

reactive oxygen species (ROS) which, in turn, cause lipid peroxidation resulting in the

formation of lipid hydroperoxides. Both ROS and reactive lipid hydroperoxides can also

damage DNA and potentially lead to the formation of mutations [68]. The 4-

hydroxyestradiol (4OH-E2)-quinone-DNA adducts rapidly depurinate, resulting in apurinic

sites in the DNA. These apurinic sites can potentially lead to the mutations when repaired by

error-prone DNA repair mechanisms [69], although such mutations have not been

definitively demonstrated [68; 70]. A summary of this mechanism is provided in Figure 1

and for details of this complex mechanism, the reader is referred to Cavalieri et al. [66; 68]

and Bolton and Thatcher [70]. Detection of 4OH-E2-quinone-DNA adducts has been

problematic, because these are depurinating with a very short half-live leading to apurinic

sites which are difficult to detect, but with highly sensitive analytical methods (LC-MS/MS)

formation of such adducts has conclusively been demonstrated after estrogen treatment of

DNA, cells, and tissues [70; 71; 72; 73; 74].

We have shown that these reactions can take place in the rat prostate in experiments in

which we injected animals with 4OH-E2 or 4OH-E2-quinone and measured prostate tissue

levels of E2, 4OH-E2, and detoxified methylated and glutathione conjugated 4OH-E2

metabolites [66]. Following treatment of NBL rats for 16 weeks with T plus E2, we

identified a major DNA adduct by 32P-postlabeling selectively in the periurethral area of

their prostates, the site of later cancer development [75]. A low level of this adduct was also

found at this location in control animals, perhaps indicating the sensitivity of this tissue for

DNA damage. Treatment of rats with only T caused moderately elevated levels of this

adduct in the periurethral prostate [unpublished data]. Ho and Roy reported that T plus E2

treatment induced DNA strand breaks, and fluorescent lipid peroxidation products in the

dorsolateral, but not ventral, prostate of NBL rats [76]. We measured the formation of (a) 8-

hydroxydeoxyguanosine (8-OHdG), an indicator of oxidative DNA damage, and (b) DNA

damaging lipid hydroperoxides in the prostate of NBL rats after treatment with T plus E2 for

16 weeks ; the highest levels of 8-OHdG and lipid hydroperoxides were found in the

periurethral area of the prostate where cancer develops [68]. However, the contributions of

oxidative DNA damage and lipid peroxidation to prostate carcinogenesis by T plus E2 are

not clear, because dietary treatment with α-tocopherol and selenomethionine did not reduce

the induction of prostate carcinomas [42].

Nevertheless, the above summarized data provide evidence indicating that estrogen

treatment causes DNA damage in the NBL rat prostate and that this occurs prior to cancer

development and at the exact same site within the rat prostate where carcinomas develop

after treatment with T plus E2 [66; 68; 75]. We have also developed evidence that enzymes
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that provide protection against reactive estrogen metabolites, such as catechol-O-

methyltransferase and glutathione reductase, are more active in the dorsolateral prostate

region, which does not develop cancer in NBL rats treated with T plus E2, and less active in

the periurethral prostate area, where carcinomas do develop [66].

6. Conclusions: Estrogenicity, Estrogen-Genotoxicity, and Androgenic

Stimulation May Act in Concert in Hormonal Prostate Carcinogenesis

Collectively, the data, mostly from animal studies, summarized in this paper suggest that for

androgens to cause prostate cancer they must be aromatized to estrogen and act in concert

with these metabolites. Androgen-receptor mediated activity of the androgens and estrogen

receptor-mediated effects of the estrogen metabolites are likely to be necessary, but estrogen

genotoxicity appears to be a probable critical factor as well. Only when all these

mechanisms are active, prostate carcinogenesis may be the result, at least in the NBL rat

model. To explore whether this hypothesis holds true for human prostate carcinogenesis will

require extensive tissue-based epidemiologic studies, but there is some experimental

evidence that T plus E2 can induce malignant transformation of human prostate cells in

xenograft experiments in nude mice mentioned earlier [44; 45; 56]. If all these factors,

including aromatization of androgens, are required for androgenic hormones to be

carcinogenic for the prostate, interference with any of these might be sufficient to yield a

preventive effect and interference with a combination of these factors might have an even

stronger preventive effect. With the NBL rat model available, it should be possible to

critically test this idea as a first step towards developing new preventive strategies for

prostate cancer that can be evaluated in clinical trials with agents that are very well tolerated

and bioavailable upon oral administration at clinically feasible doses. However, convincing

proof-of-concept studies using this model are needed to demonstrate conclusively that joint

androgen-estrogen action and receptor-mediated and genotoxic effects are indeed all

required for prostate carcinogenesis and that these mechanisms can be interfered with using

chemopreventive treatments. While this challenge can be met with the NBL rat model, other

preclinical models are desirable but not available at present and translation to human

application will entail considerable multidisciplinary efforts and clinical trials.
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ER estrogen receptor

LH luteinizing hormone

PSA prostate specific antigen

ROS reactive oxygen species

SNP single nucleotide polymorphism

T testosterone
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Fig. 1.
Summary of the metabolism of androgens and estrogens to reactive estrogen intermediates

and the damage to DNA and lipids they can cause. (SOD = superoxide dismutase; CYP = a

cytochrome P450 enzyme)
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