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Abstract
Colorectal cancer (CRC) is one of the most common 
cancer worldwide and results from the accumulation of 
mutations and epimutations in colonic mucosa cells ul-
timately leading to cell proliferation and metastasis. Un-
fortunately, CRC prognosis is still poor and the search 
of novel diagnostic and prognostic biomarkers is highly 
desired to prevent CRC-related deaths. The present 
article aims to summarize the most recent findings con-
cerning the use of either genetic or epigenetic (mainly 
related to DNA methylation) biomarkers for CRC diag-
nosis, prognosis, and response to treatment. Recent 
large-scale DNA methylation studies suggest that CRC 
can be divided into several subtypes according to the 
frequency of DNA methylation and those of mutations 
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in key CRC genes, and that this is reflected by differ-
ent prognostic outcomes. Increasing evidence suggests 
that the analysis of DNA methylation in blood or fecal 
specimens could represent a valuable non-invasive di-
agnostic tool for CRC. Moreover, a broad spectrum of 
studies indicates that the inter-individual response to 
chemotherapeutic treatments depends on both epigen-
etic modifications and genetic mutations occurring in 
colorectal cancer cells, thereby opening the way for a 
personalized medicine. Overall, combining genetic and 
epigenetic data might represent the most promising 
tool for a proper diagnostic, prognostic and therapeutic 
approach.

© 2014 Baishideng Publishing Group Co., Limited. All rights 
reserved.
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Core tip: We summarize the most recent findings con-
cerning genetic and epigenetic biomarkers of colorectal 
cancer. The article aims to provide an overview of the 
currently available diagnostic and prognostic biomark-
ers of the disease. Attention is also paid to the possible 
application of those biomarkers for the choice of the 
most proper therapy.
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INTRODUCTION
It is now clear that cancer is a multi-step process resulting 
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from the accumulation of  both genetic and epigenetic 
alterations of  the genome[1]. Gene mutations and epigen-
etic modifications have been initially viewed as two sepa-
rate mechanisms participating in carcinogenesis. However 
recent evidence points to a crosstalk between these two 
mechanisms in cancer formation, suggesting that gene 
mutations have the potential of  disrupting several epi-
genetic patterns and that epigenetic modifications can 
drive genome instability and mutagenesis[2,3]. For example, 
the whole exome sequencing of  thousands of  human 
cancers revealed unexpected mutations in genes involved 
in epigenetic mechanisms, and those mutations have the 
potential to disrupt DNA methylation patterns, histone 
modifications, and nucleosome positioning[3]. Similarly, 
epigenetic inactivation of  DNA repair genes, such as 
hMLH1, hMSH2, MGMT and BRCA1, is often associ-
ated with genome instability and increased frequency of  
point mutations of  cancer-related genes[2].

Colorectal cancer (CRC) is one of  the most frequent 
cancers in humans, with over one-million new cases 
diagnosed worldwide every year[4]. The disease occurs 
sporadically in most of  the cases (75%-80%) as a result 
of  the accumulation of  both mutations and epigenetic 
modifications of  several genes[5], and large-scale DNA 
methylation studies suggest that CRC can be divided into 
at least three-four subtypes according to the frequency 
of  DNA methylation and those of  mutations in key CRC 
genes[6,7]. The sequential process of  gene mutations and 
epigenetic alterations is believed to drive the progression 
toward malignant adeno-carcinomas because those events 
affect signalling pathways that regulate hallmark behav-
iours of  cancer. Gene mutations create a clonal growth 
advantage that leads to the outgrowth of  progressively 
more malignant cells, which ultimately manifests itself  as 
invasive adeno-carcinoma. The 5-year survival rates are 
approximately 90% for early CRC patients but decrease 
to less than 10% in patients with distant metastases, by 
this the need to identify biomarkers to improve the pre-
diction of  clinical outcomes in CRC[8]. Further progress is 
very much desirable in non-invasive diagnostic methods 
to enable early diagnosis, pre- and postoperative staging, 
and to assist in selecting the most suitable neo-adjuvant 
and adjuvant therapeutic methods and post-treatment. 
Novel biomarkers which are absent in healthy persons 
and present in CRC are still being investigated, especially 
those that can be detected at early development stage of  
the disease and used in screening tests. Unfortunately, 
no molecule that would meet all of  the foregoing criteria 
has been identified so far. Carcinoembryonic antigen still 
remains the only tumour marker of  recognised efficacy in 
monitoring patients during and after CRC therapy[9]. 

There is an increasing interest to identify mutations 
in key genes of  tumourigenesis, such as APC, CTNNB1, 
BRAF and KRAS because they are involved in the Wnt 
and the Ras-Raf-MEK-MAPK signalling cascades (MAPK, 
mitogen-activated protein kinase; MEK, MAPK/ERK ki-
nase) and therefore play a substantial role in the adenoma-
carcinoma and in the serrated adenoma pathways. There 

are also attempts to “personalise” chemotherapy based 
on presence or absence of  specific genetic biomarkers. 
For example, therapy with anti-EGFR (epidermal growth 
factor receptor) antibodies is desirable in patients with ad-
vanced CRC and absence of  KRAS or BRAF mutations, 
and defining tumours phenotype - microsatellite instability 
(MSI) or microsatellite stability (MSS) and testing for the 
presence or absence of  18q chromosome deletion is very 
much desirable in standard 5-fluorouracil (5-FU)-based 
therapy[9,10]. 

DNA methylation represents one of  the most studied 
epigenetic marks in CRC[11], since methylation of  CpG 
islands in the promoter region of  a gene might induce 
chromatin conformational modifications and inhibit the 
access of  the transcriptional machinery, thus altering gene 
expression levels. Promoter hypermethylation is com-
monly associated with gene silencing as well as promoter 
demethylation with gene expression. The ever-growing 
number of  genes that show epigenetic alterations in can-
cer emphasizes the crucial role of  these epigenetic altera-
tions, and particularly of  DNA methylation, for future 
diagnosis, prognosis and prediction of  response to thera-
pies[12]. Lao et al[11] (2011) reviewed the genes that seem to 
be more commonly methylated in the multi-step process 
leading from normal colonic epithelium to adenocarcino-
ma, observing that some of  them are frequently methyl-
ated in the passage from a normal colon epithelium to an 
aberrant crypt focus, whilst others are methylated in the 
passage from an aberrant crypt focus to polyp/adenoma, 
or could have a role in CRC progression and metastasis. 
Concerning CRC diagnosis, there is increasing interest 
in searching for aberrantly methylated genes in plasma 
DNA and in the DNA obtained from faecal material, as 
non-invasive diagnostic tools[13,14]. Methylation of  certain 
genes, such as for example those involved in the extracel-
lular matrix (ECM) remodelling pathway, were associated 
with worse survival in CRC, suggesting that epigenetic 
biomarkers could gain prognostic value[15]. There is also 
active research focusing on epigenetic signatures in CRC 
for their possible interaction with chemotherapeutic 
agents[16].

Given the enormous potential of  both gene muta-
tions and DNA methylation biomarkers in CRC diagno-
sis, staging, prognosis and response to treatment, active 
research is currently ongoing to develop rapid, cost ef-
fective and reproducible tools for the detection of  those 
marks[12]. Aim of  this article is to review currently avail-
able genetic and DNA methylation biomarkers for CRC 
diagnosis, staging, prognosis and treatment.

GENETIC BIOMARKERS IN CRC
Genetic and cytogenetic biomarkers
In 1990, Fearon and Vogelstein proposed a model for 
colorectal cancer tumourigenesis, which defines the ge-
netic alterations involved in transformation from normal 
intestinal mucosa to colorectal carcinoma. This aberrant 
transformation is a multi-step process that includes genet-
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ic alterations such as mutation of  the APC (adenomatous 
polyposis coli gene), located on chromosome 5q, which 
is thought to occur early on during the development of  
adenomatous polyps, the activation of  KRAS (v-Ki-ras2 
Kirsten rat sarcoma viral oncogene homolog gene), an 
oncogene located on chromosome 12p12, during the ad-
enomatous stage and loss of  chromosomal regions 17p 
and 18q that contain tumoural suppressor genes as tu-
mour protein p53 (TP53) and DCC (deleted in colorectal 
carcinoma), in the transition to carcinoma in situ[17]. A lot 
of  studies, by different approaches, identified these com-
mon alterations described by Fearon and Vogelstein and, 
in addition, others changes such as gain of  chromosomes 
7, 8q, 13q and 20q, together with loss of  the 1p, 4,8p and 
22q chromosomal regions were also identified[18-20]. Some 
studies have suggested that the loss of  heterozygosity 
(LOH) of  17p and 18q could be associated with more ad-
vanced stages of  the disease; the loss of  17p and 18q are 
believed to play an important role in the pathogenesis of  
CRC since these two chromosomes carry genes relevant 
to the malignant transformation of  the gut epithelium 
and also probably play an important role in the metastatic 
process. In this regard, recent findings showed that break-
points in the 17p11.2 chromosomal region were preferen-
tially found in primary colonic tumours in CRC patients 
with liver metastases[21,22]. The deletion of  the long arm of  
chromosome 18 (loss of  18q or LOH of  18q) is the most 
common cytogenetic abnormality in CRC and seems to 
be associated with poor prognosis as 18q contains several 
important tumour suppressor genes, such as SMAD7, 
SMAD4, and SMAD2 that are transcriptional mediators 
in the TGF-β signalling pathway and DCC[23,24]. Mouse 
studies demonstrate that loss of  SMAD4 expression 
changes the role of  TGF-β from growth suppressor to 
growth promoter, thus increasing the tumorigenic and 
metastatic potential of  colorectal cancer cells[25]. Loss 
of  SMAD activity occurs in 10% of  the colorectal can-
cers and is associated with advanced-stage disease, the 
presence of  lymph node metastases and shorter overall 
survival and it has been shown to be a significant in-
dependent prognostic factor for worse recurrence-free 
and overall survival, particularly in patients with stage Ⅲ 
disease. Patients with stage Ⅲ disease and intact SMAD4 
expression with microsatellite instability were found to 
have similar outcomes compared with patients with stage 
Ⅱ disease, whereas patients with stage Ⅱ disease and loss 
of  SMAD4 expression without microsatellite instabil-
ity status had outcomes similar to patients with stage Ⅲ 
disease[26]. Retention of  SMAD4 expression has also been 
found to be a predictive marker for a threefold increase in 
benefit from 5-FU-based chemotherapy[27] while the loss 
of  SMAD4 seems to be a predictive marker for a poorer 
response to 5-FU[28]. So this chromosome instability (CIN) 
could have a prognostic value, as patients with CIN+ dis-
ease have a poorer prognosis[29]. 

Microsatellite Instability 
Over the CIN, another form of  genomic instability fre-

quent in CRC is the microsatellite instability, observed at 
the nucleotide level, frequently resulting in deletions or 
insertions of  a few nucleotides. Microsatellites are poly-
morphic tandem repeats of  short nucleotide sequences 
distributed through the genome prone to frame shifts 
and base-pair substitutions during replication if  DNA 
mismatch repair (MMR) genes are impaired. So MSI re-
fers to a clonal change in the number of  repeated DNA 
nucleotide units in microsatellites and appears in tumours 
with deficient mismatch repair due to the inactivation of  
the four MMR genes: MSH2, MLH1, MSH6 and PMS2 
and while it is typically associated with hereditary non-
polyposis colorectal cancer (HNPCC), most MSI-high tu-
mours occur sporadically[30]. Sporadic MSI tumours tend 
to be more proximal, to occur in older females, to be 
poorly differentiated and mucinous, and to show marked 
lymphocytic infiltration[31,32]. Despite their resistance to al-
kylating agents and cisplatin, MSI-high tumours have bet-
ter recurrence-free and overall survival. In patients with 
stage Ⅱ disease, MSI-high status was found to confer the 
same advantage in long-term outcomes as that conferred 
by stage T3 over T4[26]. MSI positive tumours are associ-
ated with a better prognosis in all stages of  the disease. 
Patients with MSI tumours have a significant survival ad-
vantage compared with patients with non-MSI tumours[33] 
and are associated with resistance to 5-FU chemotherapy 
and shorter survival of  patients after treatment with 
the drug[34,35]. MSI can be thus seen as one of  the most 
promising positive prognostic markers for CRC patients 
and can be detected using a panel of  five markers (BAT25, 
BAT26, D2S123, D5S346, and D17S2720, particularly 
analyzing this 5 loci, MSI-H is defined as instability at 2 
loci or more, and MSI-L, as instability at 1 locus) and a 
recent study using this panel observed that the presence 
of  MSI-H was significantly higher in carcinomas than in 
adenomas, confirming the prognostic value of  MSI in 
CRC[36].

APC gene
Mutations in the APC gene are responsible for familial 
adenomatous polyposis (FAP) and the majority of  spo-
radic CRC. The APC gene encodes a multifunctional 
protein with important roles in Wnt signaling pathway, 
intercellular adhesion, cytoskeleton stabilization, cell 
cycle regulation, and apoptosis. Mutations of  APC may 
lead to unregulated transcription of  oncogenes such as 
c-myc and cyclin D1, thereby promoting tumourigenesis. 
Mutations in Wnt/APC/CTNNB1(β-catenin) signalling 
pathway members have been found in many CRC and 
more than 90% of  patients have alterations that affect it. 
In light of  the critical role of  the Wnt/APC/CTNNB1 
signalling pathway in maintaining proper colorectal cell 
function, it is possible that genetic variants in this path-
way might affect CRC progression. A meta-analysis pro-
vides a complete and systematic picture of  the role of  
three APC polymorphisms (D1822V, E1317Q, I1307K) 
in the risk of  colorectal neoplasia, particularly the I1307K 
variant was associated with a significantly increased risk 
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a 21-kD protein (p21ras) involved in the G-protein signal 
transduction pathway, modulating cellular proliferation 
and differentiation. KRAS abnormalities are one of  the 
earliest events in the stepwise progression of  colorectal 
neoplasms, being detectable even in histologically un-
remarkable epithelium and aberrant crypt foci adjacent 
to cancers. Mutations of  the KRAS oncogene result in 
constitutive activation of  this signal transduction pathway 
and, consequently, unregulated proliferation and impaired 
differentiation[39]. The KRAS wild-type (WT) protein is 
transiently activated during tightly regulated signal trans-
duction events. The binding of  mAbs to EGFR nor-
mally induces receptor internalization, causing a direct 
inhibition of  tyrosine kinase activity and the blockage 
of  downstream RAS/RAF/MAPK signalling (Figure 1). 
However, activating KRAS mutations result in a consti-
tutively active GTP-bound protein which consequently 
renders the downstream pathway permanently “switched 
on” irrespective of  the activation status of  upstream re-
ceptors including EGFR. In such an instance, the binding 
of  an anti-EGFR mAb to EGFR and the inhibition of  
ligand-mediated receptor activation will fail to elicit any 
pathway suppressive effects. This constitutive pathway 
activation leads to unregulated proliferation, impaired 
differentiation, and resistance to anti-EGFR therapies[40] 
(Figure 1). Up to 90% of  activating mutations of  KRAS 
are detected in codons 12 (82%-87%) and 13 (13%-18%), 
but less frequently in codons 61, 63 and 146 and they are 
generally observed as somatic mutations. The most com-
mon types of  KRAS mutations in CRC are point muta-
tions, particularly G > A transitions and G > T trans-

for colorectal neoplasia while the E1317Q one was as-
sociated with a significantly elevated adenoma risk. This 
meta-analysis may provide genetic insight into possible 
strategies for the prevention of  colorectal neoplasia[37]. 

A very recent study, applying a comprehensive ap-
proach to systematically evaluate the tag single-nucleotide 
polymorphisms (tSNPs) in two key genes of  the Wnt 
pathway, APC and CTNNB1, identified, by survival tree 
analysis, a higher-order genetic interaction profile consist-
ing of  the APC rs565453, CTNNB1 rs2293303 and APC 
rs1816769 and this was significantly associated with over-
all survival; these SNPs might influence APC/CTNNB1 
splicing and expression by altering the consensus splicing 
site sequences, the transposable elements, and the tran-
scription factor binding sites. If  validated, these biomark-
ers might be valuable to facilitate the identification of  
good treatment[8]. 

Recently, it was found that, in advanced-stage cancer, 
patients with APC mutation/high miR-21, an activator 
of  the Wnt signaling pathway, had poorer overall survival 
so APC mutation and miR-21 expression could be used 
to predict the clinical outcome of  CRC[38].

KRAS gene
The status of  KRAS is generally accepted as a predic-
tive marker for response to established EGFR inhibitors 
used for CRC because mutant KRAS is associated with 
resistance to anti-EGFR monoclonal antibody (mAb) 
immunotherapy with agents such as centuximab or 
panitumumab (Figure 1). It is the only established bio-
marker in clinical practice for CRC. The KRAS encodes 
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versions. The codons 12 and 13 code for two adjacent 
glycine residues located in the proximity of  the catalytic 
site[41]. Specific KRAS mutations may be heterogeneous 
in their phenotype. For example, codon 12 mutations 
were associated with a mucinous phenothype of  CRC. By 
contrast, CRCs associated with codon 13 mutations were 
rather non-mucinous, but were characterized as more 
aggressive tumours with a greater metastatic potential[42]. 
However, a recent study observed that patients with an 
isolated p.G12A mutation (no other KRAS mutations) 
had aggressive disease (stage Ⅲ or Ⅳ and extensive meta-
static or recurrent disease)[43,44]. 

KRAS mutations have also emerged as a major pre-
dictor or resistance to anti-EGFR mAbs, as confirmed by 
small data sets[45-47], and both retrospective and prospec-
tive trials[48-51]. In these studies, patients with metastatic 
CRC harbouring KRAS mutations had no benefits from 
treatment with cetuximab or panitumumab either alone 
or in combination with standard chemotherapy. This 
discovery led to the first practical implementation of  
personalized medicine in metastatic CRC, and KRAS 
mutations can be considered a highly specific negative 
biomarker for benefit of  anti-EGFR mAbs. However 
it is intriguingly now coming to light that not all KRAS 
mutations are equal in their biological characteristics and 
their impact on mediating EGFR resistance, and that 
not all KRAS mutations will confer resistance to EGFR 
inhibitor therapy, probably due to heterogeneity of  tu-
mours[52-54]. 

Other clinicopathological and prognostic biomarkers of 
CRC
BRAF (V-raf  murine sarcoma viral oncogenes homolog 
B1) is a member of  the RAF gene family, it encodes a 
serine-threonine protein kinase, a downstream effector of  
activated RAS[55]. In the past decade, many studies have 
shown that BRAF somatic mutation presents in approxi-
mately 10% of  CRCs[56,57]. A hotspot for BRAF mutation 
is the conversion of  valine 600 to glutamic acid (V600E) 
within the kinase activation domain of  the BRAF protein 
and this account for 80% of  the BRAF mutations in 
CRC. This hot spot is suggested to be biologically dis-
tinct from other infrequent BRAF mutations, because the 
cancer cells having the V600E mutation can grow with-
out functional RAS, and thus the BRAF V600E mutation 
has not been found in CRCs with KRAS mutations[58,59]. 
BRAF mutations have been linked with high grade, right 
side tumours, female gender, older age and MSI-H tu-
mours[51]. A distinct pattern of  metastatic spread has also 
been observed in BRAF mutant tumours, namely higher 
rates of  peritoneal metastases, distant lymph node metas-
tases and lower rates of  lung metastases[60]. A very recent 
study demonstrated sex-related differences in the prog-
nostic value of  BRAF mutations in CRC, being particu-
larly evident in men, in fact, BRAF mutation was associ-
ated with a significantly reduced cancer-specific survival 
in overall adjusted analysis[61]. 

Phosphatidylinositide-3-kinases (PI3K) are lipid ki-

nases that promote various biological processes includ-
ing cellular proliferation and survival. Mutations in the 
PIK3CA gene, which encodes the p110α catalytic sub-
unit of  PI3K, have been identified in many human solid 
tumours[62]. In colorectal cancers, PIK3CA mutations, 
which are found in 10%-20% of  the cases, have been re-
ported to be associated with specific clinicopathological 
features and molecular events, tumour proximal colonic 
location, mucinous differentiation, KRAS mutation, 
high levels CIMP and loss of  MGMT expression[63]. It 
is unclear whether PIK3CA mutation defines a clinically 
and/or biologically relevant subset of  tumours as there is 
significant overlap with KRAS and BRAF V600E muta-
tion; a recent study observed that the adverse prognostic 
effect of  PIK3CA mutation on survival was restricted to 
patients with a BRAF wild type tumour[63]. The major-
ity of  activating PIK3CA mutations map to three sites: 
exon 9, codons 542 and 545 in the helical domain, and 
exon 20, codon 1047 in the kinase domain. Mutation at 
any one of  these sites has been shown to result in a gain 
of  enzymatic function and to promote oncogenic trans-
formation in vitro and in vivo (Figure 1). Co-existence of  
PIK3CA exon 9 and 20 mutations is associated with poor 
prognosis of  CRC patients[64,65]. More recently, PIK3CA 
mutation was associated with longer survival in patients 
who use aspirin regularly after diagnosis[66]. 

Loss of  PTEN expression (PTEN is a key tumour 
suppressor gene involved in the homeostatic maintenance 
of  PI3K/AKT signalling) was associated with a higher 
rate of  distant metastasis[67]. However, patients with 
PTEN expression had significantly longer overall survival 
than patients with PTEN loss tumour[68].

TP53 is a tumour suppressor gene encoding a protein 
involved in the regulation of  cell division, growth arrest 
and apoptosis. A recent study[69] demonstrated that p53 
expression was a significant prognostic factor for disease-
free survival for the patients with stage Ⅲ tumour and 
also found stage Ⅲ tumours with wt-p53 high expression 
were associated with a significantly better prognosis after 
chemotherapy, according to previous findings[70].

A very recent study[71], exploring candidate tumour 
suppressor genes at chromosome 4q25-q28.2, found 
a novel candidate tumour suppressor gene, namely 
NDST4, identified at 4q26. This gene was markedly 
downregulated in CRC tumours and this genetic aberra-
tion was increased considerably in tumours with higher 
pathological stages (T3 and T4). NDST4 is one member 
of  the N-deacetylase/N-sulfotransferase (heparan glu-
cosaminyl) (NDST) family, which is responsible for hepa-
ran sulfate (HS) biosynthesis on a core protein to form 
heparan sulphate proteoglycans (HSPGs) that contribute 
to the tissue structure and function during development 
and adult homeostasis. The loss of  function of  NDST4 
might impair the modification of  HS chains of  specific 
HSPGs, leading to more invasive tumour cells through 
remodelling of  the interaction of  cell adhesion receptors 
and ligands. The genetic loss of  NDST4 might serve as a 
biomarker of  adverse prognosis for patients with CRC[71].
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Genetic biomarkers of response to treatment
During the last few years, chemotherapeutic agents, 
such as oxaliplatin, irinotecan, cetuximab, panitumumab, 
bevacizumab, aflibercept and regorafenib, have been 
approved as an addition to the traditional fluorouracil 
(5-FU) treatment, increasing the median overall survival. 
The survival of  patients with metastatic CRC (mCRC) 
progressively improved over the past decades was due 
primarily to new chemotherapeutic combinations (5-FU, 
irinotecan, oxaliplatin) and the introduction of  new 
therapies, among which there are two monoclonal anti-
bodies against the receptor of  epidermal growth factor 
receptor, cetuximab and panitumumab, effectual in the 
treatment of  mCRC. However, these treatments are toxic 
and expensive, by this, the necessity to select patients 
most likely to have benefit with the treatment. Several 
analyses have revealed that patients with KRAS muta-
tions receiving first and subsequent lines of  treatment do 
not respond to cetuximab or panitumumab, and that they 
show no survival benefit from such treatments (Figure 1). 
Therefore, patients with mCRC with KRAS codon 12 or 
KRAS codon 13 mutated tumours are presently excluded 
from treatment with anti-EGFR mAb. Recent study has 
demonstrated, for the first time, that KRAS wt status is 
associated with better response to bevacizumab based 
chemotherapy and represents a positive prognostic fac-
tor for patients with advanced CRC treated in the first-
line setting[72]. Codon 12 KRAS and BRAF mutations 
predict for adverse outcome of  CRC patients receiving 
cetuximab[73]. KRAS mutations are, also, predictive of  
resistance to anti-EGFR antibodies when combined with 
irinotecan[49], response negatively affected also by NRAS, 
BRAF and PI3KCA mutations[43,74,75], as well as by a wild-
type TP53[76]. So KRAS status has emerged as a major 
predictor of  resistance to anti-EGFR mAb in the clinical 
setting but probably it is not the only to determine this 
type of  resistance, in fact, a recent meta-analysis showed 
that BRAF mutation is associated with poor response 
to anti-EGFR mAbs and it is an adverse prognostic bio-
marker of  the survival of  patients with mCRC[77]. Regular 
aspirin use was associated with lower risk of  BRAF wt 
colorectal cancer but not with BRAF mutated cancer risk. 
These findings suggest that BRAF mutant colon tumour 
cells may be less sensitive to the effect of  aspirin[78]. In 
addition to KRAS and BRAF mutations, loss of  PTEN 
expression and PIK3CA mutation is likely to be predictive 
of  a lack of  benefit to anti-EGFR therapy in metastatic 
colorectal cancer[79] (Figure 1); PTEN expressing tumours 
had statistically higher response rate for cetuximab based 
treatment than tumours with PTEN loss[68].

CRCs with MSI are reported to have a significantly 
better prognosis compared with CRCs without MSI 
(non-MSI), while MSI CRCs show resistance to 5-FU 
based chemotherapies. Although high frequency MSI 
tumours have better stage independent prognosis com-
pared to those with CIN, MMR deficient CRC appears to 
be resistant to fluorouracil based treatment, but sensitive 
to other therapeutic regimens[80]. A summary of  genetic 

biomarkers for CRC is shown in Table 1.

DNA METHYLATION BIOMARKERS IN 
CRC
Global DNA hypomethylation and depletion of  overall 
5-methylcytosine content in CRC tissues was observed for 
the first time in 1983, by Feinberg and Vogelstein. It was 
observed predominantly at CpG dinucleotides in repeti-
tive sequences, occurring gradually, age-dependently, and 
early in carcinogenesis[81]. It was also clear from the be-
ginning that global DNA hypomethylation in CRC tissues 
was accompanied by hypermethylation and transcription-
al silencing of  tumours suppressor genes or genes coding 
for DNA repair proteins[82]. Subsequent studies revealed 
that hundreds of  genes are aberrantly methylated in the 
average CRC genome, and their number is ever-growing, 
including genes of  the Wnt signalling pathway such as 
APC, AXIN2, DKK1, SFRP1, SFRP2, WNT5A, the 
DNA repair genes MGMT, hMLH1, and hMLH2, cell 
cycle-related genes such as CDKN2AINK4a(p14), CDKN-
2AA-INK4b(p15), and CDKN2AARF(p16), the RAS signalling 
genes RASSF1A and RASSF1B, and many more[11,83,84]. 
Although all CRCs are characterized by the presence of  
hypermethylation, a specific subgroup of  them, denoted 
as the CpG island methylator phenotype (CIMP+), 
displays extensive levels of  methylated genes[85]. By an 
epigenetic point of  view, CRCs can be broadly divided 
into CIMP+ and non-CIMP tumours, but taking into 
account also genetic alterations, several subgroups have 
been proposed. For example, Hinoue and coworkers re-
cently proposed the following four subtypes: (1) CIMP-
high tumours exhibiting a very high frequency of  cancer-
specific DNA hypermethylation associated with MLH1 
methylation, microsatellite instability, and the BRAF 
V600E mutation; (2) CIMP-low tumours associated with 
KRAS mutations and characterized by methylation of  a 
subset of  CIMP-high associated genes; (3) Non-CIMP 
tumours characterized by TP53 mutations and frequent 
occurrence in the distal colon; and (4) Non-CIMP tu-
mours showing a low frequency of  cancer-specific gene 
mutation and hypermethylation, and enriched of  rectal 
tumours[7]. Increasing evidence suggests that several of  
those epigenetic modifications can be valuable biomark-
ers for CRC diagnosis, progression, prognosis, tendency 
to metastasis, and response to treatment (Table 2).

Methylation biomarkers of CRC diagnosis
Aberrant patterns of  DNA methylation from CRC cells 
can be detected in tumours-derived cell-free DNA found 
in blood or feces of  cancer patients, and there is also 
evidence that often DNA methylation profiles in blood 
reflect those in CRC tissues[86]. This led researchers to 
search for DNA methylation biomarkers in those speci-
mens and to develop blood-based and stool-based non-
invasive and cost-effective epigenetic CRC diagnostic 
tools[87]. The presence of  aberrantly methylated septin 9 
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(SEPT9) in plasma is a valuable and minimally invasive 
blood-based PCR test (Figure 2), showing a sensitiv-
ity and a specificity of  almost 90% in the detection of  
CRC[13,87,88], and represents a currently commercialized 
test as it is able to detect CRC at all stages and loca-
tions[89]. Researchers have evaluated the possibility to 
include the methylation analysis of  additional genes, such 
as for example ALX4 and HLTF, to increase the sensi-
tivity of  this blood-based test[90,91]. Others are searching 
for different blood-based biomarkers than SEPT9. For 
example, the methylation status of  secreted frizzled-
related protein 2 gene (SFRP2) in CRC tissues, serum 
and fecal DNA was able to detect almost 67% CRCs[92], 
and recent genome-scale search of  DNA-methylation 
biomarkers for blood-based detection of  CRC revealed 
that methylated thrombomodulin (THBD) gene detects 
74% of  stage Ⅰ/Ⅱ CRCs at a specificity of  80%[93], and 
that methylation of  the syndecan 2 (SDC2) gene has a 
sensitivity of  92% for stage Ⅰ CRC[94].

A stool-based test for the methylation analysis of  the 
vimentin (VIM) gene is available in the United States 
(Figure 2) and has a specificity and sensitivity of  almost 
80%[14]. Several hypermethylated genes isolated from 
stool samples have been utilised as biomarkers for the de-
tection of  CRC or colorectal adenomas, including APC, 
p16, hMLH1, MGMT, SFRP1, SFRP2 and VIM[95]. Two 
meta-analyses of  those studies revealed that the sensitiv-
ity for the detection of  CRC or adenomas ranged from 
62% to 75%[95,96]. Recently, hypermethylation of  fibrillin-1 
(FBN1) was detected in CRC stool samples, and showed 
72% sensitivity and 93% specificity for detecting CRC[97].

DNA methylation biomarkers of CRC staging and 
prognosis
A few years ago, Lao and Grady reviewed the genes that 
seem to be more commonly methylated in the multi-
step process leading from normal colonic epithelium to 
adenocarcinoma. At least six genes (SLC5A8, SFRP1, 
SFRP2, CDH13, CRBP1, and RUNX3) and two loci 

(MINT1 and MINT31) have been consistently found 
to be methylated in the passage from a normal colon 
epithelium to an aberrant crypt focus. Other genes 
(p14, HLTF, ITGA4, p16, CDH1 and ESR1) resulted 
frequently methylated in the passage from an aberrant 
crypt focus to polyp/adenoma, and four additional genes 
(TIMP3, CXCL12, ID4, and IRF8) could have a role in 
CRC progression and metastasis[11]. More recent stud-
ies revealed additional epigenetic biomarkers linked to 
CRC staging and progression. A high degree of  LINE-1 
hypomethylation was found in early-onset CRC, a clini-
cally distinct form of  CRC that is often associated with 
a poor prognosis[98]. LINE-1 hypomethylation leads to 
the activation of  proto-oncogenes in CRC metastasis[99]. 
There is also indication that the clinical outcome of  MSI 
CRCs depends on LINE-1 methylation, suggesting that 
lower LINE-1 methylation status serves as a significant 
prognostic parameter of  adverse prognosis[100]. Serrated 
adenomas form a distinct subtype of  colorectal pre-
malignant lesions that may progress to malignancy along 
a different molecular pathway than the conventional 
adenoma-carcinoma pathway, and loss of  expression of  
the slit homolog 2 (SLIT2) gene by promoter hypermeth-
ylation and loss of  heterozygosity events are significantly 
associated with serrated adenoma development[101]. Meth-
ylation of  the WNT5A gene, a member of  the WNT 
gene family, has been frequently detected in early gastric 
carcinomas[102]. Also somatic mutations, allele loss, and 
DNA methylation of  the cub and sushi multiple domains 
1 (CSMD1) gene, whose function is still unclear, correlate 
with earlier clinical presentation in CRC[103]. 

Concerning CRC prognostic biomarkers, it was 
shown that DNA methylation of  p14, RASSF1A and 
APC genes, defines a poor prognosis subset of  CRC 
patients independently of  both tumour stage and differ-
entiation[104], whilst MGMT methylation seemed to play 
a protective role[104], and MLH1 inactivation through hy-
permethylation was found to be related to improved sur-
vival[105]. A meta-analysis of  11 studies indicated that p16 

Table 1  Examples of genetic biomarkers for colorectal cancer

Biomarkers Ref.

Genetic biomarkers Prognosis
   Breakpoints of 17p11.2    Found in primary colonic tumours in CRC patients with liver metastasis [22]
   Loss of 18q    Poor prognosis [23,24]
   Loss of SMAD    Advanced stage disease (Ⅲ), lymph node metastases, shorter overall survival [26]
   APC mutations    Poorer overall survival [39]
   KRAS mutations    Heterogeneous phenotype of CRC [43,44,45]
   BRAF mutations    Specific phenotype and metastasis [61,62]
   PIK3CA mutations    Poor prognosis and specific clinicopathological features [64]
   Loss of PTEN    High rate of distant metastasis [68]
   TP53 expression    Worse prognosis [70,71]
   Loss of NDST4    Adverse prognosis [72]
Candidate biomarkers Chemoresistance/Chemosensitivity
   Loss of SMAD4    Poorer response to 5-FU [28]
   MSI    Resistance to 5-FU [83]
   KRAS, BRAF, PI3KCA, PTEN mutations    Resistance to anti-EGFR mAb [46-52,74,75,79-81]

CRC: Colorectal cancer; mAb: Monoclonal antibodies; 5-FU: 5-fluorouracil.
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hypermethylation might be a predictive factor for unfa-
vourable prognosis of  CRC patients[106]. Homeodomain-
only protein X-β gene (HOPX-β) promoter methylation 
was recently shown to be frequent in human cancers and 
was suggested to act as a tumours suppressor gene. Par-
ticularly, HOPX-β promoter methylation was associated 
with worse prognosis of  stage Ⅲ CRC patients and also 
with poor differentiation[107]. Methylation of  genes in the 
extracellular matrix (ECM) remodelling pathway, such as 
IGFBP3, EVL, CD109 and FLNC, was associated with 
worse survival, suggesting that methylation of  this path-
way might represent a prognostic signature in CRC[108]. 
Similarly, hypomethylation of  the insulin growth factor 
Ⅱ (IGF2) differentially methylated region in colorectal 
tumours was associated with poor prognosis[109]. Con-
versely, methylation of  the polycomb group target genes, 
including SFRP1, MYOD1, HIC1, and SLIT2, resulted in 
favourable prognosis in non-CIMP male patients[110].

Lymphovascular invasion of  CRC was related to 
methylation of  the gene encoding the secreted protein 
acidic and rich in cysteine (SPARC) in stromal cells[111]. 
Others analysed DNA methylation in mucosal wash fluid 
from patients undergoing colonoscopy, observing that 
methylation of  the micro-RNA (miR-34b/c) had the 
greatest correlation with invasive tumours[112]. Methyla-
tion of  miR-128 in CRC samples led to an upregulation 
of  its target gene NEK2 that resulted in lymphatic inva-
sion and peritoneal dissemination[113]. It was also shown 
that epigenetic silencing of  miR-126 contributes to tu-
mour invasion and angiogenesis in CRC[114].

DNA methylation biomarkers and CRC chemotherapy 
Epigenetic signatures in CRC are also of  interest for their 
possible interactions with chemotherapeutic agents. In-
deed, the epigenetic silencing of  a particular gene might 
result in chemosensitivity or chemoresistance toward a 
particular therapeutic agent[16]. Crea et al[16] proposed a 
panel of  genes whose aberrant methylation could con-
tribute to chemosensitivity or chemoresistance to 5-FU, 
irinotecan, and oxaliplatin, three of  the most frequently 
used drugs in CRC treatment. 5-FU antitumor activity is 
mainly exerted by inhibiting thymidylate synthase, in the 
de novo synthesis of  pyrimidines. Increased TYMS expres-
sion is one of  the major mechanisms of  5-FU chemore-
sistance, and there is indication that histone acetylation/
deacetylation processes, rather than DNA methylation 
of  the promoter, might be of  relevance in epigeneti-
cally regulating TYMS expression in CRC. Several other 
genes that participate in pyrimidine metabolism might 
represent potential molecular determinants of  5-FU 
chemoresistance, including dihydropyrimidine dehydro-
genase (DYPD), thymidine phosphorylase (TYMP), and 
uridine monophosphate/cytidine monophosphate kinase 
(UMPK) genes. Their potential epigenetic contribution to 
5-FU resistance in CRC patients is under investigation[16]. 

Hypermethylation of  the gene encoding the transcrip-
tion factor AP-2 epsilon (TFAP2E) was found in 51% 
of  CRC patients and resulted in clinical nonresponsive-
ness to chemotherapy (5-FU, irinotecan or oxaliplatin)[115]. 
Functional assays showed that TFAP2E chemoresistance 
is mediated through its downstream target gene DKK4, 
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Table 2  Examples of DNA methylation biomarkers for colorectal cancer diagnosis, progression, prognosis and treatment

DNA methylation biomarkers Ref.

Methylated genes/loci Frequently methylated in 
   SLC5A8, SFRP1, SFRP2, CDH13, CRABP1, RUNX3, MINT1, 
   MINT31, WNT5A

   Normal colon epithelium → aberrant crypt focus [11,105]

   p14, HLTF, ITGA4, CDKN2A/p16, CDH1, ESR1    Aberrant crypt focus → polyp/adenoma [11]
   TIMP3, CXCL12, ID4, IRF8, MGMT, hMLH1    Polyp/adenoma → metastasis [11]
   SPARC, miR-34b/c, miR-126, miR-128    Lymphovascular invasion, metastasis [114-117]
Methylation biomarkers CRC Diagnosis 
   SEPT9, SFRP2, THDB, SBC2    Blood-based PCR test for the detection of CRC [91-97]
   VIM, FBN1    Stool-based test for the detection of CRC [14,100]
Methylation biomarkers Prognosis
   p14, RASSF1A, and APC    Poor prognosis [107]
   MGMT, hMLH1    Improved survival [107,108]
   p16    Poor prognosis [109]
   HOPX-β    Worse prognosis of stage Ⅲ CRC [110]
   Extracellular matrix genes 
   (IGFBP3, EVL, CD109 and FLNC)

   Worse survival [111]

   IGF2 hypomethylation    Poor prognosis, short survival [112]
   Polycomb genes (SFRP1, MYOD1, HIC1, and SLIT2)    Favourable prognosis in non-CIMP male patients [113]
   miR-34b/c, miR-126, miR-128    Invasive tumors [115-117]
Candidate biomarkers Chemoresistance/Chemosensitivity 
   TFAP2E    No responsiveness to 5-FU, irinotecan, oxaliplatin [118]
   DYPD, TYMP, UMPK, SPARC    Their methylation might affect 5-FU treatment1 [16,119]
   UGT1A1    Its methylation might affect irinotecan treatment1 [119]
   MGMT    Clinical response to dacarbazine is restricted to those with MGMT 

   hypermethylation
[120]

1Suggested biomarkers from cell culture studies, with limited or no evidence in humans. CRC: Colorectal cancer; miR: micro-RNA; PCR: Polymerase chain 
reaction; 5-FU: 5-fluorouracil.
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encoding for dickkopf  homolog 4 protein[115]. 
Other genes whose methylation might be associated 

with decreased sensitivity to 5-FU or irinotecan chemo-
therapy are SPARC coding for the matricellular protein 
osteonectin[116], and UGT1A1 coding for the UDP gluc-
uronosyltransferase- 1A1 enzyme, the major enzyme in-
volved in irinotecan detoxification[16]. 

CRC patients who had failed standard therapies (ox-
aliplatin, irinotecan, 5-FU, or cetuximab or panitumumab 
if  KRAS wild type) were treated with dacarbazine, an 
alkylating agent that exerts its antitumor activity induc-
ing base pair mismatches[117]. Hypermethylation of  the 
MGMT gene occurs in almost 40% of  CRC patients, and 
clinical responses to dacarbazine are confined to those 
tumours harbouring epigenetic silencing of  the MGMT 
gene[118].

FUTURE PERSPECTIVES
In addition to genetic aberrations, DNA methylation also 
plays important roles in the development of  CRC. Re-
cent genome-scale approaches revealed that CRCs exhibit 
multiple genetic alterations, including allelic imbalances 
(copy number alterations) at various chromosomal loci. 
For example, alongside with mutations of  TP53, KRAS, 
BRAF, and PIK3CA, genomic losses commonly occurred 
at 3q26.1, 4q13.2, 6q21.32, 7q34, 8p12-23.3, 15qcen and 
18, while gains were commonly found at 1q21.3-23.1, 
7p22.3-q34, 13q12.11-14.11, and 20. Moreover, the total 
number of  copy number alterations were significantly 
associated with the aberrant DNA methylation of  six 
marker genes[118]. Similarly, transcriptome analyses are 
revealing thousands of  genes whose expression is altered, 

likely through promoter methylation, in CRC tissues[119]. 
Goal of  present and future research is to identify those 
biomarkers that could allow a feasible, cost-effective and 
non-invasive diagnosis of  CRC, as well as to understand 
which panel of  biomarkers can be used to better define 
patient’s prognosis and the best choice of  available treat-
ments (Figure 2). Several examples are provided within 
this review suggesting the need to combine genetic and 
epigenetic data for a better diagnostic, prognostic and 
therapeutic approach. Integration of  those data with 
transcriptome and proteome profiles could represent a 
valuable strategy to further understand the molecular 
pathways involved in CRC, as well as to improve life ex-
pectancies and quality of  life of  the patients.
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