
Splicing factor SRSF3 represses the translation
of programmed cell death 4 mRNA by associating
with the 50-UTR region

J Kim1, RY Park2, J-K Chen3, J Kim3, S Jeong*,1 and T Ohn*,2

Serine/arginine-rich splicing factor 3 (SRSF3), a member of the serine/arginine (SR)-rich family of proteins, regulates both
alternative splicing of pre-mRNA and export of mature mRNA from the nucleus. Although its role in nuclear mRNA processing is
well understood, the mechanism by which it alters the fate of cytoplasmic mRNA molecules remains elusive. Here, we provide
evidence that SRSF3 not only regulates the alternative splicing pattern of programmed cell death 4 (PDCD4) mRNA, but also
modulates its translational efficiency in the cytoplasm by lowering translation levels. We observed a marked increase in PDCD4
mRNA in translating polysome fractions upon silencing of SRSF3, and, conversely, ectopic overexpression of SRSF3 shifted
PDCD4 mRNA into non-translating ribosomal fractions. In live cells, SRSF3 colocalized with PDCD4 mRNA in P-bodies (PBs),
where translationally silenced mRNAs are deposited, and this localization was abrogated upon SRSF3 silencing. Furthermore,
using two different reporter systems, we showed that SRSF3 interacts directly with PDCD4 mRNA and mediates translational
repression by binding to the 50-untranslated region (50-UTR). In summary, our data suggest that the oncogenic potential of SRSF3
might be realized, in part, through the translational repression of PDCD4 mRNA.
Cell Death and Differentiation (2014) 21, 481–490; doi:10.1038/cdd.2013.171; published online 29 November 2013

Serine/arginine(SR)-rich proteins are members of a family of
RNA-binding proteins that function in the constitutive and
alternative splicing of pre-mRNAs.1–3 These proteins harbor
one or two RNA-recognition motifs (RRMs) at the N-terminus
and the characteristic serine-arginine dipeptide repeats (the
RS domain) at the C-terminus. Research on SR proteins
has focused primarily on the role of these proteins in
nuclear processes, including transcription, co-transcriptional
mRNA processing, genome stability control,4 and others.5,6

Intriguingly, recent studies point to critical roles for SR
proteins in post-transcriptional regulatory processes such as
nuclear export,7 surveillance,5 stability,8 and translational
control.9,10 SR proteins may act as coordinators and key
regulators of the extensive network of post-transcriptional
processes, but how this coordination is carried out has not
been fully elucidated.

SRSF3 (SRp20), the smallest SR protein, has been shown to
modulate alternative splicing events for a variety of genes
including itself, and its potential binding sequences has been
identified using iCLIP (in vivo UV crosslinking and immunopre-
cipitation). In addition, cytoplasmic functions of SRSF3 have
been reported, as it continuously shuttles between the nucleus

and the cytoplasm,11 and involves mRNA export through
TAP-dependent manner.12 More recently, SRSF3 displayed a
positive role for viral IRES-mediated translation.13 However,
a specific role for SRSF3 in these cytoplasmic events has
remained undefined, and direct binding to particular cytoplasmic
mRNA molecules has not been demonstrated.

PDCD4 (programmed cell death 4) is a neoplastic
transformation inhibitor protein. Various apoptotic
stimuli,14 with the exception of UV exposure and
topoisomerase inhibitor treatment, activate PCDC4 gene
expression.15 The role of PDCD4 as a tumor suppressor
has been of particular interest because of its antiprolifera-
tive and tumor-suppressive effects in many different cell
types, although its role in cancer cells is debatable.16

Apoptotic cell death caused by an overexpression of
PDCD4 is seemingly cell-type specific.17 Furthermore,
there is no clear correlation between PDCD4 mRNA
and protein levels among different cancer cell types,18

suggesting that transcriptional or post-transcriptional reg-
ulation of PDCD4 varies. This variability between mRNA
and protein levels is likely due to differing regulatory
mechanisms employed between cell types.
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In the present study, we identified PDCD4 mRNA as a
target for SRSF3 binding by silencing and gene expression
profiling experiments. Further analyses revealed that SRSF3
regulates not only the alternative splicing but also the
translation of PDCD4 transcript. Moreover, we demonstrated
that the 50-untranslated region (50-UTR) of PDCD4 mRNA is
necessary for the interaction between SRSF3 and PDCD4
mRNA. We also observed that the depletion of SRSF3 led to
potent apoptotic cell death mediated by the elevation of
PDCD4 protein levels. In summary, we propose that SRSF3
has an anti-apoptotic role, through the translational repression
of tumor suppressor such as PDCD4.

Results

SRSF3 regulates apoptosis in cancer cells. A role for
SRSF3 in malignant cancer cell proliferation has been
described.18 To further define this role, we tested the
effect of SRSF3 silencing on apoptosis using two different
siRNAs (siSRSF3-1 and siSRSF3-2) and the cancer cell
lines SW480 (human colon adenocarcinoma) and U2OS

(human osteosarcoma). As shown in Figure 1a, caspase-3
cleavage was significantly higher in both cancer cell lines
when SRSF3 was silenced, but not when control siRNA
(siCONT) was used.

We observed condensed and fragmented nuclei in
siSRSF3-treated cells stained with Hoechst33258
(Figure 1b and Supplementary Figure 1a) and direct evidence
of DNA fragmentation using agarose gel analysis (Figure 1c).
Furthermore, cell proliferation was significantly inhibited,
as measured by crystal violet staining (Supplementary
Figure 1c). Together, these results demonstrate that
decreased level of SRSF3 induces apoptosis and reduces
cell proliferation.

Given the marked increase in apoptotic cell death in
response to an SRSF3 knockdown, we predicted that the
regulation of gene expression of particular splicing targets
was responsible. To test this hypothesis, gene expression
profiling (using Affymetrix Human Genome U133A 2.0 arrays,
Santa Clara, CA, USA) was performed using RNA samples
extracted from U2OS cells transfected with siSRSF3-1,
siSRSF3-2, siSRSF3-S (SMARTpool, a mixture of siRNAs
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Figure 1 Depletion of SRSF3 induces apoptotic cell death by modulating regulatory genes involved in the apoptosis process. (a) Control siRNA (siCONT) and siRNAs
specific for SRSF3 (siSRSF3-1, siSRSF3-2) were transfected into either SW480 or U2OS cells for 72 h and analyzed by western blot analysis to detect protein levels.
Actin was used as a loading control. (b) HEK-293 cells were transfected with siCONT or siSRSF3-1 and subjected to nuclei staining using Hoechst 33258. Yellow arrows indicate
cells with fragmented nuclei. (c) The integrity of chromosomal DNA from siCONT or siSRSF3-1-transfected SW480 cells was assessed through agarose gel electrophoresis.
(d) Hierarchical clustering of normalized microarray expression data from U2OS cells transfected with siCONT or siSRSF3 siRNAs. Genes with more than twofold differential
expression (a total of 655 genes) between SRSF3 and control knockdown cells are shown. Silencing of SRSF3 was confirmed by western blot analysis (right panel). (e) Gene
ontology analysis with microarray expression profiles using David 6.739 was carried out, and twenty functional annotations with the lowest P-value are shown. (f) U2OS cells
were transfected with control (siCONT) or siRNAs for SRSF3 (siSRSF3-1, siSRSF3-S) for 72 h, and western blot analysis was performed to measure protein levels
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targeting SRSF3), or siCONT. As shown in Figure 1d, the
heatmap revealed that 381 genes (449 probes) were
upregulated and 274 genes (328 probes) were downregulated
at least twofold in response to a silencing of SRSF3 as
compared with controls (see Supplementary Table 2).
Consistent with the observation that apoptosis was induced
in SRSF3 knockdown cells, genes involved in cell death
processes were upregulated, further suggesting a critical
involvement of SRSF3 in this process (Figures 1d and e).

PDCD4 expression is markedly increased when SRSF3
is silenced. Microarray analyses indicated that the
expression of a number of genes involved in apoptotic or
anti-apoptotic processes were highly affected in the SRSF3-
depleted cells (Figure 1e). Intriguingly, of the transcripts that
were upregulated, PDCD4 was one of the most highly
affected, with an increase of 5.1-, 3.6-, and 2.2-fold (as a very
conservative estimation) in response to siSRSF3-1,
siSRSF3-2, and siSRSF3-S, respectively. As PDCD4 was
reported to be involved in cellular processes such as
antiproliferation, apoptosis, and antimetastasis in various
cancer cells through an unknown mechanism,16,19 we
hypothesized that the observed effects in response to
SRSF3 depletion might be, in part, due to the upregulation
of PDCD4. To investigate this possibility, we used western
blot analysis to measure PDCD4 protein levels in U2OS cells
transfected with siCONT, siSRSF3-1, or siSRSF3-S. As
expected, in both of the SRSF3 knockdowns, there was a
remarkable increase in PDCD4 levels as compared with the
control (Figure 1f). To test if the increase in PDCD4 protein
expression from U2OS cell line can also be reflected to other

cell lines including SW480 and HEK-293 utilized in apoptosis
assay and one additional HeLa, we performed SRSF3
silencing followed by western analysis. As shown in
Supplementary Figure 2, the elevated expression of PDCD4
protein at least twofold in response to silencing of SRSF3
was evident in U2OS, SW480, and HEK-293 but not in HeLa.

The human PDCD4 gene generates two different mRNA
isoforms through alternatively splicing events (Figure 2a).
As the four probes used in the microarray analysis cannot
distinguish PDCD4 isoforms 1 and 2, and given the increased
levels of PDCD4 protein in SRSF3 knockdown cells, we asked
whether or not splicing of the PDCD4 mRNA is affected by
SRSF3. By employing real-time quantitative PCR analysis
(RT-qPCR) using total RNA prepared from SW480 cells
transfected with either siCONT or siSRSF3, we observed that
the expression of PDCD4 isoform 2 was increased approxi-
mately twofold in response to the knockdown. In contrast,
PDCD4 isoform 1 was present at a level similar to that of the
control cells (Figure 2b). Western blot analysis of these same
strains demonstrated that, at the protein level, both PDCD4
isoforms are elevated in response to silencing SRSF3. This
observation was striking because there was a significant
increase (two- to five-fold) in protein levels for isoform 1
without any corresponding change in the mRNA levels,
suggesting a potential role for SRSF3 in the management of
either the stability or the translation of cytosolic PDCD4 mRNA
(Figure 2c). We observed similar results in U2OS cells
(Figure 1f and Supplementary Figure 2). We will focus on
potential roles of SRSF3 on the regulation of PDCD4 isoform 1
mRNA at the post-transcriptional level for the rest of
this study.
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Figure 2 Silencing of SRSF3 changes the alternative splicing pattern of PDCD4 transcripts. (a) A schematic representation of the alternative splicing of PDCD4
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To examine a possible role for SRSF3 in controlling the
stability of PDCD4 mRNA, we measured the half-life of
PDCD4 mRNA from SW480 cells that were transfected with
either siCONT or siSRSF3-1. Total RNA was collected at
various time points after actinomycin D (ActD) treatment and
analyzed by RT-qPCR using primers specific for both
isoforms. The stability of PDCD4 mRNA from siSRSF3-1-
transfected cells (T1/2¼ 11.3±0.05) was not significantly
different from that of siCONT-transfected cells (T1/2

¼ 9.3±0.02) (Supplementary Figure 3a).
As PDCD4 protein can be rapidly phosphorylated by protein

kinase S6K1 and subsequently degraded via b-TRCP
ubiquitin ligase in response to mitogen signals,20 we
investigated a possible role for SRSF3 in this process by
measuring the protein stability of PDCD4 in the presence or
absence of SRSF3. SW480 cells transfected with siCONT or
siSRSF3-1 siRNAs for 48 h were treated with cycloheximide
(CHX), after which total protein was extracted at various time
points and subjected to western blot analysis. As shown in
Supplementary Figures 3b and 4a, PDCD4 protein stability
(siCONT, T1/2¼ 5.0±0.1; siSRSF3, T1/2¼ 4.8±0.1) and the
phosphorylation status of S6 small ribosomal subunit, another
target of S6K1, from both groups were comparable. Taken
together, these results suggest that the accumulation of
PDCD4 protein that we observed in SRSF3-depleted cells
was not due to modifications in either RNA stability or protein
stability.

SRSF3 represses the translation of PDCD4 mRNA.
As the level of PDCD4 isoform 1 protein was increased
in SRSF3 knockdown cells with no corresponding change
in the mRNA level, we predicted that regulation by SRSF3
may occur at the translational level. To test this prediction,
we used sucrose gradient polysome fractionation to
measure the relative association of PDCD4 mRNA with
different ribosomal fractions from SW480 cells transfected
with either siCONT or siSRSF3-1. A total of 16 fractions
were collected, and the PDCD4 mRNA level in each
fraction was measured by semiquantitative RT-PCR
(Figure 3a). Interestingly, the population of PDCD4
isoform 1 mRNA associated with polysome fractions
appeared to be significantly increased in SRSF3 knock-
down samples as compared with the control. To monitor
detailed movements of tested transcripts, we quantified
and plotted the relative abundance of each transcript
throughout all the fractions and observed obvious poly-
somal shift of PDCD4 isoform 1 transcript upon SRSF3
depletion, whereas GAPDH did not show any significant
changes in its distribution pattern (Figures 3c and e). Next,
we tested if overexpression of SRSF3 would display an
opposite effect on a separate polysome analysis. As
shown in Supplementary Figure 4, overexpression of Flag-
tagged SRSF3 (F-SRSF3) led to lower mRNA levels within
polysome fractions.

To convincingly show the knockdown or overexpression
effects of SRSF3 on the regulation of PDCD4 expression,
we performed a rescue experiment using combinations of
knockdown and overexpression of SRSF3. To do this, we
designed a siSRSF3 siRNA targeting 30-UTR of SRSF3
mRNA (siSRSF3-30-UTR, see Supplementary Table 1 for

sequence information) that cannot target SRSF3 mRNA
transcribed from F-SRSF3 overexpression plasmid lacking
30-UTR of SRSF3. As shown in Supplementary Figure 4g,
PDCD4 protein level was significantly elevated in SW480 cells
transfected with siSRSF3-30-UTR together with empty vector.
Whereas, co-transfection of F-SRSF3 together with siSRSF3-
30-UTR effectively dampened upregulation of PDCD4 expres-
sion. From these data, we concluded that SRSF3 regulates
translation of PDCD4 mRNA by restricting PDCD4 mRNA to
the non-translating ribosomal fractions.

SRSF3 binds and recruits PDCD4 mRNA to P-bodies.
To understand the mechanism by which SRSF3 represses
the translation of PDCD4, we first asked whether or not
SRSF3 interacts directly with PDCD4 mRNA. Either
F-SRSF3 or a vector control was transfected into SW480
cells, and ribonucleoprotein-immunoprecipitation (RNP-IP)
was performed using an anti-Flag antibody under conditions
that preserve RNP integrity. Subsequent RT-PCR analysis
showed a strong signal for PDCD4 in cells containing
F-SRSF3, but none in the vector control (Figure 3f).
Specificity of the bound PDCD4 mRNA was confirmed by
the absence of U6 snRNA amplification from the RNP pellet.
To more specifically demonstrate the association of endo-
genous SRSF3 with PDCD4 mRNA, RNP-IP was performed
with either an anti-SRSF3 antibody or mouse IgG as a
control. As shown in Figure 3g, PDCD4 mRNA was enriched
in the SRSF3 immunoprecipitate but not in IgG controls for
both HEK-293 and SW480 cells.

Given that SRSF3 repressed translation and associated
with PDCD4 mRNA, we then asked whether PDCD4 mRNA
was targeted to P-bodies (PB), which are cytosolic RNA
granules where translationally silenced or short-lived mRNAs
aggregate. We employed indirect immunocytochemical ana-
lysis using a PB-specific marker (Rck/p54) in conjunction with
FISH (fluorescence in situ hybridization) using a PDCD4
mRNA-specific probe to localize intracellular PDCD4 mRNA.
As seen in Figure 3h, colocalization of Rck and PDCD4 mRNA
was evident in cells transfected with siCONT, whereas this
punctate staining pattern was not observed when SRSF3 was
depleted. We then performed a similar experiment to look for
colocalization of SRSF3 itself with PDCD4 mRNA in PBs.
As shown in Figure 3i, colocalization of SRSF3 and PDCD4
mRNA was clear, and the observed cellular location
suggested that they associate in PBs. Notably, the punctate
pattern of PDCD4 mRNA was less visible in siSRSF3-treated
cells, suggesting that SRSF3 was responsible for directing
PDCD4 mRNA to PBs. Together, these data support an
association between SRSF3 and PDCD4 mRNA in cytoplas-
mic subfractions including PBs.

SRSF3 preferentially binds to the 50-UTR of PDCD4
mRNA. In order to define which region of PDCD4 mRNA is
bound and recruited to PB by SRSF3, we used RNP-IP in
combination with a MS2 tethering system,21 which uses the
bacteriophage MS2 coat protein to tether proteins to RNA.
We prepared three different chimeric MS2 reporters in which
12 tandem MS2 RNA hairpins are located immediately
upstream of the 50-UTR, the coding region (CR), or the
30-UTR of PDCD4 mRNA (Figure 4a). To test which region(s)
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of PDCD4 mRNA could be associated with SRSF3, we
performed RNP-IP using a control IgG or the SRSF3
antibody and cell extracts from HEK-293 cells transfected
with each of the MS2 reporter constructs and then analyzed

the samples using RT-PCR with primers specific for each
region of the PDCD4 mRNA. As shown in Figure 4b, the
presence of the 50-UTR led to the strongest signal. There
was slightly more binding of SRSF3 to the 30-UTR as
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compared with the vector control, but the signal was less
prominent than for the 50-UTR. Neither GAPDH nor U6 RNA
precipitated with either the control IgG or the anti-SRSF3
antibody.

Given that PDCD4 mRNA localized to PBs (Figures 3h
and i), we next sought to identify which region(s) of this
molecule are necessary for this localization by cotransfecting
the MS2 reporter constructs and pMS2-GFP (a vector
expressing MS2-GFP fusion protein) into U2OS cells. The
association of MS2-GFP with MS2 hairpin structures in
reporter mRNAs allows for tracking of their subcellular
localization. MS2-GFP was exclusively localized to the
nucleus due to the presence of nuclear localization signals
in this protein (NLS; Figures 4a and c). In contrast, some of the
PDCD4 50-UTR was retained in the cytoplasm in a punctate
pattern, colocalizing with the PB marker Rck. Colocalization of
either CR or 30-UTR was minimal as the signal for each in PBs
was almost at background levels. Similar results were
obtained when cells were treated with sodium arsenite, which
leads to strong oxidative conditions under which PBs are
robustly induced (Figure 4c, lower panels).

To further investigate the effect of SRSF3 on the translation
of PDCD4 mRNA, we utilized a luciferase reporter system in
which the 50-UTR, the 30-UTR, or both of PDCD4 were cloned
into the appropriate locations adjacent to a luciferase open
reading frame (ORF) (Figure 4d). First, we tested the ability of
SRSF3 to interact with transcripts from each construct. In a
RNP-IP experiment followed by RT-PCR analysis, reporter
transcripts harboring the 50-UTR region were precipitated by
an SRSF3 antibody (Figure 4e). Neither of the controls,
GAPDH nor b-microglobulin (B2M) mRNA, was detected in
any of the precipitated samples.

Next, the luciferase reporter constructs were employed
again, and enzyme activity was measured as an indication of
the level of protein translation from each. SW480 cells
containing each transcript were transfected with either
siCONT or siSRSF3 to assess the effect of SRSF3 depletion.
As expected, the reporter harboring the 50-UTR (or both of the
UTRs) had a markedly higher level of luciferase activity in an
SRSF3 knockdown than in the control (Figure 4f). Cells
containing the vector alone or the 30-UTR reporter construct
had the same amount of luciferase activity, regardless of
SRSF3 depletion. It is interesting to note that the luciferase
activity from the 50-UTR construct was approximately fourfold
higher than the vector control in cells transfected with

siCONT, whereas that from the 30-UTR was more than
approximately fivefold lower, suggesting the existence of
additional regulatory protein(s) that may associate with these
regions of PDCD4 mRNA. Collectively, these results support
the hypothesis that SRSF3 interacts and represses PDCD4
mRNA translation by binding to the 50-UTR.

As PDCD4 is known to be a neoplastic transformation
inhibitor, SRSF3 depletion-mediated antiproliferation and
apoptotic cell death might be due to abnormally high
expression levels of PDCD4, and perhaps PDCD4 alone
(Supplementary Figure 5). If this is the case, elevated PDCD4
should cause apoptotic cell death in SRSF3-depleted cells.
To test whether or not a knockdown of both SRSF3 and
PDCD4 would prevent apoptosis, siPDCD4 and siSRSF3
were cotransfected into SW480 cells and the presence or
absence of apoptotic characteristics were assessed. Cas-
pase-3 activation was lower than that in cells transfected with
siSRSF3 alone (Figure 4g). Moreover, the amount of
fragmented chromosomal DNA observed in siSRSF3-treated
cells, seen as a ladder pattern on an agarose gel, was
significantly lower in siSRSF3/siPDCD4-cotransfected cells
(Figure 4h). Together, these data suggest that abnormally
high levels of PDCD4 protein itself may contribute significantly
to cell death in SRSF3-depleted cells.

Discussion

Here we describe for the first time that the intracellular role of
SRSF3 is not simply in alternative splicing of pre-mRNA but
also in regulating the translation of PDCD4 mRNA. Of two
alternatively spliced transcripts of PDCD4, isoform 1 alone
was affected at the translational level by SRSF3, so we
focused our study on this particular isoform. We provide
evidence that the translational efficiency of PDCD4 mRNA
was directly altered by the presence of SRSF3. Intriguingly,
we observe that SRSF3 exerts its effect on PDCD4 mRNA
through a strong interaction with the 50-UTR and recruitment
to PBs. The luciferase assay with the reporter constructs
harboring the 50-UTR reinforced these observations.

Our findings on a novel cytoplasmic function for SRSF3 are
consistent with an emerging paradigm in which various stages
of gene expression are coordinated with one another and that
there is a connection between nuclear transcription and
cytoplasmic post-transcriptional events.22,23 Except from the
well-known nuclear RNA processing function of SR proteins,

Figure 4 SRSF3 interacts with the 50-UTR of PDCD4 mRNA and represses PDCD4 translation. (a) A schematic representation of the MS2 tethering system from the
pMS2 reporter plasmid is shown. Cloned downstream of the 12 MS2 hairpin structures are the 50-UTR (50-U), the coding region (CR), or the 30-UTR (30-U) of PDCD4 mRNA.
A MS2-GFP fusion protein with a nuclear localization signal (NLS) can recognize and bind to the MS2 hairpin structures. (b) HEK-293 cells were transfected with a pMS2
vector (control), pMS2-PDCD4-50-U, pMS2-PDCD4-CR, or pMS2-PDCD4-30-U plasmids and subjected to RNP-IP analyses using a mouse IgG (control) or an anti-SRSF3
antibody. RT-PCR of each immunoprecipitate was carried out to measure enrichment of each region of PDCD4 mRNA. GAPDH and U6 were used as non-specific controls.
(c) Using immunofluorescence microscopy, U2OS cells expressing MS2, MS2-50-U, MS2-CR, and MS2-30-U mRNAs were visualized using a coexpressed MS2-GFP protein
(green) to detect the MS constructs and an anti-Rck antibody (red) to detect PBs. Cells were incubated in the presence or absence of sodium arsenite (SA) (0.5 mM, 1 h).
(d) A schematic of firefly luciferase reporter (pGL3) constructs in which the 50-UTR (pGL3-PDCD4-5’-UTR), 30-UTR (pGL3-PDCD4-30-UTR), or both regions (pGL3-PDCD4-
UTRs) of PDCD4 mRNA were cloned upstream or downstream of the luciferase coding region (Luc). (e) HEK-293 cells were transfected with pGL3 vector, pGL3-PDCD4-
50-UTR, pGL3-PDCD4-30-UTR, or pGL3-PDCD4-UTRs plasmids and subjected to RNP-IP analyses as decribed for panel (b). Primers used to detect each region are
designated to the right of each panel. GAPDH and b-microglobulin (B2M) were used as non-specific controls. (f) Luciferase assays were performed after transfecting each
pGL3 construct into SW480 cells transfected with either siCONT or siSRSF3. Renilla luciferase vector was cotransfected for normalization. (g) Caspase-3 activation was
assessed in SW480 cells transfected with different combinations of siRNAs (siSRSF3-1 and siPDCD4), and indicated proteins were detected by Western blot analysis.
(h) Chromosomal fragmentation analysis of SW480 cells transfected with siCONT, siSRSF3, siPDCD4, or siSRSF3/siPDCD4. DNA size marker (M) is shown in the leftmost
lane. (i) A model of SRSF3-mediated post-transcriptional regulation of PDCD4 mRNA
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what may be the most intriguing new findings on cytoplasmic
SR protein functions are that SR proteins are directly involved
in the process of mRNA translation. In experiments involving
sucrose gradient polysome profiling analysis, both SRSF1
and SRSF3 associated with ribosomes.9 SRSF1 had a
stronger affinity for the polysome fractions than SRSF3,
suggesting that it has a more active role in translation.
Furthermore, the translation of a luciferase reporter gene
fused to exonic-splicing enhancer (ESE) was strongly
enhanced both in vivo and in vitro by SRSF1.9 It was further
demonstrated that SRSF1 recruits mTOR kinase to the target
mRNA, leading to the hyper-phosphorylation of eIF4E-binding
protein (4E-BP), which then relieves inhibition of translation.10

Although no cytoplasmic mRNAs have been identified as
targets for regulation by SRSF3, this protein has been shown
to be involved in an internal ribosome entry site (IRES)-
mediated translation of viral RNA by interacting with PCBP2,
an IRES-binding protein.13

SR proteins such as SRSF1 and SRSF3 shuttle between
the nucleus and the cytoplasm and migrate into RNA
granules, such as PBs and stress granules (SGs), where
translationally silenced mRNAs and regulatory proteins are
deposited.24–26 These RNA granules harbor both mRNAs that
have disassembled from translationally active polysomes and
proteins including a eukaryotic translation initiation factor 4E
(eIF4E), XRN1 (50-30 exonuclease), FAST (Fas-activated
serine/threonine kinase), TTP (tristetraprolin), and, notably,
Argonaute, a key component of RISC (RNA-induced silencing
complex), a complex involved in miRNA-mediated transla-
tional repression.27,28 We show that SRSF3 and PDCD4
mRNA are colocalized to PBs. Furthermore, we observed that
when SRSF3 was depleted, PBs disappeared and transla-
tional repression of PDCD4 mRNA was relieved. These
observations suggest that SRSF3 recruits PDCD4 mRNA to
PBs as a mechanism for fine-tuning PDCD4 expression
in actively growing cells under specific conditions (e.g., in
response to apoptotic stimuli).

RNA regulatory proteins are known to affect the expres-
sion of specific target mRNAs either positively or negatively
to allow for fine-tuning of expression levels.22 Under-
standing the conditions that affect the mRNA targets of
SRSF3 would provide insight into the role of this protein.
An oncogenic role for SRSF3 in cancer has been proposed
by several research groups.29–31 The first observation in
support of this role was that a decrease in endogenous
SRSF3 levels through RNA interference (RNAi) led to
antiproliferation effects, cellular senescence, and even-
tually apoptotic cell death.32,33 Furthermore, recent studies
have suggested that altered expression of several SR
family proteins affects the expression of many apoptotic
genes, oncogenes, and tumor suppressors in renal carci-
noma.34 Consistent with these observations, our micro-
array analysis identified pro-apoptotic and anti-apoptotic
genes as those most affected by the presence or absence of
SRSF3. It was also interesting to note that SRSF3 is a
target of the Wnt/b-catenin signaling pathway in colorectal
cancer.35 Increase in b-catenin/TCF transcriptional activity
was highly correlated with the enhancement of SRSF3
expression at both the mRNA and protein levels, suggesting
an important role in colon cancer physiology. More

mechanistic details must be elucidated to understand the
complex interplay between oncogenic signaling and SR
proteins during tumorigenesis.

Materials and Methods
Cell culture and transfection. The human colorectal adnocarcinoma
(SW480), human cervical adenocarcinoma (HeLa), human osteosarcoma (U2OS),
and human embryonic kidney (HEK-293T) cells were grown in Dulbecco’s
modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum
(FBS) and 500 U/ml penicillin-streptomycin at 37 1C in a humidified atmosphere of
5% CO2 in air. SW480, HeLa, and U2OS cells were transfected with Lipofectamine
2000 (Invitrogen, Carlsbad, CA, USA) or Fugene 6 (Roche, Indianapolis, IN, USA).
After 36 h, the cells were lysed by using RIPA buffer (150 mM sodium cloride, 1%
NP-40, 0.5% sodium deoxycholate, 0.1% SDS, and 50 mM Tris-HCl pH 8.0).

Reagents and antibodies. Actinomycin D and cycloheximide were from
Sigma (St Louis, MO, USA), and crystal violet was from Samchun Chemical
(Pyeongtaek, South Korea). The SRSF3 (7B4) was purchased from Santa Cruz
(Dallas, TX, USA). The Caspase-3, p-S6 (Ser240/244), and eIF6 antibodies were
purchased from Cell Signaling (Danvers, MA, USA). The PDCD4, b-actin (AC15),
eIF4A1, and anti-HA antibodies were purchased from Abcam (Cambridge, MA,
USA). PTEN (6H2.1) was purchased from Millipore (Billerica, MA, USA).
Rck/DDX6 was purchased from Bethyl (Montgomery, TX, USA). The FLAG-M2
antibody was purchased from Sigma.

Preparation of cell lysate and western blot analysis. The SW480,
U2OS, HeLa, and HEK-293T cells were washed with PBS twice and lysed in RIPA
buffer supplemented with protease and phosphatase inhibitor cocktails. After
incubation on ice for 30 min, the supernatants were collected by centrifugation at
13 000 r.p.m. for 15 min. Protein concentration was determined using a Bradford
protein assay (BioRad, Hercules, CA, USA). Aliquots containing 20B35mg
protein were separated on a 12% SDS-polyacrylamide gel and transferred to a
PVDF membrane. The protein-bound membrane was incubated with an antibody,
followed by HRP-conjugated secondary antibodies, and visualized by chemilumi-
nescence (ECL).

Immunofluorescence microscopic analysis. Cells were grown on
glass coverslips, transfected, and incubated as indicated above, then washed
twice in PBS-A (1� PBS with 0.02% sodium azide), immediately fixed with 4%
(v/v) formaldehyde in PBS for 15 min at 4 1C, and permeabilized with 0.5%
(v/v) Triton X-100 in PBS for 15 min at RT. Protein was detected using a primary
antibody for overnight at 4 1C, then washed twice in PBS-A, briefly stained with
Cy2- or Cy3-conjugated immunoglobulin (Jackson ImmunoResearch, West Grove,
PA, USA) and Hoechst 33258 (Sigma) for 1 h at RT in dark condition, washed
twice in PBS-A, and the coverslips were mounted on slide glasses. Fluorescence
microscopic images were taken using a Zeiss Axioplan2 fluorescence microscope
(63� ) and compiled using Adobe Photoshop software (San Jose, CA, USA).

RT-PCR and quantitative RT-PCR. Total RNA was extracted from cell
lysates with the TriZol (RBC), and 2 mg of total RNA was reverse transcribed to
cDNA using an oligo dT primer (Fermantas, Pittsburgh, PA, USA) and M-MuLV
Reverse Transcriptase (Fermantas). Oligomers used for amplifying PCR products
and primer sequences are listed in Supplementary Table 1.

Microarrays. Affymetrix Human Genome U133A 2.0 Arrays were used for
gene expression analysis. Sample preparation, array hybridization, incubation,
washing, and scanning were performed as described in manufacturer’s
instructions at the Microarray Core Facility at the Dana Farber Cancer Institute.
The CEL files were imported into dChIP software36 for data normalization and
extraction of expression values. The normalized expression data were clustered by
Cluster 3.0 and displayed by Java Treeview. dChip, Cluster 3.0, and Treeview are
public software downloaded from http://www.hsph.harvard.edu/cli/complab/dchip/
and http://www.eisenlab.org/ websites.

Polysome profiling analysis. Cell lysates of SW480 for sucrose gradient
centrifugation were prepared as polysome profiling buffer (20 mM HEPES
(pH 7.6), 125 mM KCl, 5 mM MgCl2, 2 mM DTT, and DEPC water). Extracts were
incubated on ice for 10 min, and insoluble material was pelleted by centrifugation
at 13 000 r.p.m. for 10 min. The resulting supernatant extracts were then loaded
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onto a 17.5B50% sucrose gradient prepared with polysome profiling buffer and
ultra-centrifuged for 2.5 h at 35 000 r.p.m. in a SW41-Ti rotor (Beckman, Brea, CA,
USA). Following centrifugation, the gradients were fractionated using a fraction
collector (Brandel, Gaithersburg, MD, USA), and their quality was monitored at
254 nm using a UA-6 Absorbance Detector (Isco, Lincoln, NE, USA). Total RNA in
each fraction was extracted by using TriZol.

RNA interference. U2OS or SW480 cells were transfected with siRNAs
(40 nM) using Lipofectamine 2000 (Invitrogen). After 40 h, cells were trypsinized,
reseeded, and transfected again for another 40 h. For single transfection, cells
were treated for 48B72 h and processed for the next step. Knockdown
efficiencies were verified by western blot analysis. siRNAs were designed using
published recommendation and target mRNA coding region. SiRNA sequences
used in this study are listed in the Supplementary Table 1.

Ribonucleoprotein-immunoprecipitation (RNP-IP). The method
has described previously.37 Cells were washed in cold PBS and then resuspended
in RNP-IP lysis buffer (50 mM Tris-Cl (pH7.5), 1% NP-40, 0.5% Sodium
deoxycholate, 0.05% SDS, 1 mM EDTA(pH8.0),150 mM NaCl, 1� Protease
Inhibitor Cocktail (Sigma-Aldrich), 40 U/ml RiboLock RNase Inhibitor (Fermentas)
in DEPC water). After incubating for 20 min, samples were spun at 13 000 r.p.m.
for 15 min. The extracts were immunoprecipitated with normal IgG or anti-FLAG or
anti-SRSF3 at 4 1C overnight. Beads were washed with RNP-IP lysis buffer for
five times, and then beads extracted in Trizol. RNA samples were treated with
DNase (TURBO DNA-free) and used in RT-PCR reaction.

Immunoprecipitation. Collected cells were washed with ice-cold PBS and
lysed in IP-150 lysis buffer (20 mM Tris-HCl pH7.5, 150 mM NaCl, 1 mM EDTA
(pH8.0), and 0.5% NP-40) supplemented with protease and phosphase inhibitor
cocktails. After incubating for 20 min, samples were spun at 13 000 r.p.m. for
15 min. The extracts were immunoprecipitated with an antibody and Protein
G-Sepharose 4 Fast Flow (GE Healthcare, Fairfield, CT, USA) at 4 1C for
overnight. Beads were washed with IP-150 lysis buffer for five times. The
immunoprecipitates were resolved on a 12% SDS-PAGE and analyzed by western
blot analysis for coimmunoprecipitation or proteins of interest.

Flow cytometry. Cells were washed twice in cold PBS and fixed with ice-cold
70% ethanol. Cells were stored at � 20 1C in fixative for at least 2 h. Cells were
centrifugated for 2 min at 5000 r.p.m., and ethanol was aspirated. The cell pellets
were washed with PBS, resuspended in propidium iodide (PI)-staining solution
(3mg/ml PI, 0.5 mg/ml RNase A, and 0.25% Triton X-100 in 1� PBS), and
incubated at RT for 30 min before flow cytometric analysis system (Guava,
Millipore).

Nuclear–cytoplasmic fraction. Nuclear–cytoplasm fraction was prepared
as described.38 In brief, cells were washed in cold PBS and then resuspended in
nuclear extract buffer A (20 mM HEPES, 10 mM KCl, 1 mM EDTA, 0.2% NP-40, 10%
glycerol, 1 mM DTT, and protease inhibitor). After incubating for 5 min on ice,
samples were spun at 2400� g for 5 min. The supernatant was considered the
cytoplasmic fraction. The pellet was resuspended in nuclear extract buffer B (20 mM
HEPES, 10 mM KCl, 1 mM EDTA, 350 mM NaCl, 20% glycerol, 1 mM DTT, and
protease inhibitor) and incubated for 10 min on ice. Sample was spun at 13 000 r.p.m.
for 15 min, and the supernatant represents the soluble nuclear fraction.

Luciferase reporter assay. Cells seeded in 12-well plates were transiently
cotransfected with the firefly luciferase reporter (50 ng), renilla luciferase reporter
(5 ng), and siRNA (40 nM). Luciferase activity was determined with a dual-
lucifersae assay system (Promega, Madison, WI, USA). Activity was determined
using a Glomax 20/20 luminometer (Promega).

RNA fluorescence in situ hybridization. All RNA-FISH reactions were
performed in RNase-free condition. Cells on cover slips were transfected with
siRNA (40 nM) for 72 h, fixed with 4% paraformaldehyde in PBS at RT for 15 min,
and permeabilized with 0.5% Triton X-100 in PBS at RT for 5 min.
Pre-hybridizations were done with hybridization buffer (3% BSA, 100mg/ml
salmon sperm DNA (Stratagene) in 4� SSC) at 42 1C for 1 h. Hybridizations
were performed with Cy3-conjugated 50-UTR and 30-UTR FISH-probe mixture
(200 nM) in hybridization buffer at 42 1C for overnight. Slides were washed with
SSC at RT. For signal detection, primary antibody was treated for overnight at
4 1C, washed twice in PBS-A, briefly stained with Cy3-conjugated IgG (Jackson)

and Hoechst 33258 (Sigma) for 1 h at RT in dark condition. Samples were washed
twice in PBS supplemented with 0.02% sodium azide, and coverslips were
mounted. Probe sequences are PDCD4 50-UTR, 50-Cy3-CCCTTCTCGCT
CTGTTTGTTTT-30; PDCD4 30-UTR, 50-Cy3-AGGAGTGGCAGTAGTCAGA
CATCAA-30.
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