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Abstract

While it is known that rare copy-number variants (CNVs) contribute to risk for some
neuropsychiatric disorders, the role of CNVs in bipolar disorder is unclear. Here, we reasoned that
a contribution of CNVs to mood disorders might be most evident for de novo mutations. We
performed a genome-wide analysis of de novo CNVs in a cohort of 788 trios. Diagnoses of
offspring included bipolar disorder (n = 185), schizophrenia (n=177), and healthy controls (n=
426). Frequencies of de novo CNVs were significantly higher in bipolar disorder as compared
with controls (OR= 4.8 [1.4,16.0], p= 0.009). De novo CNVs were particularly enriched among
cases with an age at onset younger than 18 (OR= 6.3 [1.7,22.6], p= 0.006). We also confirmed a
significant enrichment of de novo CNVs in schizophrenia (OR= 5.0 [1.5,16.8], p= 0.007). Our
results suggest that rare spontaneous mutations are an important contributor to risk for bipolar
disorder and other major neuropsychiatric diseases.

Introduction

Bipolar disorder (BD, also known as manic-depressive illness) is a severe mood disorder
consisting of episodes of mania and depression. The lifetime prevalence of bipolar disorder
in the general population is ~1% and the illness is associated with considerable morbidity
and a high lifetime risk of suicide (Merikangas et al., 2011).

Genes play an important role in risk for BD. The rate of concordance for monozygotic twins
is 40%, compared with a 5% rate in dizygotic twins (Kendler et al., 1995, Kieseppa et al.,
2004 and McGuffin et al., 2003), and risk among the first-degree relatives of individuals
with BD is ten-fold greater than risk among the general population (Barnett and Smoller,
2009). However, as with other psychiatric disorders, the genetics of BD is complex,
probably due to a high degree of genetic heterogeneity and considerable phenotypic
heterogeneity of clinical populations (Potash et al., 2007).

Genetic risk factors with individually large effects are likely to be rare. Association-based
methods to identify common genetic risk alleles in BD have met with limited success. Early
studies implicated a few common variants with modest effects (Baum et al., 2008 and
Ferreira et al., 2008). Robust support for one of these loci, the L-type calcium channel
CACNI1AC, has been obtained in a recent meta-analysis of 11,974 patients and 51,792
controls, along with new evidence for a second locus, ODZ4 (Sklar et al., 2011). However,
the paucity of significant findings in very large samples of cases and controls suggests that
the contribution of common genetic variants to heritability of BD is limited.

Alternative approaches that focus on rare genetic variants are needed. One genetic approach
that has been used effectively to overcome some of the problems of heterogeneity is the
genome-wide analysis of rare copy-number variants (CNVs). Studies from our group
(McCarthy et al., 2009, Sebat et al., 2007, Vacic et al., 2011 and Walsh et al., 2008) and
from multiple independent groups (International Schizophrenia Consortium, 2008, Pinto et
al., 2010, Stefansson et al., 2008 and Xu et al., 2008) have now firmly established that rare
CNVs contribute to genetic risk for schizophrenia (SCZ) and autism spectrum disorder
(ASD) and, in particular, that spontaneous (de novo) CNVs are important risk factors in the
sporadic form of these disorders (Levy et al., 2011, Marshall et al., 2008, Sanders et al.,
2011, Sebat et al., 2007 and Xu et al., 2008).
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Observations of a similar nature have been made in studies of BD. CNV loci at 16p11.2
(McCarthy et al., 2009) and 3929 (Clayton-Smith et al., 2010, Mulle et al., 2010 and
Quintero-Rivera et al., 2010) confer risk for multiple psychiatric disorders, and two studies
have found preliminary evidence implicating both in BD (McCarthy et al., 2009 and
Quintero-Rivera et al., 2010). Two studies have demonstrated an enrichment of rare CNVs
in patients with bipolar disorder (Priebe et al., 2011 and Zhang et al., 2009) as compared
with healthy controls. In both studies, the greatest enrichment was observed in subjects with
an earlier disease onset, defined as an age at onset (AAO) < 18 and < 21 in Zhang et al.
(2009) and Priebe et al. (2011), respectively. However, two subsequent studies did not
support these findings (Grozeva et al., 2010 and McQuillin et al., 2011). Thus, the role of
copy-number variation in conferring risk for bipolar disorder remains in question (Grozeva
etal., 2010 and Zhang et al., 2009).

Some of the earliest conclusive evidence for the role of rare CNVs in psychiatric disorders
has come from family-based studies that examined the genomic burden of spontaneously
occurring (de novo) CNVs (Marshall et al., 2008, Sebat et al., 2007 and Xu et al., 2008). De
novo CNVs have consistently shown the strongest association with risk for autism (Itsara et
al., 2010, Levy et al., 2011, Pinto et al., 2010 and Sanders et al., 2011) or schizophrenia (Xu
et al., 2008), with a 5- to 10-fold enrichment in patients as compared with controls. We
reasoned that if rare highly penetrant CNVs contribute to risk for bipolar disorder, the
genetic effect would be most evident for de novo mutations. We further reasoned that the
contribution of de novo CNVs to risk of bipolar disorder would be greatest in patients with
an earlier disease onset (AAO < 18). We screened for de novo CNVs = 10 kb in size in
blood-derived DNAs from 788 subject-mother-father trios including subjects with diagnoses
of bipolar disorder and schizophrenia, and normal healthy controls. Here, we show that rare
de novo copy-number mutations are significantly enriched in bipolar disorder and in
schizophrenia.

Our study sample included 788 subject-mother-father trios with confirmed parentage. DNA
from all subjects was derived from whole blood. Details of the subjects are described in the
Supplemental Experimental Procedures (available online). Diagnoses of subjects included
bipolar disorder (n = 185, including 107 with an age at onset < 18), schizophrenia (n = 177),
and healthy controls (n = 426). While the primary disease focus of this study was BD, the
inclusion of an additional schizophrenia cohort served first to replicate the one previous
study of de novo CNVs in SCZ (Xu et al., 2008) and second to enable a valid comparison of
patterns of de novo CNVs in BD with another disorder. In addition, a small set of autism
spectrum disorder (ASD) trios (n = 45), all of which had been included in a previous study
(Sebat et al., 2007) and three of which carried known de novo CNVs, were included as a
“positive control” to confirm the sensitivity of our methods for detecting de novo events.

We performed high-resolution genome-wide copy-number scans, using the NimbleGen HD2
array comparative genomic hybridization (CGH) platform, on all subjects and their
biological parents. Data processing and CNV detection were performed as described in
Experimental Procedures. CNV call sets were filtered based on probe ratio (<0.8 and > 1.2),
number of probes (=10), frequency (<1%), and confidence score (Supplemental
Experimental Procedures, Tables S1 and S2, and Figures S1 and S2). Rare CNVs that were
present in subjects and not in their parents were subsequently validated and fine mapped
using a custom tiling-resolution CGH array (Oxford Gene Technology) (Table S3. Custom
Tiling array CGH Validation of Putative De Novo CNVs and Document S1. Figures S1-S3;
Tables S1, S2, S4-S8, and S10; and Supplemental Experimental Procedures). Results for the
genome-wide scans, tiling array validations, and breakpoint sequencing are illustrated by
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four examples: a deletion involving CMIP and PLCG2 genes (Figure 11) and an exonic
deletion of LINGO2 gene (Figure 111) detected in subjects with a diagnosis of BD, and an
intronic deletion of CSMD3 gene (Figure 21) and a deletion adjacent to UGT8 gene (Figure
211) detected in subjects with a diagnosis of SCZ.

A total of 23 de novo CNVs were detected and validated in our study sample, including
fourteen deletions and nine duplications (Table 1). De novo CNVs ranged in size from 15.1
to 7,178 kb, with a median size of 112 kb, and contained a median of two genes.

About one-third (8/23) of de novo CNVs in our study were flanked by segmental
duplications (SDs) at one (6/23) or at both boundaries (2/23). This class of CNV most likely
occurred by nonallelic homologous recombination (NAHR) (Lupski, 1998). By contrast, the
majority of de novo CNVs were not flanked by SDs. Breakpoint sequences were obtained
for five deletions (Table 1). Junction sequences of three out of five deletions were in short
interspersed nuclear element (SINE) repetitive elements and two deletions had unique
sequences at their breakpoints. A 1 bp insertion occurred at one of the breakpoints (see
underlined base in Figure 21). Notably, the median size of SD and non-SD-mediated de novo
CNVs was 722 kb and 67 kb respectively, consistent with previous studies that have found
differences in CNV size related to the underlying mutational mechanism (ltsara et al., 2010
and Stefansson et al., 2008).

De novo CNVs were significantly associated with BD and SCZ (Table 2). The rate of de
novo mutation in controls was 0.9% (4/426). This rate is consistent with estimates from
previous studies ranging from 0.5% to 3% (Conrad et al., 2010, Itsara et al., 2010, Levy et
al., 2011, Sebat et al., 2007 and Xu et al., 2008). The observed rate of de novo CNVs in
bipolar disorder subjects was 4.3% (8/185), a significant enrichment compared with controls
(p =0.009, OR =4.8[1.4,16.0]). De novo CNVs were also detected at a significantly higher
rate (8/177, 4.5%) in schizophrenia subjects than in controls (p = 0.007, OR =5.0
[1.5,16.8]). These results provide significant evidence for an association of de novo
mutation with bipolar disorder and confirm earlier reports of a high rate of de novo copy-
number mutation in schizophrenia (Xu et al., 2008).

We investigated the influence of age at onset on the frequency of de novo mutations. After
stratifying patients by age at onset < 18, we observed a significantly higher rate of de novo
CNVs in early-onset BD (p = 0.006, OR = 6.3 [1.7,22.6], Table 2). This difference was also
nominally significant (p = 0.03) based on a survival analysis comparing AAO in subjects
with or without a de novo CNV (Figure 3A). By contrast, we did not observe an effect of
AAO on the frequency of de novo mutations in schizophrenia (Table 2, Figure 3B).

We further reasoned that frequencies of de novo CNVs might be influenced by the presence
or lack of a family history of mental illness, a hypothesis based on earlier findings by our
group and others that de novo CNVs occur more frequently in sporadic cases of ASD
(Marshall et al., 2008 and Sebat et al., 2007) and schizophrenia (Xu et al., 2008). We
stratified subjects based on evidence of positive family history, defined as having a first-
degree relative with a diagnosis of bipolar I, bipolar 11, major depression, schizophrenia,
schizoaffective disorder, autism, or intellectual disability. In BD and SCZ cohorts, rates of
de novo mutation were not higher in sporadic cases as compared with subjects with a
positive family history (Table S5).

While de novo CNVs might have a stronger effect size, it is quite plausible that inherited
CNVs could also contribute to risk for BD. Notably, inherited CNVs detected in this study
included variants at loci that have been previously linked to schizophrenia (International
Schizophrenia Consortium, 2008 and Stefansson et al., 2008), including a duplication at
1g21.1 in a subject with bipolar disorder and a duplication and a deletion at 15g13.3
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detected in subjects with bipolar disorder and schizophrenia, respectively (Document S2,
bed file). Therefore, we examined the burden of rare inherited CNVs overlapping with genes
in BD, SCZ, and controls, and subjects were stratified based on family history. We observed
a trend of enrichment for large (=500 kb) inherited duplications in familial cases of bipolar
disorder (OR =1.77, p = 0.03, Table 3). We did not observe an enrichment of deletions in
familial bipolar disorder. Likewise, we did not observe a significant enrichment of deletions
or duplications in sporadic bipolar disorder or in schizophrenia (Table 3). These results are
consistent with a role for inherited CNVs in familial BD, particularly for large duplications;
however, data from a much larger sample are needed to draw firm conclusions.

We sought additional genetic evidence for the loci at which we found de novo CNVs by
performing follow-up analyses of the 23 de novo CNV regions in additional cohorts and
families. We performed an analysis of CNVs in SNP genotyping data from multiple case-
control studies, including the Bipolar Genome Study (BiGS) and Molecular Genetics of
Schizophrenia (MGS) study (see Supplemental Experimental Procedures). De novo CNV
regions were tested for association with BD and SCZ using a permutation-based method
described previously (Vacic et al., 2011) (see Supplemental Experimental Procedures). No
significant associations were detected in bipolar disorder (Table S6A). In schizophrenia,
three genomic regions were significant (Table S6B), all corresponding to CNVs that have
been previously implicated in schizophrenia at 3929 (Mulle et al., 2010), 7936.3 (Vacic et
al., 2011), and 16p11.2 (McCarthy et al., 2009).

Previous studies have reported that rare CNVs associated with neuropsychiatric disorders
are enriched for genes involved in neurodevelopment (Walsh et al., 2008 and Zhang et al.,
2009). Here we examined whether genes impacted by de novo CNVs in SCZ and BD are
enriched in specific functional categories. Pathway enrichment analysis was performed on
the sets of genes overlapping with de novo CNVs in SCZ, BD, and controls (see
Experimental Procedures). Enrichment of functional classes of genes was tested using the
DAVID software (http://david.abcc.ncifcrf.gov/), followed by two additional permutation-
based tests to correct for the known bias of CNVs toward large genes (Raychaudhuri et al.,
2010), one implemented as a case-only analysis and a second implemented as a case-control
analysis in PLINK (http://pngu.mgh.harvard.edu/~purcell/plink/cnv.shtml#burden?2).

Based on the primary analysis using DAVID, eight functional categories were enriched
among de novo CNVs in SCZ (p < 0.05). Three were also found to be enriched based on
permutation tests of de novo CNVs in cases and controls, including “neural tube
development,” “hindbrain development,” and “response to ethanol” (Table 4). Genes
involved in neurodevelopment were not enriched among de novo CNVs in BD (Table 5) or
in controls (Table S7). We then extended our analysis of schizophrenia to a large
independent data set of rare (>100 kb) CNVs from 8,290 cases and 7,431 controls. Eight
categories were tested in the case-control sample using the PLINK-CNV parametric test, and
two categories, “synapse” and “Kelch-type beta propeller,” were significantly enriched
among rare variants in cases (Table 4). The case-control data set did not provide significant
support for an enrichment of genes related to neural tube development or hindbrain
development. While the strength of evidence supporting specific pathways differs between
data sets, we do find evidence consistent with our earlier observations that there is an
enrichment of “neurodevelopmental” and “synaptic” genes among rare CNVs in SCZ
(Walsh et al., 2008).

Discussion

Here we find strong evidence implicating rare de novo CNVs in genetic risk for bipolar
disorder. We also confirm previous findings that de novo CNVs occur at a significantly
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increased rate in individuals with schizophrenia (Xu et al., 2008). Based on our study, a
contemporaneous study (Kirov et al., 2011), and an earlier study by our coauthor (Xu et al.,
2008), we estimate that the overall frequency of de novo CNVs > 10 kb is approximately 4%
in BD and 5%-10% in SCZ.

Two previous case-control studies have observed an enrichment of rare CNVs in bipolar
disorder and in subjects with an early age at onset. However, the observed effects were small
(OR ~ 1.3) and results from two other studies (Grozeva et al., 2010 and McQuillin et al.,
2011) did not support these findings. In our present study, which focused on the detection of
de novo CNVs using a family-based design, we observe a large effect (OR > 4). This is
consistent with other family-based studies of autism (Levy et al., 2011, Marshall et al., 2008,
Sanders et al., 2011 and Sebat et al., 2007) and schizophrenia (Xu et al., 2008 and Xu et al.,
2009) that have found a strong and robust genetic effect for de novo mutations and a weaker
genetic effect for inherited variants. The much greater effect size for de novo CNVs as
compared with inherited variants is consistent with de novo mutations having a much higher
proportion of risk alleles relative to neutral alleles.

The high-density microarray platform used in this study (2.1 million probes) provides good
ascertainment of CNVs > 10 kb, a substantial improvement in sensitivity over earlier studies
of schizophrenia and autism. De novo CNVs of intermediate size (10-100 kb) were detected
a rate of 3/426 (0.7%) in controls and at a rate of 3/177 (1.7%) in schizophrenia and 5/185
(2.7%) in bipolar disorder. Based on these observations, intermediate-size CNVs may
contribute to risk for these disorders; however, they occur in a small fraction (2%—3%) of
cases, and the relative effect size is smaller than for large de novo CNVs. We conclude that
a small fraction of the heritability in schizophrenia can be found among intermediate sized
de novo structural variants.

The effect of de novo CNV on age at onset in bipolar disorder was nominally significant.
These preliminary findings and similar results from previous studies (Priebe et al., 2011 and
Zhang et al., 2009) suggest that individuals with an early onset of mania might constitute a
subclass of bipolar disorder in which there is a greater contribution from rare alleles of large
effect. Also consistent with this notion is a previous study (Grigoroiu-Serbanescu et al.,
2001), which found that segregation of early-onset BD in families was consistent with major
gene effects, while familial segregation of late-onset BD was consistent with a multifactorial
etiology.

The observed rate of de novo CNVs in cases of bipolar disorder or schizophrenia with a
positive family history of mental illness was similar to the rate in sporadic cases. These
results contrast with earlier findings by our group and others in autism (Marshall et al., 2008
and Sebat et al., 2007) and schizophrenia (Xu et al., 2008) documenting a higher rate of
CNVs in sporadic cases as compared with subjects who have a positive family history.
These early observations have not been universally replicated (Kirov et al., 2011 and Pinto
et al., 2010). The reason for the inconsistency is not clear. Possibly, the initial findings were
incorrect. Alternatively, variation in the observed effect could occur by chance or it could
potentially be explained by methodological differences between cohorts in how mental
illness in first-degree relatives is ascertained.

Pathway analysis of genes impacted by de novo CNVs in SCZ lends support to independent
findings from our group (Walsh et al., 2008) and others (Kirov et al., 2011) that rare CNVs
in SCZ are enriched for genes that are related to synaptic function and other genes involved
in neurodevelopment. By contrast, categories that were found to be enriched among de novo
CNVs in BD were related to cell proliferation and shape and phospholipid metabolism
(Table 5), the biological relevance of which is far from obvious. Greater knowledge of the
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specific genes involved in these disorders is needed to determine how these pathways might
relate to the pathophysiology of disease.

Our findings establish a contribution of rare CNVs and spontaneous mutation to risk for
bipolar disorder. This can only be regarded as a starting point for studies of rare alleles in
BD and SCZ. A larger fraction of the heritability must lie among different classes of alleles
and will probably include rare and de novo point mutations and small insertions or deletions
(indels). Indeed, preliminary studies of a small number of families have found evidence that
the exomic burden of de novo point mutations is increased in schizophrenia (Girard et al.,
2011 and Xu et al., 2011). While the degree of enrichment of exonic point mutations in
schizophrenia (0.73/exome in cases as compared with 0.32/exome in controls in the
combined sample) is modest compared to the effect size for de novo CNVs, these results are
nevertheless intriguing. It is conceivable that the overall contribution of de novo CNVs and
point mutations to disease risk could be substantial. High-throughput sequencing in a much
larger number of trios will be needed to determine the total contribution of de novo mutation
to risk for BD and SCZ in the population.

Procedures

Experimental Procedures

The institutional review board of all participating institutions approved this study and
written informed consent from all subjects was obtained.

Microarray Data Processing and Segmentation

We performed high-resolution genome-wide copy-number scans, using the Nimblegen HD2
2.1 M array CGH platform, on all subjects and their biological parents. Complete details for
microarray intensity data processing, CNV discovery, and quality control (QC) measures for
sample hybridizations are provided in Supplemental Experimental Procedures. In brief,
dual-color microarray hybridizations were performed at the service laboratory of Roche
NimbleGen according to the manufacturer's specifications. Raw intensity data were
normalized in a two step process, first involving “spatial” normalization which is an
adjustment for regional variation in probe intensities across the surface of the array, and
second involving “invariant set normalization,” which normalizes the distribution of
intensities for test and reference samples. CNV detection from the Log2 probe ratios was
performed using two segmentation algorithms, HMM Seg and Genome Alteration Detection
Analysis (GADA).

In addition, probe ratio data was used to identify and genotype common copy-number
polymorphisms (CNPs) using automated correlation- and clustering-based methods (see
Supplemental Experimental Procedures). Stringent QC filters were applied to arrays and
CNV calls to ensure that the ascertainment of CNVs was consistent between subjects and
their parents (see Supplemental Experimental Procedures and Table S1).

Rare CNV Determination

We determined the population frequency of CNVs detected in our study sample by
comparison with CNV calls (based on = 50% reciprocal overlap of its CNV length) from a
larger reference population of 4,081 unrelated subjects analyzed in our laboratory using the
same array platform. Unrelated subjects consisted of 3,309 population controls, 604 subjects
with diagnosis of schizophrenia, 154 subjects with mood disorders, and 14 subjects with a
diagnosis of ASD (Table S2). CNVs that were detected in > 1% of the reference population
were excluded.
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Rare CNVs were further filtered by three metrics: (1) Confidence score (CS), (2) segmental
duplication (SD) content, and (3) overlap with validated common copy-number loci. CS was
calculated using MeZOD, an outlier-detection-based method published previously
(McCarthy et al., 2009), where the rare CNV call is assigned a p value based on the
distribution of probe ratios across the reference population. Thresholds for CS were then
adjusted within each size class of CNV to achieve a 5% rate of mendelian inconsistency
across all size classes (Figure S1). Second, we removed rare CNVs which had > 70%
overlap with known SDs from the UCSC hg18 Human Genome browser annotations. A SD
filter is helpful because it eliminates regions where the exact location, boundaries, and
patterns of inheritance of the CNV calls are often too difficult to determine from array CGH
data due to the complexity of the local genomic architecture. This final rare CNV call sets
consisted of 3,856 CNVs in 788 offspring including BD, SCZ, and controls and in 45 ASD
subjects (Table S1).

Parentage Testing

Before examining the parent-child transmission of CNVs in trios, we first confirmed
parentage of all trios included in CNV analysis. We used genotypes from 486 CNPs (see
Supplemental Experimental Procedures) to test relatedness. For each pair within a trio (i.e.,
mother-child, father-child, and mother-father), genetic relatedness was tested by the
Glaubitz Relationship Score (GRS) (Glaubitz et al., 2003). Based on this test, first-degree
relative pairs (i.e., mother-child and father-child) were clearly distinguishable from the
distribution of GRS scores for unrelated individuals (i.e., mother-father pairs) as shown in
Figure S2. We applied a threshold of > 0.37 to define relatedness. Thirty-two families failed
parentage testing, and the remaining 788 trios were included in our analysis. Pairwise
relationship of all subjects in 788 trios was confirmed using a second relatedness testing
method, Graphical Representation of Relationships (GRR, http://www.sph.umich.edu/csg/
abecasis/GRR/).

Identification of De Novo CNVs

The identification of rare de novo mutations from CNV data on families is nontrivial. While
CNV calls that show mendelian patterns of inheritance (which is the overwhelming majority
of CNVs in the genome) are quite reliable, the fraction of CNV calls that are present in
offspring and not in parents are enriched for technical errors, in particular false-positive calls
(in the offspring) and false-negative calls (in parents). In addition, the enrichment of such
errors is greater for smaller CNVs. To address these sources of error, we designed a set of
algorithms for de novo CNV identification in families. The false-positive CNV call rate was
controlled (maintained at 5%) for a wide range of CNV sizes by adaptive filtering of
confidence scores (CSs), as described above. In order to minimize the number of false-
negative calls in parents, the CNV region was directly genotyped using the MeZOD, and a
confidence score was used to assign genotypes to the parents. Rare CNVs in children were
called inherited if the CS was < 0.04 in either of the two biological parents and de novo if
CS was > 0.04 in both biological parents. We identified 145 putative de novo CNVs in 788
subjects including BD, SCZ, and controls.

Custom Tiling Array Validation of Putative De Novo CNVs

Array CGH

All putative de novo CNVs detected in our whole-genome scans were independently
validated on second custom tiling array platform.

A custom Agilent 1M array was designed with dense coverage (average probe spacing of
200 bp) of all putative de novo CNV regions. Samples were coded and hybridizations were
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done in random order to avoid any plate effects. Two-color hybridizations were performed
with two micrograms of sample and reference DNA (CHP-SKN-1) and hybridized to the
array at the Oxford Gene Technology service laboratory (Cambridgeshire, UK).

Array Data Processing

Raw intensity data were normalized by Oxford Gene Technology service lab using Agilent's
recommended normalization method. Experiments with poor derivative log2 ratio spread
(DLRS > 0.2) were repeated. We received normalized intensity data on all samples from
Oxford Gene technology in one batch. Probe Log2 Ratios were then standardized within
each array.

CNV Detection

Detection of rare CNVs was performed using MeZOD as follows. For each CNV region that
was defined in our whole-genome scans, we computed the median Z score of tiling array
probes in each individual. The median of a region was then standardized vertically across all
individuals. We then assign deletion genotypes using a Z score threshold of < -2 and
duplication genotypes using a Z score threshold of = +2. Positive CNV calls were further
verified by manual inspection of log2 ratios in the subject, mother, and father.
Representative examples of validated de novo deletions are shown in Figure 1 and Figure 2.
The details of the number of putative de novo CNVs identified in BD, SCZ, and controls
and their validation by tiling array CGH are described in Table S3. The rates of validations
are presented in Table S4. The overall validation rate of putative de novo CNVs was 16%
(23/145). As expected, the validation rate was highest for CNVs > 100 kb in size and lowest
(3%) for CNVs that were < 20 kb in size.

We evaluated the performance of our de novo CNV calling method by: i) analyzing a small
set of 45 ASD trios included in our previous CNV study (Sebat et al., 2007) and, ii) by
comparing results on validated control de novo CNVs identified by our group with results
from a recent study(Levy et al., 2011) by Mike Wigler's group. In 45 ASD trios we detected
and validated all 3 de novo CNVs that were identified in our previous study and in addition,
we identified one novel de novo CNV 38 kb in size (Table S8). We compared our list of
validated control de novo CNVs with de novo CNVs reported by (Levy et al., 2011) in the
same 426 control trios using an entirely different informatics approach to identify de novo
CNVs. Both groups identified four validated de novo CNVs in controls and therefore
observed an identical rate (0.9%) of de novo CNVs in 426 controls. Three out of four de
novo events overlapped between two groups. One de novo event that was unique to each
group was < 20 kb in size. These comparisons showed that our method had high sensitivity
in identifying de novo CNVs in different size classes.

Breakpoint Sequencing

CNV boundaries were estimated based on the probe (log2) ratio information from tilling
array CGH. PCR primers were then designed to amplify the breakpoints of five de novo
deletions. PCR was performed on genomic DNA from all members of the trio. PCR
products were sequenced by the Sanger method using both forward and reverse primers
specific for each de novo deletion.

Gene Set Enrichment Analysis of De Novo CNVs

We examined whether genes impacted by de novo CNVs in SCZ, BD, and controls were
enriched for specific functional categories. In addition, functional categories found to be
enriched within each diagnostic group were interrogated in rare CNVs from large

independent cases control data sets including 8,290 SCZ, 2,777 BD, and 7,431 controls.
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For gene set enrichment analysis, we used 39 de novo CNVs including nine in SCZ, ten in
BD, four in our controls, and an additional 16 CNVs detected in a previous study by Levy et
al. (2011) in an independent set of control subjects using the same array platform. We prefer
to use only de novo CNVs as a control set. Naturally occurring variants in the population do
not make the ideal control set for this analysis because the gene content of these CNVs is
shaped by natural selection and is not likely to be representative of random mutation.

Gene set enrichment analyses was performed on the sets of genes impacted by de novo
CNVs in SCZ, BD, and controls. The primary step was performed using “DAVID
Bioinformatics Resources 6.7” website (http://david.abcc.ncifcrf.gov/) using Gene Ontology
terms—nbiological processes (GO_BP), cellular components (GO_CC), and molecular
functions (GO_MF)—including KEGG, BioCarta, BBID, and Panther pathway databases
and by excluding pathway results containing < 3 CNV genes. We selected the nonredundant
pathways from DAVID with p value < 0.05 for further analysis by permutation-based test.

Based on analysis using DAVID, eight categories were enriched among de novo CNVs in
SCZ (Table 4), seven categories were enriched among de novo CNVs in BD (Table 5), and
nine categories were enriched among de novo CNVs in controls (Table S7).

The enrichment test performed within the DAVID software does not correct for certain
biases of CNVs toward certain functional classes of genes and large genes in particular. In
order to correct for these biases we applied two permutation-based tests to the pathways
found to be enriched by DAVID. First, we performed a case-only permutation-based test by
constructing empirical null distributions that took the CNV size distribution and gene
number into account. We randomly placed 10,000 sets of CNVs (same number of events,
size distribution) throughout the genome. Placement on any autosome was allowed, but we
sampled such that placement on chromosomes was weighted in proportion to the total
number of de novo CNVs observed on the respective chromosome. We controlled for the
number of genes impacted by CNVs by discarding individual permutations that intersected
with more or less than the number of genes impacted in the observed data (+ 10 genes). This
procedure led to 1,000-2,000 permutations of null hypothesis CNV sets each for the bipolar,
schizophrenia, and control de novo CNV sets. Significance for each of the query pathways
was assessed by counting the number of pathway genes impacted by each null hypothesis
CNV set, thus leading to a null distribution against which we could compare the number of
observed hits and calculate enrichment p values.

Second we applied a case-control CNV enrichment test implemented in PLINK (http://
pngu.mgh.harvard.edu/~purcell/plink/) to the eight gene sets (pathways) associated with
SCZ de novo CNVs and seven gene sets associated with BD de novo CNVs. For analysis of
de novo CNVs using PLINK we report the one-sided empirical p value based on 10,000
permutations. A category was defined as “enriched” if nominally significant (p < 0.05) by
all case-only and case-control permutation tests. Pathway enrichment analysis was also
applied to de novo CNVs in control, and significance was based on a single (control only)
permutation test.

We extended our analysis of pathways identified in this study (Table 4 and Table 5, and S7)
to rare CNVs from large case-controls studies of SCZ and BD. These included rare CNVs
from 8,290 SCZ cases and 7,431 controls from Vacic et al. (2011), a combined sample of
three studies from our group, MGS (Levinson et al., 2011), and the International
Schizophrenia Consortium (International Schizophrenia Consortium, 2008), and a BD case-
control data set consisting of 2,777 cases and 3,508 controls from BiGS study (Smith et al.,
2009). Pathway enrichment was assessed using the case-control CNV enrichment test
implemented in PLINK.
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Figure 1. Detection, Validation, and Breakpoint Sequencing of De Novo CNVsin BD
Representative examples of microarray data and sequencing results are provided for
deletions detected in two subjects with diagnoses of BD, 410-10142 (panel I) and 410-10127
(panel I1).

(A) De novo CNVs were identified from whole-genome scans of the child, mother, and
father, using the NimbleGen HD2 platform.

(B) CNV validation and breakpoint refinement was performed by analysis of the trio using a
custom Agilent microarray with dense probe coverage of the target region (~200 bp
spacing).

(C) Deletion breakpoints were determined by PCR and Sanger sequencing.
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(D) UCSC genome browser tracks of known genes are shown to scale with a track for de
novo deletions displayed in red.
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Figure 2. Detection, Validation, and Breakpoint Sequencing of De Novo CNVsin SCZ
Representative examples of microarray data and sequencing results are provided for
deletions detected in two subjects with diagnoses of SCZ, 02-0104 (panel I) and 02-0047
(panel I1).

(A) De novo CNVs were identified from whole-genome scans of the child, mother, and
father, using the NimbleGen HD2 platform.

(B) CNV validation and breakpoint refinement was performed by analysis of the trio using a
custom Agilent microarray with dense probe coverage of the target region (~200 bp
spacing).

(C) Deletion breakpoints were determined by PCR and Sanger sequencing.
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(D) UCSC genome browser tracks of known genes are shown to scale with a track for de
novo deletions displayed in red.
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Figure 3. Survival Analysis of De Novo CNVsand Ageat Onset in BD and SCZ

We performed a survival analysis/Kaplan-Meier test to analyze the effect of de novo
mutations on age at onset in BD(h = 185, panel A) and SCZ (n = 177, panel B). This test
determines whether “time to diagnosis” differs systematically between patients who have de
novo mutations and those who do not. The test is formalized by performing the Mantel-
Haenszel test on the survival curves and reporting the resulting p value.
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