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Abstract
Over the past 25 years, a variety of methods have been developed for culture of Helicobacter
pylori in vitro. H. pylori is a capnophilic and microaerophilic organism that is typically cultured
using complex culture media. Analysis of H. pylori growth in chemically defined media has
provided insight into the nutritional requirements, physiology, and metabolic capacities of this
organism.
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Spiral-shaped bacteria were visualized in histologic sections of human gastric specimens
throughout most of the twentieth century, but these organisms remained uncharacterized
until 1984, when gastric bacteria (known now as Helicobacter pylori) were successfully
cultured in vitro for the first time by Marshall and Warren (1). These investigators isolated
H. pylori by placing minced human gastric tissue on non-selective media and culturing at
37°C under microaerobic conditions for 4 days, using methods similar to those used for
isolation of Campylobacter species. Over the past 25 years, there have been various
improvements in the methods for culture of H. pylori from human gastric specimens, but the
general approach remains similar to that which was used initially in 1984. General principles
include the use of a rich culture medium containing blood or serum, a microaerobic and
hypercarbic atmosphere, high humidity, temperature of 37°C, and incubation periods
ranging from 4 to 10 days (2). H. pylori can be cultured from gastric specimens using non-
selective media, but antibiotics are often added to allow selective growth of H. pylori. For
example, combinations of vancomycin, polymyxin, trimethoprim, bacitracin, nalidixic acid,
and amphotericin are commonly included in H. pylori-selective media.

After recovery of H. pylori from human gastric biopsy specimens, the bacteria can be
propagated in vitro using a variety of approaches. Commonly used media include Brucella
agar, Columbia agar, brain heart infusion agar, or trypicase soy agar as the base,
supplemented with sheep blood or horse blood (5–10%) (2). Growth of H. pylori on serum-
free medium can be accomplished by substituting β-cyclodextrin in place of blood products
(3). In addition, egg yolk emulsion medium has been described as a blood-free medium for
growth of H. pylori (4).
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H. pylori is a capnophilic organism that requires an atmosphere enriched in CO2 (typically 5
to 10%) for growth (5, 6). The requirement for high CO2 concentrations is probably related
to multiple factors. For example, production of pyruvate through CO2 fixation may provide
a route for carbon assimilation (7), and CO2 may have a role in pH homeostasis since H.
pylori carbonic anhydrase catalyzes interconversion of CO2 and HCO3

− (8). H. pylori is an
oxygen-sensitive microaerophile (5), and consequently, microaerobic conditions are used
when initially culturing H. pylori from gastric biopsy specimens. The sensitivity of H. pylori
to oxygen is attributed to oxygen-dependent inactivation of essential bacterial enzymes (6).
When present in high cell densities, laboratory-adapted strains of H. pylori can grow in a
range of atmospheric oxygen tensions ranging from microaerobic (<5% oxygen) to fully
aerobic (21% oxygen) (5). Several characteristics of H. pylori, including hemolysin
production, metronidazole resistance, ferredoxin oxidoreductase activity, and ability of the
bacteria to induce alterations in epithelial cells, are reported to differ depending on whether
the bacteria are grown in microaerobic or aerobic conditions (5, 9–11).

When growth of H. pylori in liquid culture is required, a commonly used medium is Brucella
broth supplemented with fetal bovine serum (5–10%). As an alternative to fetal bovine
serum, β-cyclodextrin, charcoal, or starch may be used (12). The exact mechanisms by
which serum, β-cyclodextrin, charcoal, or starch promote growth of H. pylori have not been
investigated in detail. One possibility is that serum may contain growth-stimulating factors.
β-cyclodextrin, charcoal, and starch may bind fatty acids or other toxic metabolites produced
by the bacteria (13, 14). Growth of H. pylori in liquid culture on a large scale has been
successfully accomplished by use of a fermentor (15, 16).

For some experiments, it is desirable to culture H. pylori using a defined medium instead of
the complex media described above. In general, defined media for culture of H. pylori
consist of various salts, a purine, vitamins, amino acids, and trace metals (17–20). To
enhance bacterial growth, the defined media can be supplemented with either bovine serum
albumin or a mixture of β-cyclodextrin and cholesterol (17, 19, 20). Initial formulations of
defined media for growth of H. pylori had a composition similar to that found in
commercially available RPMI tissue culture medium (17), whereas the composition of more
recent formulations is similar to that found in F12 medium (20). The use of defined media
for culture of H. pylori has allowed important insights into the nutritional requirements,
physiology, and metabolism of this organism (17–23), and also has facilitated analysis of the
H. pylori extracellular proteome (24, 25).

Nearly all H. pylori strains require arginine, histidine, leucine, methionine, phenylalanine,
and valine for growth (17–20). Interestingly, the amino acids that are essential for H. pylori
growth are similar to the amino acids that are essential for humans (26). There is variability
among strains in a requirement for alanine, serine, cysteine, proline, and isoleucine (17–20).
Other factors required for H. pylori growth include pyruvate, thiamine, and hypoxanthine
(20, 21), as well as several metals, including iron, zinc, and magnesium (21). These
nutritional requirements correlate with absence of the corresponding biosynthetic genes in
the H. pylori genome (27).

Although current culture methods provide valuable insights into the biology of H. pylori, it
is important to recognize the limitations of these systems in replicating conditions present in
the human stomach. Numerous bacterial proteins are required for H. pylori growth in vivo
but are non-essential in vitro (28). For example, urease (a nickel-containing enzyme) is
required for H. pylori colonization of the stomach (29, 30) but is not required for H. pylori
growth in vitro. Correspondingly, nickel is probably required for H. pylori growth in vivo,
but does not seem to be required for H. pylori growth in vitro (21). Mechanisms of nutrient
acquisition also may differ during bacterial growth in vivo compared to in vitro. For
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example, H. pylori utilizes free iron when cultured in vitro (21) but utilizes hemoglobin,
transferrin, and lactoferrin as iron sources in vivo (31). These examples illustrate that there
are likely to be important differences in nutritional requirements, nutrient acquisition and
metabolism of H. pylori in vivo compared to in vitro.
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