Skip to main content
. Author manuscript; available in PMC: 2015 Mar 1.
Published in final edited form as: Pattern Recognit Lett. 2013 Dec 8;38:132–141. doi: 10.1016/j.patrec.2013.11.021

Table 1.

List of notation.

D Input space dimensionality
N Number of training instances
R Projected subspace dimensionality
L Number of output labels

X ∈ ℝD×N Data matrix (i.e., collection of training instances)
Q ∈ ℝD×R Projection matrix (i.e., dimensionality reduction parameters)
Φ ∈ ℝD×R Priors for projection matrix (i.e., precision priors)
Z ∈ ℝR×N Projected data matrix (i.e., low-dimensional representation of instances)
W ∈ ℝL×R Weight matrix (i.e., classification parameters for labels)
Ψ ∈ ℝL×R Priors for weight matrix (i.e., precision priors)
b ∈ ℝL Bias vector (i.e., bias parameters for labels)
λ ∈ ℝL Priors for bias vector (i.e., precision priors)
T ∈ ℝL×N Auxiliary matrix (i.e., discriminant outputs)
Y ∈ {±1}L×N Label matrix (i.e., true labels of training instances)