Skip to main content
. 2014 Jan 30;7:272. doi: 10.3389/fnins.2013.00272

Figure 8.

Figure 8

To test recognition accuracy, the trained RBMs are sampled using the I&F neuron-based sampler for up to 1s. The classification is read out by identifying the group of class label neurons that had the highest activity. This experiment is run for RBM parameter sets obtained by standard CD (black, CD) and event-driven CD (green, eCD). To test for robustness to finite precision weights, the RBM was run with parameters obtained by event-driven CD discretized to 8 and 5 bits. In all scenarios, the accuracy after 50ms of sampling was above 80% and after 1s the accuracies typically reached their peak at around 92%. The dashed horizontal lines show the recognition accuracy obtained by minimizing the free-energy (see text). The fact that the eCD curve (solid green) surpasses its free-energy line suggests that a model that is tailored to the I&F spiking neural network was learned.