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Abstract
In the post-genomic era, the medical/biological fields are advancing faster than ever. However,
before the power of full-genome sequencing can be fully realized, the connection between amino
acid sequence and protein structure, known as the protein folding problem, needs to be elucidated.
The protein folding problem remains elusive, with significant difficulties still arising when
modeling amino acid sequences lacking an identifiable template. Understanding protein folding
will allow for unforeseen advances in protein design, often referred as the inverse protein folding
problem. Despite challenges in protein folding, de novo protein design has recently demonstrated
significant success via computational techniques. We review advances and challenges in protein
structure prediction and de novo protein design, and highlight their interplay in successful
biotechnological applications.
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Protein folding and design are two sides of the same coin
Proteins are polymeric chains of amino acids that organisms and cells rely on for signaling,
pathogen clearing, mobility, catalysis, recognition, shape, ordering, and stability. The
precise ordering of the amino acids in a protein’s sequence determines how the protein folds
into a 3-dimensional structure, and thus its biological function. As our knowledge of the
connection between sequence, structure, and function has advanced, interest has grown in
designing proteins on a sequence level to produce novel folds and function. Brute-force
experimental approaches to solving protein structures and designing protein sequences for
new functions remain time consuming and expensive, and add little to our understanding of
the physical principles required for both problems [1].

Protein structure prediction aims to accurately determine the full 3-dimensional structure of
a protein given only its amino acid sequence. Structure prediction is very challenging if only
low homology templates exist. De novo protein design is the inverse problem [2, 3]; given a
rigid or flexible backbone structure, one aims to determine a sequence that will fold into that
structure. Different sequences can fold into the same structure, so there is degeneracy in
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protein design space. The existence and accuracy of protein structures as templates for
protein design can significantly impact potential success. For this reason, the ability to
produce viable protein templates through protein structure prediction is important for protein
design, and for advancement in biotechnology and drug discovery. In this review, we
describe advances and challenges in the fields of protein structure prediction and de novo
protein design focusing on the interplay necessary for success.

Figure 1 schematically shows the roadmap and key challenges in protein structure prediction
and de novo protein design. The last few years have shown impressive applications of
computational structure prediction and design to biotechnology, spanning peptide or
antibody therapeutics, novel biocatalysts, and self-assembling nanomaterials.

State-of-the-art advances and challenges in protein structure prediction
and refinement

The consistent determination of structure from sequence is one of nature’s greatest unsolved
problems and has recently passed the 50 year milestone [4]. Accurately predicting the three
dimensional structure of a protein involves a series of steps performed on a sequence of
amino acids: secondary structure prediction (identifying local interactions between amino
acid residues), structural alignment to candidate template structures, conformational
sampling, and selection (Figure 2A and Box 1). A predicted structure may then undergo
refinement, in an attempt to improve the accuracy of that structure [5]. Historically, most
refinement methods degrade rather than improve the accuracy of the predicted structure,
making protein structure refinement a substantial unsolved problem in its own right [5, 6].
We review recent progress and challenges and refer you to the reviews by Zhang [7] and
Floudas [8] for prior advances.

BOX 1

Protein Structure Prediction and De Novo Protein Design are Related
Problems

Protein structure prediction (Figure 2A) begins with a sequence and produces a structure.
Two paths are often followed: ab initio and template-based. Ab initio methods attempt to
predict the structure from first principles without a template. Some methods utilize
secondary structure and contact predictions as constraints. The most expensive step is the
conformational sampling in the presence or absence of constraints. Template-based
methods begin with a sequence, predict the secondary structure, and attempt to find a
template structure and/or fragments from existing structures in the PDB that will fold into
the target sequence. These methods rely on the ability to identify suitable templates and
then align the target sequence properly to the template sequence. Both methods use
advanced sampling techniques such as MD, rotamer optimization, Monte Carlo, and
global optimization. After sampling, both methods may cluster or rescore the structures,
and may subject them to a refinement stage to increase prediction accuracy. For
sequences of ~30% identity or more to a template, one can expect that the predicted
structure is a reasonable estimate of the topology. Below 30%, accurate prediction is
more challenging.

Protein design (Figure 2B) begins with a structure or complex and produces new
sequences. Design positions are chosen to be mutated. Next, the sequence may be aligned
to other homologous sequences to produce biological constraints on the sequence space.
The solvent accessible surface area (SASA) of each residue being designed can be taken
into consideration to further constrain the design space. Sequence design is then
performed and can be done using a single state or multiple states. In this step the
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structure being designed can remain fixed, with only side-chain rotamers changing, or
may be completely flexible. The algorithms for sampling come from the same classes of
techniques used in protein folding. Designed sequences may then be clustered and
evaluated with a more detailed scoring function. Design produces one or many sequences
that are predicted to fold into the input structure, often with enhanced biophysical
characteristics.

Forcefields are the glue connecting structure prediction and design. They describe the
interactions between atoms in a system, guide sequence and structural search, and
discriminate between optimal and suboptimal solutions. An improved description of
atomistic interactions in forcefields benefits both areas. Improving our ability to predict
structures will improve our ability to model complexes of druggable targets and design
new sequences.

The Critical Assessment of Techniques for Protein Structure Prediction (CASP) [9] occurs
biennially and recently completed its 10th experiment. For the CASP competition,
prediction targets are categorized into two groups depending on the availability of structural
templates; (1) template-based modeling, in cases for which templates are available and (2)
free modeling, in cases for which templates are not available. Table 1 shows the top 5
structure prediction servers in the template-based modeling (TBM) and free modeling (FM)
categories (www.predictioncenter.org/casp10/). The average of the top 5 server methods in
the free modeling category represents ~1/2 the accuracy of the models produced in template-
based modeling. These servers may not apply the same prediction protocol for all targets and
instead may perform different pipelines based on the predicted difficulty of the target [10].
The Zhang-Server was assessed to be the best overall server in CASP10 in both TBM and
FM. Additionally, Table 1 lists the top 5 protein structure refinement methods assessed in
CASP10. The methods listed in Table 1 represent the current state-of-the-art in protein
structure prediction and protein structure refinement.

Kryshtafovych et al. constructed a difficulty scale [4] based on the similarity of the sequence
and structure of the target to that of the closest template available in the Protein Data Bank
(PDB) during CASPs 1–9 [11]. “Easy” targets typically corresponded to those which there
are directly identifiable templates through sequence homology. “Hard” targets may have
excellent structural templates in the PDB, but their sequences are often so dissimilar to the
target protein that it is nearly impossible to identify them. Additionally, “Hard” targets may
have no template at all and may represent a new fold. Figure 3 highlights CASP
performance for “Easy” and “Hard” targets over the last 18 years, and several top free
modeling predictions in the last 3 CASPs. Despite the progress attained for easy targets with
identifiable templates, predictors face challenges accurately predicting structures for
sequences with difficult to identify templates [12].

Template-Based Modeling
TBM has served as a reliable prediction method given an appropriate template structure.
This approach utilizes the input sequence and attempts to identify a structure(s) whose
sequence(s) can be aligned with the target sequence to infer information about secondary
structure and tertiary structure (including topology and residue-residue contacts).

The top performing servers in the TBM category in CASP10 are exhibited in Table 1 and
described below. Zhang-Server utilizes a combination of LOMETS[13], I-TASSER [14–16],
and QUARK [17]. I-TASSER identifies templates via LOMETS, performs fragment-
assembly via replica-exchange Monte Carlo simulations, and refinement using REMO [18]
and fragment-guided MD (FG-MD)[19]. Protein Modeling System (PMS) uses
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conformational space annealing (CSA) with Lorentzian energetic restraints in MODELLER,
combining physical and knowledge-based energy terms [20]. HHpred-thread is very fast and
accurate, and includes improvements with three statistical scores to compare the target’s
sequence profile with template structure and sequence profiles [21]. RaptorX-YZ is an
enhancement to RaptorX [22] using machine learning to predict contacts between residues
for use as restraints. BAKER-ROSETTASERVER aligns the candidate sequence to multiple
templates, assembles fragments using coarse-grained insertion, utilizes Monte Carlo search
for both coarse-grained and all-atom sampling of favorable backbone and rotameric states,
and energy minimization in both torsion and Cartesian space. Top-scoring models are
relaxed according to the Rosetta all-atom forcefield [23]. Commonalities in these top-
performing methods are that both PMS and RaptorX utilize MODELLER in model building,
and both BAKER-ROSETTASERVER and Zhang-Server utilize Monte Carlo fragment
assembly to aid in sampling.

TASSER-VMT was introduced by Zhou and Skolnick [24], and uses the improved SP3

alternative target-template alignment combined with other alignment methods as input to
TASSER simulations. They introduced GOAP, a statistical potential with orientation-
dependent correction terms for evaluating model quality, recognizing 226 native structures
of 278 targets stemming from 11 commonly-used decoy sets [25].

Free Modeling
Free modeling is the prediction of structures for sequences that have no distinguishable
template in the PDB. These predictions are considered to be “Hard” and success on this
front remains limited (Figure 3A) and represents the “holy grail” of protein folding. In
discussing the challenges in free modeling, it is important to point out the difference
between “indistinguishable” and “non-existent” templates. The PDB contains over 92,000
solved structures that offer a wide-variety of templates and often several candidate templates
for a target sequence. Zhang and Skolnick showed for a set of non-homologous proteins that
they can always find similar folds to the native with an average RMSD of 2.5 Å [26].

The ability to predict such difficult targets relies on the ability to select the proper template
from structures contained in the PDB and this still remains very challenging evidenced by
the low average GDT_TS of even the top predictors in CASP10 (see Table 1) and overall in
CASPs 1–9 (see Figure 3A) [12]. Interestingly, none of the best free modeling methods used
strictly ab initio methods; all utilize template information. Also, Zhang-Server, using an
interplay of I-TASSER (which uses templates) and QUARK [17] (which is denoted as first
principlies) outperformed QUARK alone.

Molecular Dynamics Driven Folding
Duan and Kollman folded Villin headpiece starting from an unfolded state using molecular
dynamics without the simulation having knowledge of the native contacts [27]. Since that
seminal result, a number of studies have reported the ability to simulate the folding of small
proteins.

Scheraga and coworkers, using their developed UNRES coarse-grained molecular dynamics
package, recently summarized notable first principles predictions made during CASP10
[28]. They were able to predict the correct packing symmetry for a target with a new fold.
Recent advances in implementations, extensions, and applications of UNRES are reviewed
by Liwo et al. [29]. Shaw and coworkers used equilibrium MD simulations to study the
general folding landscape of 12 fast-folding small proteins [30]. In 8 out of the 12 studied, a
structure within 2 Å of the native was observed. Shaw and coworkers were able to fold
Ubiquitin [31], a 76-residue long protein contained in most eukaryotic organisms having a
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folding time on the millisecond timescale. These successes have required adjustments in
force fields (CHARMM22* [32]), total simulation time on the order of milliseconds, explicit
treatment of solvent, and specialized hardware (Anton [33]).

Conformational sampling has been suggested as a major limitation to predicting high-
resolution structures [34], while it has been recently claimed that sampling is not the main
issue, but instead it is forcefield inaccuracy that needs improvement [35]. At this point, there
is limited evidence for the recent claim, and as the conformational search in even the
simplest biophysical model is NP-complete [36], we view that both conformational
sampling and forcefield development are key limitations.

Contact and β-Sheet Topology Prediction
Jones and coworkers introduced the contact prediction method PSICOV, which utilizes
sparse inverse covariance estimation to predict contacts yielding a long-range L/5 contact
precision ≥ 0.5 [37]. The approach has the limitation that it requires at least 500 sequences
in the multiple sequence alignments for convergence. Marks and Sander introduced EVFold,
which predicts contacts based on maximum entropy and co-evolutionary couplings for
contact predictions, but a similar challenge is faced in that 1000 sequences are required in
the multiple sequence alignments to produce accurate contacts [38].

Success in contact prediction can substantially influence conformational search.
Optimization-driven methods based on first-principles were developed for the prediction of
inter-helical contacts in α-helical proteins [39] and both α/β and α+β proteins [40]. After
input to the global-optimization framework ASTRO-FOLD [41, 42], the contacts reduced
the RMSD range of the sampled conformers by one-half [40]. Subramani and Floudas
introduced BeST, for the prediction of β-sheet topologies with high precision and recall [43].
Baker and coworkers demonstrated in CASP10 with Rosetta-based methods [23] that given
correct contacts for approximately one in twelve residues, this enabled the search for and
construction of the correct topology [44], implying that if one can predict contacts with high
positive predictive value, one can construct accurate topologies.

Successful Protein Designs with Biotechnological Applications
Protein design is the inverse folding problem [2, 3] (Figure 2B, Box 1). Given a target fold,
can we design a sequence to fold into that structure? Several notable examples are
highlighted in Table 2. We present an overview of recent computational protein designs with
biotechnological applications and describe the interplay with structural modeling necessary
for success of the designs as appropriate. We refer the reader to [45, 46] for excellent recent
reviews of methodological advances and applications in de novo protein design.

Design of Proteins and Peptides for Therapeutic Applications
Over 200 peptide, protein, or antibody therapeutics have been marketed as of 2010 [47].
Computational approaches have recently been applied to design new proteins and peptides
for therapeutic applications. Elucidation of the sequences, structures, and interaction patterns
of several disease-related proteins have allowed for the application of computational
approaches for peptide therapeutic design.[48]. Craik et al. [49] predict that by 2020 we will
see more prevalence of peptides as drugs, while outlining the challenges to meeting that
outcome. Here we review timely applications by target.

Cancer—Generally, therapeutic proteins/peptides can (1) interfere with signal transduction
cascades, (2) arrest the cell cycle through modulation of cyclin-dependent kinase activity, or
(3) directly induce apoptosis by modulation of the proteins controlling apoptosis [48].
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CRIP1 is an early biomarker for breast cancer. Hao et al. used phage display to identify
peptide sequences that bound to CRIP1. Subsequently they computationally redesigned the
scaffold sequence to optimize the binding free energy to increase its affinity for CRIP1,
finding experimentally that it improved the IC50 27.5x over the phage-displayed sequence
[50]. Cosic and coworkers used the Resonant Recognition Model (RRM) to design a short
therapeutic peptide with myxoma virus antitumor/cytotoxic activity [51]. RRM represents a
protein sequence as a series of numbers which can be analyzed by Fourier transformation
and converted into a discrete spectrum, where a significant correlation to biological activity
has been identified [51].

Human Immunodeficiency Virus—Correia et al. developed a computational method
using side-chain grafting and Rosetta to transplant a continuous structural epitope, 4E10,
into scaffold proteins for conformational stabilization and immune presentation [52]. The
method produced epitope-containing designs that bind stronger to monoclonal antibody
(mAb) 4E10 than 4E10 alone, and was found to inhibit neutralization by HIV+ sera. Floudas
and coworkers designed HIV-1 entry inhibitors starting from the structure of the C14linkmid
peptide in complex with the hydrophobic core of gp41 [53]. C14linkmid is a cross-linked
peptide derived from the C-terminal heptad repeat gp41. A global optimization based
sequence selection was performed with a distance-dependent forcefield originally developed
for protein folding [54] to select candidate sequences from the vast combinatorial space.
These sequences were re-ranked using fold specificity calculations, which sample
conformations near the template structure with substitutions dictated by the the newly
designed sequences. It aims to determine how favorably a new sequence folds into the fold
of the design template. A subset of top-ranked sequences identified in the fold-specificity
stage was evaluated using approximate binding affinity calculations, which approximate the
binding equilibrium constant. The best design had an IC50 between 29–253 μM for different
HIV-1 donors and mutants. This de novo design approach was made into an interactive web
interface, Protein WISDOM [55].

Alzheimer’s—Eisenberg and colleagues performed computationally-guided design to
predict and experimentally validate peptide inhibitors of fibril formation by the tau protein
associated with Alzheimer’s, as well as an amyloid promoting the sexual transmission of
HIV [56]. The designs bind to the end of the steric-zipper and inhibit elongation. Focusing
on the tau protein inhibitor methodology, for a rotameric, fixed-backbone sequence
optimization, they inverted the chirality of the design target to enable use of the Rosetta
suite of tools. They designed L-amino acid sequences that favorably interact with a fixed-
atom D- version of the scaffold. Subsequently, the scaffold was reverted to its native L-
form, and D-amino acid containing peptides were used as inhibitors experimentally. The
designed D- peptides were then verified for shape complementarity, noting that D-Leu2 of
the peptide was designed to clash with the target VQIVYK on the opposite sheet, and upon
alanine substitution, inhibitory activity ceases. Introducing a tight-binding interface and
clashes destroying the ability of a cascade of amyloid-forming sequences to propagate was
effective for inhibition. Pande and coworkers, guided by observations made in simulations
of Aβ42, designed a non-canonical and D-amino acid containing peptide that organizes Aβ42
into stable oligomers [57].

Antibody Therapeutics—Gray and coworkers utilized Rosetta to introduce a non-
canonical amino acid (NCAA) as an oxidizable crosslinker into an antibody
complementarity determining region (CDR), with the best design experimentally cross-
linking 52% of the available antigen [58]. Ellington and coworkers developed a
“supercharging” protocol to substitute multiple surface residues with charged amino acids
into proteins, using it to design an antibody with enhanced thermal inactivation resistance
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and a 30-fold affinity improvement [59]. Pantazes and Maranas introduced OptCDR for the
design of antibodies to bind a targeted antigen epitope [60]. They applied it to design
antibodies targeting a peptide from the capsid of hepatitis C, fluorescein, and VEGF, and
validated the approach with computational metrics and binding energies. They recently
introduced the Modular Antibody Parts (MAPs) database [61]. MAPs works in the spirit of
template-based modeling where the templates are prototype structures of the random
variable (V), diversity (D), and joining (J) regions in the database, resulting in gene
combinations with the fewest amino acid changes from the target. Using this database, they
were able to predict antibody tertiary structures with an average all-atom RMSD of 1.9Å on
a testing set of 260 antibodies [61]. Upon successful prediction of a target structure, such
antibodies can be computationally affinity matured using the Iterative Protein Redesign and
Optimization (IPRO) framework [62]. IPRO is an iterative framework which optimizes side-
chain substitutions in user-determined design positions using a mixed-integer optimization
model where subsequently the backbone of the protein being designed is allowed to adjust
through local minimizations to the new side-chains.

Design or Redesign of Enzymes and Biocatalysts
Baker reviewed the challenges and utility in succeeding in this endeavor [63]. Jiang et al.
developed a computational method for constructing an active site for multistep reactions,
designing 32 enzymes, spanning different protein folds and having detectable retro-aldolase
activity for 4-hydroxy-4-(6-methoxy-2-naphthyl)-2-butanone, which is not found in
biological systems [64]. The method designs active sites for these reactions with
superimposed transition states of the reactions involved. Notably, designs identified using
explicit water molecules were more successful, achieving enhancements of up to four orders
of magnitude compared to the uncatalyzed reaction [64]. They also designed eight enzymes
with different catalytic motifs for catalysis of Kemp elimination reactions [65]. Siegel et al.
computationally designed stereoselective enzyme catalysts for the Diels-Alder reaction,
prior to which none existed [66]. The most active design was confirmed to match the X-ray
structure, noting that the success in design presumably was related to the success in
modeling the designed catalytic site. Human game-players, through the visual interface of
the online multiplayer game, Foldit, were able to “hands-on” remodel and redesign
structures and side-chains of a 24-residue helix-turn-helix motif [67]. Based on this
crowdsourced design, an 18-fold increase in enzymatic activity over their previously
designed enzyme was achieved. The players were guided in the design by scores, which
were inversely proportional to the Rosetta energy, and visual intuition. Khare et al.
computationally redesigned mononuclear zinc metalloenzymes to catalyze non-native
organophosphate hydrolysis activity with the experimental structures largely matching the
designed ones [68]. Common themes from the catalyst design work were the correct
modeling of the reaction transition states, which require quantum chemical calculations.

Maranas and coworkers computationally redesigned Candida boidinii xylose reductase
(CbXR) to experimentally switch its cofactor specificity from NADPH to NADH with the
IPRO procedure [69]. There is no experimentally solved structure for CbXR, so they used a
homology model to perform the design blind of the true native structure. A 104-fold
specificity change was observed to NADH, due primarily to changes in hydrogen bond and
local charge interactions. Seven of ten predictions had significant xylose reductase activity
utilizing NADH; the remaining two variants had duel cofactor specificity [69].

Donald and coworkers redesigned the specificity of nonribosomal peptide synthetase
enzyme gramicidin S synthetase A (GrsA-PheA) from Phe to Leu, Arg, Glu, Lys, or Asp
[70]. The computational redesign used physics-based energy evaluations of rotamerically
sampled sequence space through the statistical mechanics based K* algorithm to
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approximate the binding constant Kd for the different analogues [71]. This study suggested
that structure-based computational design can identify different mutants than those that have
evolved, and that the designs could be used for charged amino acid adenylation [70].

Self-Assembling Proteins/Peptides
Controlling ordered (i.e., crystals) or disordered (i.e., hydrogels) self-assembly of proteins is
a critical test of our understanding of both structure and interactions, having applications in
biologically inspired materials. Lanci et al. computationally designed a protein crystal
starting from an idealized homotrimeric parallel coiled-coil template and redesigned the
interfaces [72]. They utilized strictly physics-based energy functions to discriminate
favorable interfaces. Stranges et al. took two monomeric proteins’ solvent-exposed β-strands
and redesigned them to form an intermolecular β-sheet symmetric homodimer with near
atomic-level accuracy [73]. This design demonstrated the creation of unique stabilizing
interactions at an interface. King et al. designed symmetric self-assembling complexes to
atomic level accuracy [74]. They performed symmetric docking of subunits followed by
redesign at the interfaces to design cage-like nanomaterials with tetrahedral or octahedral
point group symmetry. The designed structures were confirmed experimentally by
crystallography and electron microscopy to high agreement. The control over such self-
assembling can be used to design advanced functional materials and molecular machines
[74].

Other Applications
Hecht and coworkers designed de novo artificial sequences using a binary code strategy that
encoded function and enabled cell growth after knocking out several naturally occurring
genes required for cell viability [75]. The binary code strategy postulates that a simple code
of alternating polar and nonpolar residues patterned in different ways can yield alpha helices
or beta strand structures. They used this strategy to design a series of helical bundles which
rescued E. coli cells with essential genes conditionally knocked out, and showed how a
simplistic design strategy can produce proteins of novel function sufficient to sustain life.
Piana et al. computationally designed the fastest folding β-protein [76]. They noted that the
prior fastest β-protein, FiP35, was about an order of magnitude slower than its helical
counterpart. The reduced folding time of the predicted design was experimentally confirmed
to be approximately 3 times faster than the previous record-holder.

Concluding remarks and future perspectives
One can be successful in accurately predicting protein structures from sequence alone if
templates can be identified and properly aligned. However, there is no method yet that can
consistently predict structures “template-free”, possibly because conformational sampling
and forcefields to guide sampling/selection are still imperfect [34, 35]. Even if accurate
conformations are sampled, no method exists to accurately score those models more
favorably from other decoys. Interestingly, it has been suggested that all the puzzle pieces
needed to construct any structure are available, despite the fact that no method is currently
able to properly assemble them in a blind predictive capacity [26, 77]. In our opinion,
improvement in forcefields, the ability to accurately predict residue-residue contacts, β-sheet
topologies, alignments to non-homologous templates, and effective conformational sampling
methods are the key elements to solving the protein folding problem.

Transmembrane proteins are a class of targets that remain challenging for protein folding
and design, despite being of significant interest to the pharmaceutical industry. These
proteins are extremely difficult to solve experimentally due to their insoluble nature, and
therefore few template structures exist for membrane proteins, although they account for the
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majority of current drug targets [78]. Further advances in the modeling of the membrane
protein environment are needed to allow for improved structural models and evaluation of
designed ligands.

In the de novo design paradigm, one has 20#DesignPositions sequences to evaluate. Doing this
exhaustively computationally is largely impractical and even more so experimentally for
even a few design positions. Proteins as potential therapeutics are hindered by proteolytic
cleavage, poor solubility, and poor permeability. For these reasons, most have extracellular
targets and often must be injected in order to be clinically successful. Using post-
translational modifications (PTMs) and non-canonical amino acids (NCAAs) can help with
these challenges, because modified peptides are less likely to be recognized by proteases,
and these peptide modifications can be selected to fine-tune bioavailability. Design of
modified peptide sequences adds complexity, since by considering the over 400 known
PTMs for design, the combinatorial problem increases significantly to > 420#DesignPositions

combinations [79]. The methods to model PTMs and NCAAs are still at an early stage of
development, and represent a challenge in protein structure prediction and de novo protein
design. Looking forward, we have just touched the surface of the allowable chemical space
of proteins and their potential biotechnological applications.
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Glossary Box

Global Distance
Test Total Score
(GDT_TS)

This is a metric that approximately represents the % of residues
located in the correct position after structural alignment. This is a
more robust metric than RMSD.

Root-Mean
Squared Deviation
(RMSD)

This is a metric which measures the average distance between two
structurally aligned sets of atoms. It is often used a metric for the
quality of a prediction, and often computed with the α-carbon
atoms. A predicted structure with RMSD to the native is ≤ 3Å is
considered to be good enough to perform subsequent
computational studies.

Local Meta-
Threading Server
(LOMETS)

Generates structure predictions using high scoring alignments of a
target sequence to a template using information from 10 threading
programs.

Iterative Threading
Assembly
Refinement (I-
TASSER)

Structure prediction method using multiple threading alignments to
templates and fragment assembly.

QUARK A protein structure prediction program that assembles fragments
without any global template information.

MODELLER Protein structure homology modeling program that generates
structures satisfying spatial constraints.

REMO Program that constructs a full protein model using only α-carbon
traces.
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SP3 Fold recognition method that combines structural information
through sequence profiles of structure fragments, secondary
structure predictions, and dynamic programming to generate an
alignment of a target sequence to a template.

Generalized
Orientation-
Dependent All-
Atom Statistical
Potential (GOAP)

A distance-dependent statistical potential that scores models to aid
in selecting near-native conformations of a target protein. It
utilizes information about the relative plane orientation of
interacting pairs of atoms.

Z-score
Computed as , it is a metric denoting the separation
of a value from counterparts. It is useful for assessing the
significance of top structure predictions compared to the entire
population of predictions from other methods.

Rotamer Statistically abundant side-chain conformation.

Molecular
Dynamics (MD)

An algorithm for solving the equations of motion iteratively over
time and used to sample conformational space in a physically
meaningful way.

Monte Carlo (MC) An algorithm reliant on randomly sampling the sequence or
structural space according to a probability distribution.

Cartesian
minimization

Refers to a process operating on the variables as 3-dimensional
vectors of x,y,z coordinates in order to reduce a conformer’s
potential energy.

Torsion
minimization

Refers to a process operating on a reduced set of variables
representing torsion angles which control the distance between the
first and fourth atom in a series of four atoms in order to reduce a
conformer’s potential energy.

Non-deterministic
polynomial time
complete (NP-
complete)

A difficult class of decision problems that have not been proven to
be solvable with an algorithm within polynomial time ~ O(nk).

Hot-spot Key interactions at the interface of a protein-protein complex.
Many hot-spots include salt-bridges where oppositely charged
side-chains attract, hydrogen bonds, and/or ideal van der Waals
interactions subject to shape complementarity.

IC50 or EC50 IC50 is a metric for the half-maximal inhibitory concentration in a
competitive binding assay. EC50 is metric for the concentration of
compound at half the maximal value on a dose-response curve.
Both curves are usually sigmoidal.
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Outstanding Questions

1. How can we predict structures of sequences that are not homologous to any
known protein?

2. How can we accurately predict the β-sheet topology?

3. How can we accurately predict medium and long-range tertiary contacts?

4. How can we consistently and substantially refine predicted protein structures to
be closer to the native?

5. How can we predict structures of membrane proteins?

6. How can we predict the effects of the many PTMs and NCAAs on the structures
of proteins?

7. How can we design soluble, passively permeable, metabolically stable peptides
and proteins as therapeutics?

8. How do we incorporate PTMs and NCAAs into design, and address the massive
increase in combinatorial complexity?
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Highlights

1. Interplay between accurate protein structure prediction and successful de novo
protein design

2. Reviews current state-of-the-art structure protein prediction methods and
challenges

3. Reviews features of successful de novo protein designs

4. Biotechnology applications in therapeutics, biocatalysts, and nanomaterials are
summarized
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Figure 1.
Roadmap of key challenges in understanding how to predict protein sequence to structure to
function and design. Structure prediction begins with a primary amino acid sequence (A)
and aims to predict the full 3-dimensional structure (B) of that sequence. (C) Other proteins,
peptides, small molecules, or cofactors may form critical interactions with the protein
structure critical to its function. Docking with or without binding free energy calculations
may be required to find the most probable conformation for a ligand bound to a receptor
protein. Understanding how structure leads to function remains a challenge. The protein
structure may be subsequently post-translationally modified, and as most methods have
focused in predicting the structures of canonical amino acid containing proteins, the
literature is lacking in the ability accurately represent post-translationally modified protein
structures. The solution or accurate prediction of a protein’s 3-dimensional structure allows
it to be used in a design context. (D) Biotechnological applications of protein design shown
in the literature include designing/redesigning the receptor protein via site-specific
mutations to change its binding affinity toward a ligand, change its fold, increase its
stability, and create new or alternative enzymatic activity. The ligand of a peptide can be
amenable to similar design strategies to design new sequences to bind more strongly to the
receptor and compete with its native binding partner (antagonism) or to bind to and activate
through a series of specific interactions with the receptor a particular downstream function
(agonism). Upon design of the receptor or ligand peptide with new sequences, the cycle
begins again as even a few mutations can cause structural conformation and topology
changes. The structure shown in the figure is the mitogen activated kinase ERK2. The ligand
bound is the kinase interaction motif of phosphatase MKP3.
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Figure 2.
Detailed view of connections and differences between (A) protein structure prediction and
(B) protein design. Dynaneomics image used with permission.
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Figure 3.
(A) Historical performance of best prediction’s GDT_TS vs. target difficulty over the last 18
years in CASPs 1–9. Target difficulty accounts for both sequence and structural similarity of
the target to known template structures available at the time of prediction [12]. Evidently,
the quality of the best “Easy” target predictions has been consistently accurate. Conversely,
“Hard” targets, most lacking identifiable templates, have not advanced significantly in this
time period and still remain the biggest challenge (Adapted from [4] with permission from
AAAS, and original data from [12], with permission from John Wiley and Sons). High-
ranking blind free modeling predictions submitted to CASP8, 9, and 10 for targets (B)
T0513 by BAKER-ROBETTA, (C) T0604 by Zhang Server, and (D) T0740 by wfCPUNK.
The native structure is shown in dark grey and the prediction as a rainbow, with the N-
terminus in blue and the C-term in red. GDT_TS Z-scores are reported for Model 1 for
T0513 and T0604 and for All Models for T0740, with larger values indicating a larger
separation from the rest of the predictions. The wfCPUNK prediction resulted from a
collaboration between the Floudas, Liwo, and Scheraga labs as part of the collaborative
folding experiment WeFold (http://www.wefold.org). The predictions shown in (B) and (C)
used template information, whereas the prediction in (D) was strictly ab initio. The targets
shown were among the most difficult in the respective CASP experiments.
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