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Introduction of Dock protein family

The evolutionarily conserved Dock protein family is a newly 
characterized family of atypical Rho guanine nucleotide exchange 
factor (GEF) for Rac and/or Cdc42 GTPases.1,2 The typical Dbl 
family of Rho GEFs possesses a pleckstrin homology (PH)-Dbl 
homology (DH) module, of which PH domain is important for 
the phospholipid-binding and membrane targeting of Dbl GEFs, 
and DH domain is responsible for its GEF activity.3 By contrast, 
Dock family lacks the PH-DH module, but instead contains a 
Dock homology region (DHR) 1-DHR2 module. DHR1-DHR2 
module plays similar roles as PH-DH module, of which DHR1 is 
important for the phospholipid-binding and membrane targeting 
of Docks, and DHR2 is responsible for their GEF activity.

To date, 11 members of Docks, namely Dock1 (Dock180) to 
11, have been identified in mammalian system. Based on sequence 
homology, these Docks are divided into 4 subfamilies: Dock-A, 
which includes Dock180, Dock2, and Dock5; Dock-B, which 
includes Dock3 and Dock4; Dock-C (also called zizimin-related, 
or zir family), which includes Dock6, Dock7, and Dock8; and 
Dock-D (also called zizimin family), which includes Dock9, 
Dock10, and Dock11 (Fig. 1).1,2 In addition to the DHR1-DHR2 

module, Dock-A and -B members contain an N-terminal Src 
homology 3 (SH3) domain and a proline-rich C-terminus, thus 
are more phylogenetic related to each other. On the other hand, 
Dock-C members lack recognizable domains outside of DHR1-
DHR2 module, whereas Dock-D members contain an N-terminal 
PH domain. Both Dock-A and -B members preferentially activate 
Rac, whereas Dock-D members preferentially activate Cdc42. 
Dock-C members do not show unified GEF activity, i.e., Dock6 
and Dock7 are capable of activating both Rac or Cdc42, whereas 
Dock8 preferentially activates Cdc42.4

Members of Dock protein family have been found to play 
important roles in multiple processes of brain development, 
including the development and functioning of neurons, microglia, 
and Schwann cells.5 Notably, emerging evidence has linked Docks 
with neuropsychiatric and neurodegenerative disorders, including 
autism spectrum disorders, schizophrenia, and Alzheimer and 
Parkinson diseases (AD and PD, respectively; Table  1). This 
review summarizes the current understanding of the roles of 
Dock protein family in nervous system during physiological and 
pathological conditions.

Function of Dock protein namily in nervous system 
and its related neurological diseases

Dock-A and Dock-B
Dock-A and -B members are the most studied Dock proteins 

in nervous and other systems. The neural functions of Dock1–4 
have been revealed by multiple in vitro and in vivo studies. The 
neural function of Dock5, however, has remained to be explored, 
although evidence from genetic studies has implicated that Dock5 
may be associated with PD.6 It was found that members of these 
2 subfamilies form evolutionarily conserved associations with 2 
groups of adaptor proteins, engulfment and cell motility (ELMO) 
and CT10 regulator of kinase (Crk) adaptor proteins.7 Formation 
of the bipartite complex of Docks and ELMO is one of the most 
important regulatory ways to activate the GEF activity of Dock-A 
and -B members toward Rac.8,9

Dock180
As the first identified member of Dock protein family, 

Dock180 has been found to play diverse roles in phagocytosis 
and cell migration. In nervous system, Dock180 is essentially 
involved in the regulation of axon guidance and dendritic spine 
morphogenesis. Dock180 binds to the netrin receptor DCC 
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The family of dedicator of cytokinesis (Dock), a protein 
family that belongs to the atypical Rho guanine nucleotide 
exchange factors (GEFs) for Rac and/or Cdc42 GTPases, plays 
pivotal roles in various processes of brain development. 
To date, 11 members of Docks have been identified in the 
mammalian system. Emerging evidence has suggested that 
members of the Dock family are associated with several 
neurodegenerative and neuropsychiatric diseases, including 
Alzheimer disease and autism spectrum disorders. This 
review summarizes recent advances on the understanding of 
the roles of the Dock protein family in normal and diseased 
processes in the nervous system. Furthermore, interacting 
proteins and the molecular regulation of Docks are discussed.
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(deleted in colorectal cancer) and mediates netrin-induced Rac1 
activation and axon growth.10 Such regulation is important 
for the commissural axon projection. Interestingly, Dock180 
is also important for the axon pruning induced by ephrin-B3 
reverse signaling and RhoG.11,12 Dock180 couples to ephrin-B3 
through interacting with the adaptor protein Grb4/Nck2, and 
hence mediating ephrin-B3 signaling toward Rac1 activation 
and pruning of hippocampal mossy fiber axons.11,13 Moreover, 
the Dock180-ELMO complex participates in RhoG-mediated 
reduction of axonal complexity.12 The bi-faced roles of Dock180 
in axon attraction or repulsion suggests that precise regulation 
of Dock180 at the axonal growth cones is an essential molecular 
control of the axon tip motility. Dock180 is also found to be 
involved in synapse development. The RhoG-ELMO1-Dock180 
complex promotes Rac1 activation and leads to dendritic spine 
morphogenesis in hippocampal neurons.14

Although Dock180 plays critical roles in these neural 
developmental processes, it has not been reported that Dock180 

itself is linked to neurological diseases. However, 
brain-specific angiogenesis inhibitor-1 (BAI-1), an 
interacting protein of Dock180-ELMO module, has 
been found to be linked to schizophrenia, bipolar 
disorder, and addiction.15,16 As BAI-1 regulates dendrite 
morphogenesis and synaptogenesis,16,17 it is of interest to 
explore whether Dock180 modulates the neural function 
of BAI-1 and whether such regulation is implicated in 
the pathogenesis of neuropsychiatric disorders.

Dock2
Dock2 is highly expressed in the immune system 

and regulates immune-cell functions.18 In brain, Dock2 
is expressed exclusively in microglia and is implicated 
in neuroinflammation of AD pathology.19,20 It has 
been shown that the number of Dock2-expressing 
microglia is abnormally increased in brains of AD 
patients.19 The expression of Dock2 is positively 

regulated by prostaglandin E2 
receptors, which mediate inflammatory, 
neurotoxic, and amyloidogenic effects 
induced by the increased secretion of 
microglial prostaglandins during AD 
pathogenesis.19 Importantly, Dock2 
deficiency significantly reduces the area 
and size of β-amyloid (Aβ) plaque in 
cerebral cortex and hippocampus of a 
mouse model of AD.20 Thus, Dock2 may 
be a key molecule that contributes to the 
innate immune activation and Aβ plaque 
burden in AD.

Dock3
Dock3 was first identified as a 

presenilin-binding protein (PBP), and is 
found to be localized to the particulate 
fraction of sporadic AD brains.21 
Multiple lines of evidence have suggested 
a complex mechanism involved in 
Dock3 signaling that contributes to AD 
pathogenesis. First, Dock3 is associated 

with neurofibrillary tangles and promotes the phosphorylation of 
tau protein.22 Second, Dock3 is shown to integrate the neuronal 
death signals transduced from familial AD-linked amyloid β 
precursor protein (APP) and presenilin (PS) mutants.23 Both of 
these findings point to a role of Dock3 in the neurodegenerative 
process in AD. On the other hand, studies from different groups 
have demonstrated neuroprotective roles of Dock3. First, Dock3 
decreases the secretion of APP and Aβ peptide by accelerating 
the proteasome-dependent degradation of APP.24 Second, Dock3 
ameliorates the neurotoxicity induced by N-methyl-D-aspartate 
receptors (NMDARs) via interacting with the C-terminus 
of NMDAR subunits.25,26 Third, Dock3 is important for 
maintaining the functional integrity of axons, as loss of Dock3 
leads to axon degeneration.27 Given that Dock3 is appeared to play 
dual roles in neural degeneration and protection, further analysis 
on its precise temporal and spatial regulation is required for the 
understanding of Dock3’s role in AD pathology. In addition 

Figure 1. Schematic structure of different members of Dock protein family. Dock 
family proteins are divided into 4 subfamilies, Dock-A–D. Members of each sub-
family and their alternate names are listed (MOCA, modifier of cell adhesion; PBP, 
presenilin-binding protein; Zir, zizimin-related). Structure of different domains, 
including SH3 (Src Homology 3), PH (pleckstrin homology), DHR (Dock homology 
region) 1, DHR2, and the proline-rich region (PxxP) are indicated.

Table 1. Function of Dock proteins in nervous system and their related neurological diseases

Function Related neurological diseases Ref.

Dock180
Axon pathfinding, dendritic spine 

morphogenesis
10–12,14

Dock2 Neuroinflammation, microglial function Alzheimer disease 19, 20

Dock3
Axonal growth and regeneration, neurite 

outgrowth, neuroprotection
Alzheimer disease, attention 
deficit hyperactivity disorder

21–32

Dock4
Neurite differentiation, dendritic spine 

morphogenesis
Autism, dyslexia, 

schizophrenia
34–40

Dock5 Parkinson disease 6

Dock6
Neurite outgrowth, axon growth and 

regeneration
43, 44

Dock7
Neuronal polarization, cortical 

neurogenesis, Schwann cell development
45, 46, 
48, 49

Dock8 Mental retardation, autism 55, 56

Dock9 Dendrite development Bipolar disorder 58, 59

Dock10 Neurite dynamics Autism 60, 61
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to AD, Dock3 has also been implicated to link to psychiatric 
disorders such as attention deficit hyperactivity disorder.28

Studies from in vivo and in vitro experiments have demonstrated 
that a major neural function of Dock3 is to promote neurite and 
axonal growth. Several molecular mechanisms have been revealed 
underlying Dock3-mediated neurite and axon growth. First, 
Dock3 associates with ELMO and RhoG to form the conventional 
ternary Dock-ELMO-RhoG complex, which is important for Rac1 
activation during brain-derived neurotrophic factor (BDNF)-TrkB 
mediated neurite outgrowth.29 Moreover, Dock3 regulates actin 
cytoskeleton, microtubule assembly, and cell–cell adhesion by 
interacting with or regulating WAVE (Wiskott-Aldrich syndrome 
protein family verprolin-homologous), GSK-3β (glycogen synthase 
kinase 3β), and N-cadherin, respectively.30-32 Importantly, these 
Dock3-regulated molecular events all participate in BDNF-
induced neurite outgrowth. Dock3 is also found as a negative 
regulator of Wnt/β-catenin signaling, as Dock3 inhibits the 
nuclear expression of β-catenin.33

Dock4
The gene encoding Dock4 has been found to be associated 

with several neuropsychiatric diseases, including autism, dyslexia, 
and schizophrenia.34-37 Of note, a rare heterozygous microdeletion 
found to be associated with autism and dyslexia leads to a fusion 
transcript that generates a shorter Dock4 protein product lacking 
the complete DHR2 domain and the C-terminus.34,35 Indeed, 
the DHR2-dependent Rac1 activation and actin organization 
is important for Dock4 in regulating neurite differentiation of 
neuroblastoma cells.38 The SH3-dependent interaction of Dock4 
with ELMO2 is important for this regulation, whereas the 
C-terminus of Dock4 is dispensable.38 In hippocampal neurons, 
Dock4 regulates the establishment of axon-dendrite polarity and 
dendrite arborization, which is also dependent on the SH3 domain 
and GEF activity of Dock4. Interestingly, the C-terminus of Dock4 
is not important for polarity establishment, but may play regulatory 
roles in dendrite development.38,39 Furthermore, Dock4 is expressed 
in dendritic spines and participates in spine morphogenesis that 
dependent on its GEF activity and C-terminus.40 The C-terminus 
of Dock4 was shown to both regulate the synaptic localization of 
Dock4 and mediate the interaction with the actin-binding protein 
cortactin.40 It is thus of interest to further explore the detailed role 
of the C-terminus of Dock4 during spine morphogenesis. Among 
all Docks, Dock4 is the only member that is also capable of 
activating Rap1, a Ras-related small GTPase involved in neuronal 
migration and spine dynamics.41,42 Whether the regulation of Rap1 
is important for Dock4-dependent neural functions awaits further 
study.

Dock-C
Dock-C members, also called zizimin-related proteins, play 

regulatory roles in both central and peripheral nervous systems. 
In comparison with Dock-A and -B, Dock-C members do not 
interact with ELMO and Crk adaptors.

Dock6
Dock6 was found to promote neurite outgrowth and regulate 

axonal growth and regeneration of sensory neurons.43,44 Although 
Dock6 is capable of activating both Rac1 and Cdc42 in vitro, 
it preferentially activates Rac1 in dorsal root ganglion (DRG) 

neurons.44 Importantly, the GEF activity of Dock6 toward Rac1 is 
negatively regulated by Akt-dependent phosphorylation at Ser1194. 
During the initiation of axon growth at embryonic stages or after 
injury, Dock6 interacts with the protein phosphatase PP2A, 
which dephosphorylates Dock6 at Ser1194 and activates its GEF 
activity and axon growth. In later developmental stages, Dock6 
switches to bind to Akt, which phosphorylates Dock6 and inhibits 
its GEF activity. This Akt-dependent phosphorylation of Dock6 
is regulated by nerve-derived factor (NGF)-TrkA signaling and 
phosphoinositide 3-kinase. Re-introducing a nonphosphorylatable 
mutant (Ser1194A) or a phosphomimetic mutant (S1194E) in mice 
lacking Dock6 provides in vivo evidence that the phosphorylation 
status of Dock6 is a molecular determinant for axon growth.

Dock7
Dock7 is highly expressed in the developing brain and has been 

found to play important roles in several neuronal developmental 
processes.45,46 First, Dock7 regulates the neurogenesis in neocortex 
by promoting the differentiation of radial glial progenitor cells 
(RGCs) to basal progenitors and neurons.46 Interestingly, such 
regulation is not dependent on the GEF activity of Dock7, but 
is through interaction with the microtubule- and centrosome-
associating protein TACC3 (transforming acidic coiled-coil-
containing protein 3). Binding to Dock7 inhibits the function of 
TACC3 on microtubule growth, hence promoting the interkinetic 
nuclear migration of RGCs and cortical neurogenesis. A second 
neural function of Dock7 in the central nervous system is the 
regulation of neuronal polarity and axon formation.45 Dock7 is 
preferentially expressed in the axons of developing hippocampal 
neurons, where it activates Rac and promotes axon formation. A 
microtubule destabilizing protein stathmin/Op18 is inactivated 
by Dock7 and Rac, which is a critical molecular event toward 
modulating the microtubule network during Dock7-regulated 
axon formation. Furthermore, Dock7 is found to form a complex 
with myosin VI in neuronal cells, and may thus be implicated in 
the regulation of myosin VI-dependent motor transport or actin 
cytoskeletal organization in neurons.47

In the peripheral nervous system, Dock7 is important for the 
development of Schwann cells, the glial cells that ensheath the 
axons of motor and sensory neurons.48,49 Dock7 negatively regulates 
the differentiation of Schwann cells and the onset of myelination 
in both primary Schwann cells in vitro and sciatic nerves in vivo.49 
Knockdown of Dock7 leads to a downregulation of Rac1 and 
Cdc42, concomitant with an activation of RhoA.49 Although 
Dock7 is a negative regulator for Schwann cell differentiation, 
it promotes Schwann cell migration mediated by neuregulin.48 
Dock7 directly binds to the neuregulin receptor ErbB2, which 
activates the GEF activity of Dock7 by phosphorylating it at 
Tyr1118.

Dock7 has been found as an interacting partner of tuberous 
sclerosis complex 1 (TSC1) and TSC2.50,51 Mutations of the genes 
encoding TSC1 and TSC2 are the main causes of multi-system 
benign tumors in tuberous sclerosis, and are also associated with 
neural developmental diseases, including mental retardation and 
epilepsy. It is of importance to investigate whether Dock7 regulates 
the function of TSC1/2 and whether such regulation is implicated 
in neural developmental diseases. Interestingly, despite Dock7 
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has multiple roles in neuronal development and Schwann cell 
myelination, a study reported that 2 mice with Dock7 mutations 
resulted from a chemical mutagenesis screen exhibited normal 
activities in several neurobehavioral studies, including tests for 
depressive and anxiety-like behaviors, memory, and locomotion.52 
It is possible that other Docks may play redundant roles to 
compensate the loss-of-function of Dock7. Nonetheless, a more 
detailed molecular and behavioral analysis on specific neural 
function, such as cognition, will be required to determine the in 
vivo role of Dock7.

Dock8
Dock8 is highly expressed in the immune system, and Dock8 

deficiency causes immune-related disorders.18 Not like other 
Dock-C members, Dock8 exhibits specific activity toward Cdc42 
but not Rac1.4,53,54 Importantly, Dock8 is expressed in multiple 
regions of human brain, and mutations of the gene encoding Dock8 
has been found in mental retardation and autism patients.55,56 This 
suggests that Dock8 may play important neural functions, which 
need further investigation.

Dock-D
Dock-D members, also called zizimin family proteins, exhibit 

specific GEF activity toward Cdc42. The biological functions 
of Dock-D members have been relatively less studied. Although 
Dock9 and Dock10 expressions are detected in brain, the neural 
function of them is only beginning to be understood. On the other 
hand, Dock11 is expressed predominantly in lymphocytes, and has 
not been found to play roles in brain yet.57

Dock9
Dock9 is expressed in brain at later developmental stages and is 

important for dendrite development.58 The GEF activity of Dock9 
toward Cdc42 activation is important for dendritic outgrowth of 
cultured hippocampal neurons. Moreover, the PH domain and 
the DHR1 domain of Dock9 are important for its membrane 
targeting and activation of Cdc42. It is noteworthy that sequence 
variations have been found in the gene encoding Dock9 in bipolar 
disorder patients, and mutations of Dock9 gene are associated with 
several typical symptoms of the disease.59 This suggests that Dock9 
may contribute to both risk and increased illness severity in bipolar 
disorder.

Dock10
Variations of Dock10 gene have been found in patients of autism 

spectrum disorders.60 Although the neural function of Dock10 
is not clearly understood, it was found to be highly expressed in 
neurites of neuroblastoma cells and implicated in the extension/
retraction dynamics of neurites.61

Molecular function and regulation of Dock protein 
family

Dock proteins act in both GEF-dependent and -independent 
ways

The activation of Docks toward Rac1 and/or Cdc42 is a classical 
function of Dock protein family in modulating actin dynamics. 
However, Docks can also act in a GEF-independent way during 
several neuronal developmental processes. For example, Docks 
can interact with the actin-binding proteins WAVE, WASP 

(Wiskott-Aldrich syndrome protein), and cortactin to regulate 
actin organization independent of their GEF activity.30,40,54 
Docks can also regulate microtubule dynamics through binding 
to the microtubule-regulating proteins GSK-3β and TACC3.31,46 
Moreover, Docks can regulate assembly, cellular localization, and 
degradation of other signaling molecules, such as Wnt signaling 
molecules and NMDA receptors.25,26,62 Table  2 summarizes 
the interacting proteins of Docks found in nervous and other 
systems.63-65

Regulation of Dock Activity
Protein–protein interactions
The most well known regulation of the Dock family, in 

particular Dock-A and Dock-B members, is the interaction with 
ELMO.29,38,39,66,67 ELMO binds to the SH3 domain of Docks, thus 
leading to the release of the autoinhibitory status of Docks and 
exposure of their DHR2 domain for Rac activation.67 Moreover, 
ELMO acts as a scaffold protein to link Docks to other signaling 
molecules, such as RhoG.68 Crk adaptor proteins, including CrkII 
and CrkL, are another group of adaptors that activates the GEF 
activity of Dock-A and -B members through binding to their 
C-terminus.39,69-71 As Dock-C and Dock-D members lack the 
N-terminal SH3 domain and the proline-rich C-terminal region, 
they do not bind to ELMO and Crk adaptors. Whether common 
adaptor proteins bind to these 2 subfamilies of Docks to function 
similarly as ELMO and Crk remains to be investigated.

GEFs for Rho GTPases normally couple to membrane 
receptors or signaling molecules to transduce extracellular stimuli 
toward activation of Rho GTPases.72 Dock proteins participate 
in a number of signaling pathways, among which Trk receptors, 
Neuregulin-ErbB, Eph-Ephrin, and Wnt mediated signaling 
pathways are important in nervous system.11,29,33,48,62,73 Docks 
can be directly or indirectly recruited to these signaling receptor 
complexes to be activated (Table 2).

Homodimerization and heterodimerization
Dock1, Dock2, and Dock9 can self-dimerize to form 

homodimers.74,75 It has been revealed that dimerization of Dock2 
does not alter its GEF activity in vitro, but is important for its 
function under physiological conditions.75 This suggests that 
dimerization probably increases the signaling capacity of Docks. 
Given that the conserved DHR2 domain mediates the self-
binding, dimerization through this domain may be a general 
mechanism for all Docks.74,75 In addition to homodimerization, 
heterodimerization formed between different Dock proteins (e.g., 
Dock1 and Dock5) is also evident.76 It is thus likely that clustering 
of one or more Dock proteins is one mechanism to regulate the 
local activity of Docks.

Phospholipid-binding and membrane targeting
Structural analysis of Dock180 has identified a common C2 

domain scaffold and surface loops in the DHR1 domain of all 
Docks, which mediates the direct binding to phosphatidylinositol 
(3,4,5)-trisphosphate (PtdIns(3,4,5)P

3
).77 Studies have confirmed 

that the DHR1-phospholipid binding is a common characteristic 
of Docks and such binding is important for the cellular function of 
Docks.58,78-81 In addition to DHR1 domain, members of Dock-D 
subfamily may also use the N-terminal PH domain to interact 
with phospholipids.82 The phospholipid binding regulates the 
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Table 2. A summary of interacting proteins of Dock1–8*,# (Continued)

Interacting 
proteins

Domains of Docks 
for interaction

Regulatory roles Function Ref.

Dock180

ELMO1 1–161 a.a., containing SH3
Increasing GEF activity of Dock180 

toward Rac1
Dendritic spine morphogenesis, reducing 

axonal complexity
67

CrkII
1752–1865 a.a. of the 

C-terminus
Increasing GEF activity of Dock180 

toward Rac1
Cell migration 9, 69

Grb4/Nck2
1793–1952 a.a. of the 

C-terminus
Mediating the recruitment of 

Dock180 to activated ephrin-B3
Axon pruning 11, 13

DCC
Increasing GEF activity of Dock180 

toward Rac1
Axon guidance 10

GRASP/Tamalin SH3
Scaffolding Dock180 to ARF-Rac 

signaling
Epithelial cell migration 63

ANKN28 SH3 Cell migration and focal adhesion formation 64

SNX5 DHR1 Endosome-to-trans-Golgi-network transport 65

WAVE1–3 DHR1 30

Dock5 76

Dock2

ELMO1 SH3
Increasing GEF activity of Dock2 

toward Rac1
Lymphocyte migration 66

CrkL
1–515 a.a. and 939–1476 

a.a.
Increasing GEF activity of Dock2 

toward Rac1
Cytoskeletal regulation in leukemia cells 70

Vav Cytoskeletal regulation in leukemia cells 70

WAVE1–3 DHR1 30

Dock3

ELMO 1–160 a.a., containing SH3
Increasing GEF activity of Dock3 

toward Rac1
Neurite outgrowth 29

Presenilin AD pathogenesis 21

β-catenin
Inhibiting nuclear β-catenin 

expression
Inhibiting Wnt signaling 33

Fyn
1773–2028 a.a. of the 

C-terminus
Recruiting Dock3 to activated TrkB 

receptors
Axonal outgrowth and regeneration 30

WAVE1–3 DHR1
Recruiting WAVE complex to 

activated TrkB receptors
Axonal outgrowth and regeneration 30

GSK-3β
1628–1777 a.a. of the 

C-terminus
Inhibiting GSK-3β activity by 

increasing its phosphorylation
Axonal outgrowth and regeneration 31

NR2B Increases NR2B degradation Ameliorating NMDA-mediated neurotoxicity 26

NR2D
796–1154 a.a. (the linker 

between DHR1 and DHR2 
and part of the DHR2)

Ameliorating NMDA-mediated neurotoxicity 25

Dock4

ELMO2 1–161 a.a., containing SH3
Increasing GEF activity of Dock4 

toward Rac1
Neurite and dendrite development 38, 39

CrkII C-terminus
Increasing GEF activity of Dock4 

toward Rac1
Dendrite development 39

Cortactin C-terminus Synaptic localization of Dock4 Dendritic spine morphogenesis 40

APC DHR2 Stabilizing β-catenin, cell migration 62

Axin C-terminus Increasing Axin degradation Stabilizing β-catenin, cell migration 62

GSK-3β C-terminus
Phosphorylation of Dock4 by 

GSK-3β, increasing Dock4 GEF 
activity toward Rac

Stabilizing β-catenin, cell migration 62

WAVE1–3 DHR1 30
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function of Docks in 2 ways. First, this interaction releases the 
autoinhibitory structure of Docks and frees the DHR2 domain 
for GTPase activation. Second, this interaction translocates Dock 
proteins to the plasma membrane, where they locally activate Rho 
GTPases. Consistent with this notion, the phospholipid-binding 
regulated activation of GEF activity and membrane targeting is 
one of the important regulatory ways of Dock proteins in various 
biological processes, including cell polarization and migration.

Phosphorylation
Emerging evidence has identified that phosphorylation is 

important for the GEF activities of Dock proteins. For instance, 
tyrosine phosphorylation of Dock180 at multiple sites by Src kinase 
activates its GEF activity during tumorigenesis.83,84 Moreover, 
Dock4 is phosphorylated at the C-terminus by GSK-3β, which is 
important for Wnt-induced Rac activation.62 In the nervous system, 
2 phosphorylation events, Ser1194 phosphorylation of Dock6 by 
Akt and Tyr1118 of Dock7 by ErbB2 receptors, have been found 
to control Dock activity during axon growth and Swchann cell 
migration, respectively.44,48 Interestingly, Ser1194 phosphorylation 

of Dock6 inhibits its activity, while Tyr1118 of Dock7 activates 
its activity. This suggests that phosphorylation can regulate Dock 
activity in both ways.

Concluding remarks

Members of Dock family play roles in diverse processes of 
nervous system, including the development and functioning of 
neurons, microglia, and Schwann cells. More importantly, many 
Dock proteins have been implicated in neurological diseases or 
associated with disease-related molecules. Nonetheless, there is still 
limited evidence that how deregulation of individual Dock proteins 
links to the system disorders in the brain. The neural function of 
several Docks, such as Dock5 and Dock8, has not been explored, 
although the genes encoding these 2 Docks have been shown to 
link with neurological diseases.6,55,56 Therefore, investigations on 
the synaptic network connectivity and neural behaviors in animals 
with manipulations of individual Dock genes are important to 
reveal the physiological roles of Docks in brain. Furthermore, 

Table 2. A summary of interacting proteins of Dock1–8*,# (Continued)

Dock5

CrkII
1736–1784 a.a. of the 

C-terminus
Intestinal epithelial cell spreading and 

migration
71

CrkL
1738–1870 a.a. of the 

C-terminus
Intestinal epithelial cell spreading and 

migration
71

Dock180 76

Dock6

Akt DHR1
Inhibiting Dock6 GEF activity 

toward Rac1 by phosphorylating 
Dock6 at S1194

Axon growth and regeneration 44

PP2A DHR2

Increasing Dock6 GEF 
activity toward Rac1 by 

dephosphorylating Dock6 at 
S1194

Axon growth and regeneration 44

Dock7

TACC3
933–1164 a.a. (a region 

following DHR1 domain)

Antagonizing TACC3 function 
on microtubule growth or 

stabilization

Interkinetic nuclear migration of radial glial 
cells and cortical neurogenesis

46

ErbB2
692–1431 a.a. (the whole 
sequence between DHR1 

and DHR2)

Increasing Dock7 GEF activity 
toward Rac1 and Cdc42 by 

phosphorylating Dock7 at Y1118
Schwann cell migration 48

Myosin VI 47

TSC1/2 50, 51

Dock8

WASP
754–1452 a.a. of the linker 

region between DHR1 
and DHR2

Mediating the localization of 
WASP in immune cells

Regulating F-actin organization of immune 
cells

54

Talin
1453–2099 a.a. 

(C-terminus including 
DHR2)

Mediating the localization of talin 
in immuno cells

Regulating integrin-mediated adhesion of 
immune cells

54

*As Rac and/or Cdc42 are known to bind to the DHR2 domain of all Docks, these 2 GTPases are not summarized in this table.

#It has been unknown for the interacting proteins of Dock9–11.

Abbreviations: ANKN28, ankyrin repeat domain 28; APC, adenomatous polyposis coli; Crk, CT10 regulator of kinase; CrkL, Crk-like; DCC, deleted in 
colorectal cancer; ELMO, engulfment and cell motility; GRASP, Golgi reassembly and stacking protein; GSK-3β, glycogen synthase kinase-3β; NR2B or 
NR2D, N-methyl-d-aspartic acid (NMDA) receptor 2B or 2D subunit; PP2A, protein phosphatase 2A; SNX5, sorting nexin 5; TACC3, transforming acidic 
coiled-coil-containing protein 3; TSC, tuberous sclerosis complex; WASP, Wiskott-Aldrich syndrome protein; WAVE, WASP family verprolin-homologous
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this review summarizes the interacting proteins and molecular 
regulation of Docks. However, the detailed roles of Docks in 
transducing extracellular signals into actin reorganization or other 
cellular changes in the nervous system still remain to be fully 
understood.
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