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ABSTRACT It is argued that the apparent constancy of
the rate of molecular evolution may be an artifact due to the
very slow rate of evolution of individual amino acids. A statis-
tical analysis of protein evolution using a stationary point
process as the null hypothesis leads to the conclusion that mo-
lecular evolution is episodic, with short bursts of rapid evolu-
tion followed by long periods of slow evolution. Such dynamics
are incompatible with the neutral allele theory and require a
revision of the standard interpretation of the molecular clock.

One of the most enduring generalizations that emerged from
early comparative studies of protein sequences is that each
protein evolves at a nearly constant rate over lineages (1, 2).
This observation has been used as one of the major argu-
ments in support of the neutral allele theory (3), and it is
responsible for the concept of a "molecular clock" (2). Al-
though a superficial examination of the protein sequence
data does suggest that proteins evolve at a constant rate,
more sophisticated statistical analyses have called this gen-
eralization into question (4-6). The prevailing point of view
appears to be that, although proteins do not evolve at a con-
stant rate, the deviations are not large enough to seriously
threaten either neutrality or the molecular clock.

In this paper, it will be shown that the analyses of protein
sequence data may have been distorted by unrecognized bi-
ases that have led to gross underestimates of the variability
in the rates of evolution. If the biases are taken into account,
the inferred dynamics of molecular evolution appear to be
much more erratic than suggested both by neutral allele
models and by the molecular clock hypothesis.

Statistics of Star Phylogenies

The statistical analysis of protein sequence data is extraordi-
narily difficult. For complex phylogenies, the most severe
problem stems from the unknown biases introduced by the
algorithms for reconstructing ancestral sequences. Howev-
er, Kimura (3) recognized that there is one setting in which
much can be learned about the moments of the numbers of
substitutions that occur on each branch of a tree. This is the
case of a "star phylogeny," where the sequences are from
species that are derived from a radiation that occurred in a
short time relative to the length of the lineages. For such
clades, the problems associated with inferring evolutionary
trees may be avoided by assuming that all lineages stem
simultaneously from a single common ancestor. I begin by
briefly describing the estimation procedure developed by Ki-
mura for star phylogenies and will interpret the results in
subsequent sections.
Given a star phylogeny, let Xi be the number of substitu-

tions that have occurred on the ith of n lineages stemming
from the common ancestor. Whereas a desirable goal would
be to achieve a good estimate of the distribution of the Xi,

because of the paucity of data we must be satisfied with esti-
mates of the first two moments, assuming that the Xi are
identically distributed, but not necessarily independent, ran-
dom variables. Kimura's (3) method of estimating these mo-
ments uses Dij, the number of amino acids that differ be-
tween species i and j. The method would be straightforward
if Dij equalled Xi + Xj. However, because of multiple substi-
tutions at a single site, this equality is violated. Therefore,
the first step is to correct the Dij for multiple substitutions
and then to proceed as if Dij = Xi + Xj. Here, I use Day-
hoff's (7) empirically derived acceptable point mutation cor-
rection for the Di. For the data that will be examined, the
differences between sequences are so small (typically 10%)
that the effect of this correction (or any of the other pub-
lished corrections) is trivial. Once the corrections are made,
the moments are estimated using the new Dij and the three
estimation formulas given by Kimura (3). The mean of Xi
may be estimated by

M= Dij.n(n - 1) i~

It is easy to see that the expectation ofM is

E(M) = E(X1).

Similarly, a second order moment of the Xi may be estimated
by

(n - )(n - 2) (<D M

The expectation of S2 is

E(S2) = Var(X1) - Cov(X,,Xj).
Finally, the index of dispersion, the ratio Var(X1)/E(X1), may
be estimated by

R = S2/M.

Unlike the previous two estimators, R is biased. The bias
decreases as the number of lineages increases. Table 1 gives
the values for M, 52, and R for the five proteins considered
by Kimura. The values are slightly different from those in
Kimura's book because of the use of the Dayhoff rather than
the Zuckerkandl and Pauling (1) correction used by Kimura.
Of particular interest in Table 1 are the estimates ofR. It is

commonly held that if the rates of evolution are constant
and/or if neutrality is the mechanism of evolution, then the
Xi will be independent Poisson random variables and, thus,
the index of dispersion will be 1. To test this, Kimura argued
that, under the Poisson assumption, (n - 1)R is x2 distribut-
ed with (n - 1) degrees of freedom and thus provides a con-
venient test statistic. Of the five proteins examined in the
table, two show a significant departure from the Poisson as-
sumption based on this criterion. The significance of this ob-
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Table 1. Reanalysis of amino acid sequence data from Kimura (3)

Mean Mean Mean
Number of substitutions episodes substitutions
species, per lineage, per lineage, per episode,

Protein n M S2 R 1/V MV
Hemoglobin-a 6 13.15 18.30 1.39 67.10 0.20
Hemoglobin-,8 6 15.61 54.19 3.47* 12.64 1.24
Myoglobin 6 12.77 23.83 1.87 29.48 0.43
Cytochrome c 4 8.55 30.92 3.62* 6.54 1.31
Ribonuclease 4 21.99 62.68 2.85 23.79 0.93
*These values of R are significantly >1.

servation is by no means obvious. This will be illustrated by
developing various point process models of molecular evolu-
tion.

Point Process Models of Molecular Evolution

In this and the next section, I concentrate on the events that
occur through time in a single lineage. Molecular evolution
will be modeled using a stochastic point process. A point
process may be thought of as a collection of the points in
time when certain events occur. In this case, the events will
be the substitution of one amino acid for another in a protein.
I am particularly interested in the total number of events
(substitutions) that have occurred in an interval of time of
duration t. This total will be notated as N(t). N(t) is frequent-
ly called a cumulative process. My ultimate goal is to infer
certain properties of N(t) using the estimators M, S2, and R.
To ensure that this goal is achievable, various assumptions
about N(t) must be accepted. The fundamental assumption is
that the point process is stationary. That is, the process is
invariant under translations in time. This is a common start-
ing assumption in time series analysis and one that is suscep-
tible to statistical scrutiny. The Poisson process is a special
example of a stationary point process. For this process, N(t)
is Poisson distributed, implying that the index of dispersion,

I(t) = Var[N(t)]/E[N(t)],

is equal to 1. For more general stationary point processes,
the index of dispersion is a nonlinear function of t. It will,
however, approach 1 for small values of t.

Since a protein is a string of amino acids, there must be a
stationary point process associated with each amino acid.
Let Zi(t) represent the cumulative point process for the ith
amino acid. Obviously,

N(t) = Z1(t) + Z2(t) + *' + ZpW,

for a protein composed of p amino acids. A point process
that is the sum of other point processes is called a super-
posed process. If p Poisson processes are superposed, the
resulting process will also be a Poisson process. (See ref. 8
for a good exposition of these and other aspects of the theory
of point processes used in this paper.)
A problem that must be addressed when developing a sta-

tistical model for protein evolution concerns the relationship
between the process of change at the level of the individual
amino acids [the Zi(t)] and the process at the level of the
protein as a whole, N(t). There are two extreme forms for
this relationship. The first, and most commonly used, pic-
tures each amino acid as undergoing an independent process
of evolution with the evolution of the protein being a simple
superposition of these independent processes. In this in-
stance, the index of dispersion of the superposed process
will equal a weighted average of the indices of the amino
acids. The second pictures the evolution of the separate ami-

no acids as being so highly dependent on one another that
the process is best studied at the level of the entire protein
without reference to the processes at the level of the individ-
ual amino acids. The former point of view has some interest-
ing implications for the interpretation of the data in Table 1.

The Superposition Problem

Viewing the amino acids as undergoing independent point
processes implies that the apparent closeness ofR to 1 is an
artifact of the superposition of the separate processes. This
is a consequence of a well-known theorem from queuing the-
ory, the Palm-Khintchine theorem (9), whose essence is
captured in the following. Suppose we have p independent,
stationary, superposed point processes each of whose rates
are proportional to 1/p. If the superposed process is fol-
lowed for a fixed period of time, then as p gets large the
superposed process will converge to a Poisson process. A
simple corollary is that the index of dispersion approaches 1
as the number of superposed processes increases. The theo-
rem is intuitive. Consider that in the case of proteins a typi-
cal amino acid is replaced, on the average, about once every
1 billion yr. Thus, the probability of any particular amino
acid being replaced in the 10- to 100-million-yr spans of typi-
cal studies is small. Since the number of amino acids is large,
if the changes are independent, we would expect the distri-
bution of the number of changes in the protein to be approxi-
mately Poisson. Thus, even if the index of dispersion of the
individual amino acids and, hence, the protein is very large,
it will appear to be small for the superposed process because
of the restricted period of observation. If lineages could be
examined that were 10- to 100-billion-yr long, these prob-
lems would be less significant.
To illustrate the effect of superposition, we can simulate

on a computer a situation that is similar to the protein se-
quence data that Kimura analyzed in his book (3). The simu-
lation assumes that the amino acid substitution process is an
equilibrium renewal process with logarithmically normally
distributed intervals and an index of dispersion equal to 10
for each of the amino acids. The phylogeny is assumed to be
a star phylogeny of six species. The parameters of the simu-
lation were chosen to match fairly closely the data for 83-
hemoglobin. Thus, the process was run long enough for
about 10% of the amino acids to have experienced at least
one substitution and the maximum number of amino acids
was assumed to be 150. To show the effects of superposi-
tion, the simulation was run for proteins made up of 1, 15,
50, or 150 amino acids while the rate of evolution for the
entire protein was held constant. For each of the 1000 repli-
cates, the value of R was calculated exactly as described in
Kimura's book, and Kimura's test for a significant deviation
from a Poisson process (at the 5% level) was applied. Table 2
shows that the results are striking: for 150 amino acids, the
null hypothesis that R = 1 would be rejected only 8% of the
time even though the actual index of dispersion is 10; for 50
amino acids, it would be rejected 22% of the time. This simu-
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Table 2. Simulation results for a star phylogeny of six species,
where the amino acid substitution processes are independent
renewal processes with an index of dispersion equal to 10

Number of Average Fraction of
amino acids R rejections of Ho

1 4.88 0.831
15 2.07 0.358
50 1.60 0.223
150 1.17 0.084

lation is intended only to point out the incredible bias that is
inherent in this type of analysis. Other processes would give
different numeric results. Nonetheless, it would be interest-
ing to get some idea of the index of dispersion that is neces-
sary to account for the value ofR (3.4) that is observed for p-
hemoglobin. Simulations suggest that the actual value could
be as high as 1000! Thus, the claim made by Kimura that the
observed range of values ofR argue for indices of dispersion
close to 1 and, hence, neutrality, is vacuous. What is re-
markable is that in 40% of the proteins the Poisson process
could be rejected at all. This would seem to imply that the
amino acid processes are not independent and that the pro-
cess should be studied at the level of the entire protein. This
will be attempted in the next section.

A Model of a Changing Clock

A natural extension to the Poisson process model would be a
doubly stochastic Poisson process. This is a Poisson process
for which the rate of the process is itself a stationary stochas-
tic process. Not only is this a very general class of point
processes, it also admits the interpretation of being a model
of a molecular clock with a randomly changing tick rate. Be-
cause of the arguments of the previous section, it is assumed
that the clock applies to the entire protein rather than to the
individual amino acids.
For a doubly stochastic Poisson process, the probability

that a substitution occurs in a small interval of time (t, t + r)
in the ith lineage is X6i(t), while the probability of more than
one substitution occurring is of the order of T2. In this
expression, Oi(t) is assumed to be a stationary stochastic
process bounded below by 0 with mean E[6i(t)] = 1 and auto-
covariance function cr2p(x). X6j(t) will be called the tick rate
of the clock. For the ith lineage, let Ni(t) be the number of
events that occurred in the interval (0, t). Thus Ni(t) is equiv-
alent to the random variable Xi described in the section on

the statistics of star phylogenies.
To complete the description of the model, we must specify

the relationships between the clocks in the different lineages
of the star phylogeny. One possible assumption is that the
tick rate of the clock is assigned independently for each lin-
eage and that the rate is held constant throughout the lineage
[p(x) 1]. While such a model would fit the data, it is diffi-
cult to see why the rate of evolution would change only at
the origin of the lineage that is under study and then remain
fixed, even though other lineages (not under study) are

branching off. A more realistic assumption gives the clocks
equal tick rates at the time of the radiation and has the corre-
lation in the tick rates between lineages drop off at the same
rate as the correlation within a lineage. In accepting this
model, we assume that at the moment of the radiation into
the n lineages (at t = 0), the processes 0,#a) will all equal the
same (random) value [i.e., 0,{0) = 6.{O)] and from then on will
change independently. Thus, any correlations in the rates of
evolution in the separate lineages will be attributable to simi-
lar environments at the split times. The correlations will per-
sist for a significant portion of the lineage only if the tick
rates of the clocks change very slowly.

Given a particular trajectory of Oi(t), Ni(t) is Poisson dis-
tributed with mean

,
XI (t) = A Oi(x)dx.

The unconditional moments of the distribution of the number
of substitutions depend on the first two moments of the inte-
gral Ii(t). Using standard arguments (8), these are

E[I,(t)] = t,

Var[Ih(t)I = 2o2f (t - x)p(x)dx = 2cr2V(t),
2:

Cov[Ii(t), MO(*9] = c,2f (t - It - xl)p(x)dx = a2C(t),

in which we have taken the opportunity to define the func-
tions v(t) and c(t). The distribution of the number of substitu-
tions in the ith lineage is a randomized Poisson distribution
with moments

E[Xi(t)] = At,
Var[X,(t)] = Xt + X22cr2v(t),
Cov[X,(t), Xj(t)] = X2o2c(t).

The description of the statistical model being complete,
we are now in a position to interpret the data in Table 1.
Using the above results, the expectations of M and 52 be-
come

E(M) = At,
E(S2) = Xt + X22o-2[v(t) - 1/2 c(t)].

This suggests that the quantity

V = (S2 - M)/(2M2)

might be a good estimator for the variance in the clock, be-
cause

V--+ 0-24f(t, p) as n -k 00,

where 4i depends only on the autocorrelation of the process
and t. Although this is a consistent estimator, it is, of course,
a biased estimator. At the present time, nothing is known
about the extent of the bias.
We now turn to the interpretation of V in terms of the sec-

ond-order moments of the processes Oi(t). It is clear from the
analysis that the variance in the clock, o-2, cannot be separat-
ed from the autocorrelation as captured in qi. It is of interest,
therefore, to explore the behavior of 4i under various as-
sumptions about the autocorrelation to see how q1 affects the
estimate of a2. As a simple example, we might suppose that
the clock is characterized by an autocovariance function of
the form o.2 exp(-altl), which is typical for many Markov
processes, such as the Ornstein-Uhlenbeck process and var-
ious jump processes. For this clock,

i = (1/at)[1 - (/at)[1 - exp(-at)]
{1 + 1/2[1 - exp(-at)]}].

This function depends on t only through the product at. As
at approaches both 0 and oo, f approaches 0. The maximal
value that 4f attains is -0.19. Thus, the variance in the clock

Population Biology: Gillespie



8012 Population Biology: Gillespie

is >5 times higher than V and could be very large if at is
either very small or very large. Let us consider the meaning
of these two extremes. a is interpretable as the rate of de-
crease in the autocorrelation with time. Thus, if (1/a) << t,
the time scale of the variation in the tick rate is much shorter
than the length of the lineage. On the other hand, if (1/a) >>
t, the correlations in the tick rate extend beyond the length of
the lineages-in our cases, this would be for time spans of
tens to hundreds of millions of years. Both of these cases
require very large variances in the clock to account for the
observed values of V, but for very different reasons. In the
former case, the clock is changing rapidly with respect to the
sampling interval (the length of the lineage), so the substitu-
tion process is made less variable by the smoothing effect of
the integral of the clock. Such a clock will be called a rapidly
changing clock. In the latter case, the high estimated vari-
ance stems from the fact that the Ni(t) are highly correlated
with one another so that the variation between the Ni(t) as
inferred from the Dij captures less of the variance then it
would were the Ni(t) independent. A clock with this behav-
ior will be termed a slowly changing clock. The large vari-
ance implied by both of these extremes imposes a very defi-
nite behavior on the clock: since Oi(t) must be non-negative
and have a mean equal to 1, it must spend most of its time
near 0 and make only occasional excursions to very large
values. For a rapidly changing clock, these excursions will
be of very short duration relative to the length of the lineage,
suggesting that this clock be called an episodic clock.
This treatment can be extended to general stationary pro-

cesses. For rapidly changing clocks we have

V 0.2 f p(x)dx/t,

where this approximation assumes that fp(x)dx/t << 0. For
slowly changing clocks we have

V -a0.2 (pjt/3 + P2t/8),

where we have used the first terms of the Taylor series ex-
pansions of p(x):

p(X) 1 -p1X - (p2/2)x2,

and assumed that p1t and p2t2 are <<1. Notice that in this
more general setting, the inferred variance in the clock also
increases with both decreasing and increasing autocorrela-
tion.

Implications About Molecular Evolution

The confounding of the variance with the autocorrelation of
the clock presents a dilemma for the interpretation of molec-
ular evolution data. Is the slowly changing or the episodic
clock more appropriate? As there is no biological connection
between the autocorrelation of the clock and the lengths of
lineages used in molecular evolution studies, it seems unlike-
ly that the time scale of the clock will equal the length of the
lineages. This makes it unlikely that a clock intermediate be-
tween the two extremes will be relevant. Since the lineages
that are commonly used in molecular evolution studies have
common ancestors in the late Mesozoic or earlier, the time
scale of the slowly changing clock would have to be longer
than =66 million yr. Such long time scales of change seem
incompatible with the fact that many major environmental
changes, such as the recent ice ages, occur on time scales of
tens of thousands to hundreds of thousands of years. Thus,
of the two clocks, the episodic clock seems more in accord
with our usual ideas of the time scales of environmental

change. In addition, if the slowly changing clock were cor-
rect, one would expect a very different pattern in the number
of substitutions per lineage than is actually observed. Name-
ly, most of the lineages would be expected to have no substi-
tutions at all and only an occasional lineage would be expect-
ed to have a relatively large number of substitutions. This
pattern is never observed in the data. By contrast, under the
episodic clock, the episodes should be sprinkled at random
among the lineages and, consequently, the number of substi-
tutions would be more equally dispersed. Or, said another
way, for the same mean and variance the slowly changing
clock will produce a much more skewed distribution of the
number of substitutions per lineage than is observed. For
these reasons, the remainder of this paper is concerned with
properties of the episodic clock.
A simple version of the episodic clock is a two-state Mar-

kov jump process that takes on the value 0 for an exponen-
tially distributed length of time with mean 1/p before jump-
ing to the value /3, where it remains for an exponentially dis-
tributed length of time with mean 1/gt before returning to 0.
For this version of Oi(t) to have a mean equal to 1, we require
that 13 = ,/il*0. The requirement that the time scale be much
less than the length of the lineage and that the variance is
large is met if we assume that lu - oo. As this limit is ap-
proached, the autocovariance function approaches

(,ui/py) exp(-,ullti),
and the mean length of the episodes of rapid evolution de-
creases. This allows the integral of 6 to be approximated by
the sum of a Poisson number of random variables, Zi, each
equaling the product of 83 (=pl/po) and an independent ex-
ponentially distributed random variable with mean 1/hil.
This product is simply the area under Oi(t) for the ith epi-
sode. The mean of the Poisson distribution approaches pot.
During each episode, the actual number of substitutions will
also be Poisson distributed with mean Yi = XZi conditioned
on the value of Zi. Thus, we can approximate the distribution
of the total number of substitutions on a lineage as the sum

where

E(Yj) = klpo,
Var(Yi) = (X/po)(1 + X/po),
E[M(t)] = uOt,

E(Y) =At,

and

Var(Y) = At + 2(Xt)2/(Pot).

Thus, our estimator V from a previous section estimates
1/ot, suggesting that 1/V may be interpreted as the mean
number of episodes per lineage. The mean number of substi-
tutions per episode is the mean number of substitutions per
lineage divided by the mean number of episodes per lineage.
Finally, the ratio of the variance in the number of substitu-
tions to the mean number for each episode is equal to the
ratio for the total number of substitutions under this approxi-
mation. All of this is summarized in Table 1. It should be
noted that the distribution of the number of substitutions per
protein under this model is a randomized Poisson distribu-
tion with a variance larger than the mean. This is in accord
with the recent demonstration that the spatial pattern of sub-
stitutions on the molecule fits the negative binomial distribu-
tion better than the Poisson distribution (10).
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It may be possible to extend this analysis to more general
models of the tick rate than the two-state Markov process.
The representation of the integral of the clock as a Poisson
sum of independent random variables may be generally valid
for any tick-rate process, as similar representations may be
found in the theory of Z,, exceedance measures for station-
ary stochastic processes (11). All of this strongly suggests
that the appropriate null model for molecular evolution
would be a cluster process of the form

N(t) = Yj + Y2 + * " + YM(t),

where the Y, are independent identically distributed random
variables, and M(t) is a stationary point process. If the dou-
bly stochastic Poisson process version of the clock is viewed
as a reasonable guide, then M(t) may be assumed to be a
Poisson process. Otherwise, and more cautiously, we should
view M(t) as having some correlation structure.
These results have some bearing on the use of protein se-

quence data to date the split times of lineages. They suggest
that the estimates of the variance in time back to a common
ancestor could be gross underestimates unless there is a cali-
bration using sequences from species with known split times
that are similar to the one under study.

Implications for the Mechanism of Molecular Evolution

One of the outstanding questions in molecular evolution con-
cerns the mechanisms responsible for the amino acid differ-
ences that occur between species. An attractive theory for
these differences is the neutral allele theory (3). However,
our statistical analysis suggests that the course of molecular
evolution is episodic, being quite unlike the dynamics of the
neutral allele theory. This should not be surprising, given
Hudson's (12) recent demonstration that the neutral allele
model with a constant mutation rate is not compatible with
the available data for protein differences both within and be-
tween species. One resolution to this problem might be to
assume that the mutation rates are themselves episodic in
nature. The consequences of this may well increase the vari-
ance in the number of substitutions per lineage while lower-
ing the mean heterozygosity.

Alternatively, the episodic clock may be due to the action

of natural selection. As an example, 1 (13) recently described
the effects of the mutational structure of DNA on the vari-
ance to mean ratio of the number of substitutions per lineage
when natural selection is responding to continuing changes
in the environment. The conclusion was that the structure of
DNA will cause evolution to proceed in a series of bursts,
even if the changes in the environment proceed in a Poisson
fashion. The burst structure of that model closely resembles
the episodic character of the clock. Another possibility is
that the episodes of rapid evolution are associated with peri-
odic environmental changes, speciation events, or crises of
extraterrestrial origin. However, such speculations are pre-
mature.
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