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Abstract
Objective—Examine the unique and congruent findings between multiple raters in a genome-
wide association studies (GWAS) in the context of understanding individual differences in
treatment response during antipsychotic therapy for schizophrenia.

Methods—We performed GWAS to search for genetic variation affecting treatment response.
The analysis sample consisted of 738 patients with schizophrenia, successfully genotyped for
~492K SNPs from the Clinical Antipsychotic Trial of Intervention Effectiveness (CATIE).
Outcomes included both clinician and patient report of illness severity on global impression
scales, the CGI-S and PGI, respectively. Our criterion for genome-wide significance was a pre-
specified threshold ensuring that, on average, only 10% of the significant findings are false
discoveries.

Results—Thirteen SNPs reached genome-wide significance. The top findings indicated three
SNPs in PDE4D, 5q12.1 (p =4.2×10−8, p =1.6×10−7, p =1.8×10−7), mediated the effects of
quetiapine on patient reported severity and an additional three SNPs in TJP1, 15q13.1 (p =
2.25×10−7, p = 4.86×10−7, p = 4.91×10−7), mediated the effects of risperidone on patient reported
severity. For clinician reported severity, two SNPs in PPA2, 4q24 (p = 3.68×10−7, p = 5.05×10−7),
were found to reach genome-wide significance.

Conclusion—We found evidence of both novel and consistent association when examining the
results from the patient and clinician ratings suggesting that different raters may capture unique
facets of schizophrenia. Although our findings require replication and functional validation, this
study demonstrates the potential of GWAS to discover genes that potentially mediate treatment
response of antipsychotic medication.
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Introduction
Antipsychotic drugs represent the most commonly used treatment approach for managing
psychotic symptoms in schizophrenia (1). However, variation in individual response to
antipsychotics remains a critical problem, with a substantial proportion of patients with
schizophrenia experiencing significant residual symptoms or adverse effects with
antipsychotic treatment. Unfortunately, there are currently no robust methods to predict
treatment response. Thus, treatment often proceeds by trial and error in order to determine
the medication and dose that maximize response and minimize adverse reactions.
Pharmacogenomic studies offer the possibility of identifying genetic variants associated
with antipsychotic response that may facilitate the development of personalized treatment
allowing efficient selection of the optimal medication and dose for each patient. Toward this
end, we conducted a genome-wide association study (GWAS) to detect genetic variation
related to antipsychotic treatment response in the Clinical Antipsychotic Trial of
Intervention Effectiveness (CATIE).

The Clinical Global Impression (CGI) (2) severity scale is one of the most widely used
measures in schizophrenia research and clinical practice. In CATIE, both the patients and
clinicians rated illness severity using the Patient Global Impression (PGI) or CGI-S,
respectively, at each assessment. While traditionally clinician ratings have been considered
the “gold standard” in evaluating symptom severity and therapeutic progress in
schizophrenia (3), recently, compelling arguments have been advanced for considering
multiple raters, particularly the combination of patient and clinician ratings (4–5).
Arguments for clinician ratings are well-established—50–80% of patients with
schizophrenia suffer some degree of impaired “insight” into the presence and implications of
their disorder (6). Given that insight is prerequisite for accurate evaluation of disease status
and improvement, this research implies that a substantial subgroup of patients requires
external evaluation, ideally by a psychiatric professional (3).

Balancing this line of reasoning, however, are several perspectives noting the unique
benefits of patient ratings and the potential biases characterizing clinician evaluation. For
instance, longitudinal research has shown that patient evaluations may outperform
clinician’s in predicting long-term psychiatric outcomes, such as negative symptom
exacerbation (7). Findings of prognostic value in patient-ratings are particularly common in
studies using simple, global instruments such as the PGI, which do not require the cognitive
skills necessary to disaggregate disease features into symptom domains (5). While it is not
entirely clear why self-ratings sometimes show superior prognostic performance, it has been
theorized that patients may be unable to adequately communicate their phenomenological
experience of the disorder to clinicians due to flattened affect or other expression
impairments (7-8). Another potential explanation stems from research into schizophrenia
symptom q–estionnaires showing that patients and clinicians generally differ in their
conceptualization of disease severity (5, 9). This research has shown systematic
psychometric differences between patients and clinicians, with patients generally giving
more weight to affective features in evaluating disease severity and clinicians tending to
focus more on positive/psychotic symptoms (5). This has led to a growing sense that patient
and clinician ratings capture partially distinct constructs, each containing unique, relevant
clinical information (4–5, 9).
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Beyond issues specific to clinician and patient rating, psychometric theory is clear that the
use of multiple raters generally enhances measurement accuracy and, thus, improves
statistical power to detect associations (10). This is due to the capacity of multiple raters to
reduce or eliminate sources of noise/error including random errors, such as misinterpreting a
question, and systematic rater biases caused by different questionnaire response styles,
normative standards or incentive structures (11). In sum, a confluence of schizophrenia
assessment research and psychometric theory support the value of considering both patient
and clinician ratings in evaluating schizophrenia severity. This conclusion is especially
relevant to the current context of pharmacogenomic GWAS, where statistical power is
generally modest; thus, the use of multiple raters may increase confidence in results when
there is a convergence of evidence across raters.

In addition to using assessments from multiple raters of the same instrument, the
consideration of multiple instruments may facilitate more comprehensive approaches to the
study of schizophrenia. Clinically, the consideration of multiple instruments is primarily
motivated by the vulnerability of any single instrument to symptom bias, in which specific
clusters of symptoms/disease features are better captured than others. For example, the
Positive and Negative Syndrome Scale (PANSS) (12), a commonly used instrument in
schizophrenia research, is often considered superior for assessing specific features of
schizophrenia, such as positive and negative symptoms, while the CGI may be viewed as
offering a better overall clinical assessment of the disorder (13). Further, comparing the
results of GWAS studies using two different measures of treatment response may yield
additional support for putative susceptibility loci or suggest unique relationships between
specific clinical features and variants. Thus, when the same variant is implicated by two
different measures there is increased confidence in the finding validity. Conversely,
although they require replication, unique findings may indicate genetic variants more
relevant to various facets of the disease and its symptoms, which may not be well-captured
in a different scale.

Here, we engage the issues of multiple raters and assessments in the context of antipsychotic
pharmacogenomics—conducting a GWAS of antipsychotic response in CATIE as measured
by the patient rated PGI and clinician rated CGI in order to investigate if there is any
convergence across raters and eliminate potential rater bias. We then compare these findings
with previous CATIE GWAS assessing efficacy using the Positive and Negative Syndrome
Scale (PANSS) (14) and neurocognitive measures (15), an endophenotype of schizophrenia.

Methods
Subjects

We used data from CATIE, which has been described in detail elsewhere (16). In short,
CATIE was a multiphase randomized control trial of antipsychotic medications, including
five primary treatments (i.e., olanzapine, perphenazine, quetiapine, risperidone and
ziprasidone), which followed patients for up to 18 months. To maximize representativeness,
the participants were recruited from 57 clinical settings around the United States. Patients
were diagnosed with schizophrenia using the Structured Clinical Interview for DSM-IV
(17). All three CATIE phases were used in this study (n = 738). Table 1 presents descriptive
statistics for the sample. The mean age was 40.9 years (S.D. = 11.0) and the average
durations of treatment for schizophrenia was 16.7 years (S.D. = 11.2).

Measures
Two global impression severity scores were used in this study: patient self-report, PGI, and
clinician, CGI-S. The PGI and CGI-S rate the severity of schizophrenia symptoms on a scale
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from 1 to 7, with higher scores indicating a greater severity of illness (2). The bottom of
Table 1 displays the average PGI and CGI-S score by visit. Across all visits, the CGI-S has a
higher average score than the PGI suggesting that clinicians consider the patients to have a
more severe disorder than the patients themselves do. Both scores also tend to decrease as
the number of visits increases.

Estimating Treatment Effects
In previous research we have developed (18), and applied to CATIE (14–15, 19–20) a novel
method for estimating treatment effects in clinical trial data. Using mixed modeling, our
method first determines the optimal functional form of over-time drug response, then
screens many possible covariates to select those that improve the precision of the treatment
effect estimates, and finally generates the individual treatment effect estimates based on the
best-fitting model using best linear unbiased predictors (BLUPs) (21). As our approach
condenses all information collected during the trials in an optimal, empirical fashion, it
results in more precise estimates than traditional approaches that estimate treatment effects
using only two assessments (e.g., subtracting pre- from post-treatment observations) (22).

Specifically, to determine the optimal drug response trajectory for each outcome we fit a
series of models specifying linear change for a given number of days on drug and flat
thereafter. This series began with a model assuming that maximal drug response was
achieved at day one. Each subsequent model specified an incrementally longer duration until
maximal drug response, with the final model assuming that the drug effect did not plateau
(i.e. linear change throughout trial). The best-fitting model of the series was selected to
determine the average number of days until maximal drug response (through optimizing the
likelihood across the series). After determining the optimal functional form of the drug
response trajectories, 31 covariates were screened to identify those that improved the
precision of the treatment effect estimates. Covariates included design characteristics, socio-
demographic measures, clinical information, confounding medications and baseline
antipsychotic treatment. For both CGI-S and PGI only a single covariate, related to trial
design, was found to improve treatment effect precision (the specific covariate was “phase
1b”, which indicates that the subject was initially randomized to the perphenazine arm, but
was then switched into one of the second generation arms). Finally, treatment effects were
generated as random effects. To elaborate, mixed models estimates two types of parameters,
coefficients that describe the predictors’ sample average effects, and deviations from the
average effects for each subject (i.e., random effects). Thus, for each of the five trial drugs
investigated, treatment effects were generated by specifying random effects for the drug
response (23). Intuitively, these treatment effects quantify how much, for instance, each
subject’s global impression severity score phenotype change in response to a given drug,
relative to the average effect for all subjects taking the drug. The treatment effect estimates
were generated separately for the CGI-S and PGI, for each drug, and were treated as
different outcomes in the GWAS analysis. Treatment effects estimated with this method
have been previously analyzed in several published genome-wide association studies of
CATIE (14–15, 19–20).

Genotyping, Quality Control and Ancestral Background
DNA sampling, genotyping and genotype quality control have been described elsewhere
(24). Briefly, single nucleotide polymorphisms (SNPs) were genotyped using the Affymetrix
500K ’A’ chipset (665K SNPs) (Affymetrix, Santa Clara, CA, USA) and a custom fill-in
chip (164K SNPs) (Perlegen, Mountain View, CA, USA). After stringent quality control,
492,900 SNP genotypes remained for analysis.
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Approximately 57% of the CATIE subjects self-identified as white/European-American
(EA), 29% as black/African-American (AA), and 14% consider themselves to have ‘other’
ancestral origins or to belong to multiple ancestral categories. To avoid false positives due to
population stratification, Sullivan et al. (24) performed an extensive evaluation of multiple
methods to control for ancestral heterogeneity in CATIE and concluded that the principal
component and multi-dimensional scaling (MDS) approach worked best. We, therefore,
proceeded with the MDS approach as implemented in PLINK (25). For our analyses, we
used five MDS dimensions that appeared to capture the majority of the genetic substructure
in CATIE.

Association Testing and False Discovery Rate Control
All association testing was conducted in PLINK using a linear regression model of additive
SNP effects with five population stratification MDS dimensions as covariates to control for
ancestry. We used a false discovery rate (FDR) (26) based approach to declare significance.
In comparison to controlling a family-wise error rate (e.g., Bonferroni correction) FDR a)
provides a better balance between finding true effects versus controlling false discoveries, b)
results in comparable standards for declaring significance across studies because it does not
directly depend on the number of tests, and c) is relatively robust against having correlated
tests (27). FDR is commonly used in many high-dimensional applications and has been
successfully applied in the context of GWAS (28–30). As motivated previously (31), we set
a FDR threshold of 0.10 for declaring genome-wide significance. This means that on
average 10% of the SNPs declared significant are expected to be false discoveries.
Operationally (32), the FDR was controlled using q-values. Q-values are FDRs calculated
using the p-value of the markers as thresholds for declaring significance. It is important to
note that performing multiple GWAS analyses does not present a problem for the FDR
because it controls the expected ratio of false discoveries to all discoveries. Thus, when
many GWAS are performed, the number of false positives will increase and so will the
number of true positives. The expected ratio of false to all discoveries will, therefore, remain
0.10 with our threshold for declaring genome-wide significance regardless of how many
GWAS are performed.

For the most promising SNPs, we performed a variety of additional analyses to examine the
robustness of the signal. First, we tested the SNPs separately in the subjects who self-
identified as European Americans (EA) only and African American (AA) only. Those
individuals that reported being neither EA nor AA, ~14% of the sample, were excluded from
these stratified analyses because the sample size was too small to detect any effects. The
sample sizes in the GWAS for the EA and AA stratified samples are rather small for a
GWAS and the results of these analyses should be considered suggestive. For each SNP, we
also performed haplotype (proxy) analyses that incorporate information from other SNPs in
that region. Such analyses may provide a technical validation of the single SNP result or
point to a particularly informative haplotype.

After identifying genome-wide significant markers, we leverage the two global impression
measures and multiple drug study design to examine whether genome-wide significant
markers show association to other related outcomes at less stringent significant levels (p <
0.05). Although it is possible that SNP effects are outcome specific, observing associations
with multiple outcomes excludes the possibility of significant effects due to outcome-
specific outliers and may be informative from a clinical perspective. Specifically, we
examined whether significant SNPs from this study and other CATIE GWAS studies that
use alternate definitions of treatment response (i.e., PANSS and neurocognitive measures)
were associated with either of the CGI severity treatment effects. We only considered
subjects under the same drug treatment for these tests.
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Results
Genome-Wide Significant Signals

Quantile-Quantile (QQ) plots are shown in the Figure 1 for all of the drug-outcome
combinations that had significant SNPs (q < 0.10). The plots show that the distribution of p-
values from the GWAS are generally on a straight line, indicating the expected p-value
distribution under the null hypothesis assuming no effects of the markers. However, in each
of the plots, there is also evidence that markers in the right upper corner have p-values
smaller than would be expected under the null hypothesis, suggesting true association
between these markers and the outcome variable. The plots also display λ values (that is, the
ratio of the median observed p-value of the distribution to the expected p-value under the
null hypothesis), approximately equal to 1, indicating no systematic test statistic inflation
and that population stratification was adequately controlled.

Table 2 provides details on those SNPs that were genome-wide significant (q < 0.10). One
of the top findings included three SNPs, rs17382202, rs17742120, and rs2164660, which
exhibited a negative association between PGI self-report and minor allele count for
quetiapine treatment. These SNPs are located in an intron of PDE4D, 5q12.1, as described
in Table 1 (p =4.2×10−8, q = 0.02; p =1.6×10−7, q = 0.03; p =1.8×10−7, q = 0.03).
Examination of the linkage disequilibrium (LD) in the surrounding region showed that all
three SNPs were in high LD (R2 > 0.80) with each and were in moderate LD (0.30 < R2

<0.60) with several other SNPs in the region. This suggests that these SNPs may tag the
same locus. To further investigate this signal, we divided our sample by ancestry. The
direction and magnitude of effects were similar in the two groups, with the AA sample
showing slightly higher absolute coefficient values, but larger p values due to smaller AA
sample sizes (rs17382202: βAA = −1.71, pAA = 0.008, βEA = −1.07, pEA = 1.85×10−6;
rs17742120: βAA = −1.24, pAA = 0.03, βEA = −1.07, pEA = 1.85×10−6; rs2164660: β AA =
−1.36, p AA = 0.02, βEA = −1.11, pEA = 4.24×10−7). Stratified haplotype and overall
haplotype testing did not improve the association signal.

Among the other significant signals was a trio of SNPs in TJP1, 15q13.1. These SNPs
showed strong negative associations between PGI and minor allele count (rs711355: p =
2.25×10−7, q = 0.08; rs785423: p = 4.86×10−7, q = 0.08; rs813676: p = 4.91×10−7, q =
0.08). These three SNPs were in high LD with each other (R2 > 0.80), but not with other
SNPs in the region. Minor allele frequency (MAF) was relatively high for all three SNPs
(MAF > 0.33), and exhibited negligible differences by ancestry. But, the significance of the
associations was inconsistent in racial\ethnic stratified reanalysis. The AA sample had less
significant associations (rs711355: p = 0.02; rs785423: p = 0.19; rs813676: p = 0.19) than
the EA sample (rs711355: p = 8.70×10−5; rs785423: p = 1.09×10−5; rs813676: p =
5.73×10−6). Haplotype testing improved the signal for a specific high risk haplotype and in
overall haplotype tests for EAs but did not in the AA subsample. The stratified analysis
results suggest that the association signal was mainly driven by the EA subsample – thus the
association should be regarded as tentative, pending further evidence.

One of the strongest signals related to CGI-S comprised two highly proximate SNPs (~1 kb
apart) at PPA2, 4q24. Both of these SNPs showed strong positive associations between CGI-
S during risperidone treatment and minor allele count (rs2636697: p = 3.68×10−7, q = 0.06;
rs2636719: p = 5.05×10−7, q = 0.09). These SNPs were in high LD (in AA R2 = 0.83 and in
EA R2 = 0.84) and had fairly low MAFs (0.01/0.04 in AA/EA). Haplotype testing did not
improve the association signal in either subsample.

As shown in Table 2, three additional genome-wide significant SNPs were located within
annotated genes and two genome-wide significant SNPs were located in intergenic regions.
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Secondary analyses of these findings showed that the proportion of variance explained by
each SNP was similar in the AA and EA subsamples, that haplotype tests did not improve p-
values and that the detected signals were unlikely the results of genotyping errors.

Cross-outcome Analysis of Genome-Wide Significant Markers
In the top portion of Table 3, we evaluated whether variants that were associated with one
global impression measure were also nominally associated with the other global impression
measure. Four of the 13 SNPs showed cross-outcome association: two SNPs during
risperidone treatment and other two during olanzapine treatment. In the bottom of Table 3,
we extended our cross-outcome analysis using markers that reached q < 0.25 in two
previously published treatment response GWAS in the CATIE sample (14–15). SNP
rs17727261 had been previously associated with negative symptom change assessed using
the PANSS during risperidone treatment (p = 5.41x10−7; q = 0.134). Here, we found that
this SNP was also nominally associated with the both the PGI and CGI-S during risperidone
treatment. Three other SNPs (rs11214606, rs6856328 and rs16865258) were nominally
associated with global impression severity and were also associated with neurocognitive
domain changes, specifically working memory, during olanzapine and quetiapine
treatments. The column on the right-hand side of Table 3 shows that the correlations
between the outcomes is low to moderate, ranging from −0.10 to 0.38. This suggests that
these nominal associations are not merely reflecting the correlation among the outcomes.

Discussion
Understanding the genetic variation affecting response to antipsychotic drugs is important to
develop novel diagnostic tests to match individual patients with schizophrenia to the most
effective and safe medication. In this study, we performed a GWAS of antipsychotic
response using the patient rated PGI and clinician rated of the CGI-S severity scales. In total,
13 SNPs achieved genome-wide significance according to our pre-identified criteria (FDR
controlled at 0.10 level). Several of the significant SNPs were associated with both the PGI
and CGI-S. In comparison to a previous GWAS we carried out in CATIE that used
schizophrenia symptoms as measured by the positive and negative syndrome scale (PANSS)
as the outcome variable, this study with global impression phenotypes would appear to be
more successful. The study using the PANSS found only a single SNP to be significant at a
genome-wide level and only three SNP’s in genes with q-values < 0.5 (14).

Our top findings involved PDE4D, PPA2 and TJP1. PDE4D is a cAMP-specific
phosphodiesterase widely expressed in human brain. PDE4 inhibitors enhance dopamine D1
receptor signaling (33) and have been suggested to have antipsychotic potential activity (34–
35). PDE4D knockout mice show decreased prepulse inhibition, decreased baseline motor
activity, and an exaggerated locomotor response to amphetamine supporting a role for
PDE4D in psychiatric diseases and striatal function (36). Less information is available for
the other top findings: PPA2 and TJP1. The protein encoded by PPA2 (pyrophosphatase
(inorganic) 2) is localized to the mitochondrion and catalyzes the hydrolysis of
pyrophosphate to inorganic phosphate, which is important for the phosphate metabolism of
cells (37). The PPA2 protein has recently been shown to be downregulated in schizophrenia
cases (38). TJP1 encodes for a protein located on the cytoplasmic membrane surface of
intercellular tight junctions (39) and it may be involved in signal transduction at cell-cell
junctions (40).

When examining GWAS results from multiple raters in our study, patient and clinician rated
global impression, confidence in the results increases when there is overlap in findings
between the raters. In total, 4 SNPs were associated with both patient and clinician rated
global impression in their respective GWAS. A SNP in TJP1 and rs8050896 were associated
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with risperidone treatment efficacy. TJP1 was discussed in the previous paragraph while
rs8050896 is over 200kb from the nearest gene. SNPs in SPOPL and ATP1A2 were
associated with olanzapine treatment efficacy. SPOPL is considered a protein-coding gene,
though little has been published about its function. ATP1A2 encodes for a protein that is
responsible for establishing and maintaining the electrochemical gradients of Na+ and K+

ions across the cell plasma membrane. The gradients are essential for electrical excitability
of nerve and muscle tissue. ATP1A2 has been previously associated with migraines (41).

The cross-outcome analyses showed that there are both overlapping and unique findings
associated with different definitions of treatment response. The overlap in findings using
different definitions of treatment response gives us confidence that the signals are truly
associated with antipsychotic response. A SNP located in CNTNAP5 was shown to be
associated with PANSS negative symptoms and moderately associated with both the PGI
and CGI-S severity scores during risperidone treatment. CNTNAP5 is involved in cell
adhesion and intercellular communication in the central nervous system (42). CNTNAP5 has
previously been associated with bipolar disorder (43) and autism (44). Three genes, DRD2,
LPHN3 and CLDN1 had a cross association between working memory, a neurocognitive
endophenotype of schizophrenia, and either the CGI-S or the PGI. DRD2 is a well-known
candidate for antipsychotic response and is a drug target for olanzapine (45), the
antipsychotic in which we see the effects. LPHN3 is known to be involved in cell adhesion
and signal transduction, and has been found to be associated with ADHD (46). CLDN1,
claudin 1, is recognized to have a major function in cellular permeability (47), specifically in
controlling permeability of the blood-brain barrier tight junctions (48). Genetic variants at
CLDN1 could conceivably affect drug availability in the brain.

Although there were overlapping GWAS results, most of the associated candidate genes
were different for clinician versus patient rating. This can be explained by the fact that our
CGI-S and PGI based estimated treatment effects showed low correlations. A previous study
has reported high concordance between CGI-S and PGI scores (49) but these authors
considered symptom levels rather than changes in symptom levels over the course of
treatment. Indeed, we also found high concordance between the two scales across
measurement occasions (See Table 1). Our finding that treatment effects were not highly
correlated across measurement occasions is consistent with another study comparing the
congruence of CGI-S and PGI treatment effects in depression (50). One potential
explanation for the low rater agreement is that patients with schizophrenia, especially those
with higher symptom severity, may show reduced insight in evaluating improvement in
symptom levels after treatment and therefore have different self-rated scores when compared
with clinician ratings. Another explanation is that the construct of global improvement is
multi-dimensional and captures many different aspects such as social functioning, symptom
improvement, etc. It is not uncommon that clinicians and patients focus on different aspects
when evaluating treatment effectiveness (e.g. whereas clinicians may be focused on disease
symptoms, a patient’s evaluation may be more driven by aspects of well-being). Thus,
because the treatment effects show very modest correlations, we would expect to find
unique associations for each of the raters.

One potential way to ascertain the overlap in genetic findings for the CGI-S and PGI would
be to combine them into a composite score. In order to form a combined measure, one
would have to assume that clinicians and patients are assessing similar aspects of the
disease. Research has shown, however, that patients and clinicians differ in how they
conceptualize the disorder (5, 9). The secondary association analyses essentially replaces a
composite score approach. These analyses do not suffer from the same problems as
composite score approaches as they do not assume that the clinician and patient ratings
assess the same clinical construct. Thus, rather than assuming that SNPs effect CGI-S and
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PGI measures through a shared underlying clinical construct, the secondary analyses would
detect any “pleiotropic” effects of SNPs impacting the different aspects of clinical functions
assessed by CGI-S and PGI measures.

Another potential limitation is the use of a threshold of p-value less than 0.05 as the criterion
for determining whether there is a secondary association of a SNP with another outcome
(See Table 3). Although such a threshold is too liberal for declaring significance in a GWAS
study because of the many tests that are performed, we would argue that this threshold is
acceptable for a secondary analysis because the two measures assess a similar phenotype,
the p-values from the secondary association are expected to be more significant than
expected under the null. Also, a higher p-value threshold can be used because of the much
smaller number of tests and/or the high prior probability that the SNP under consideration
has an effect. Furthermore, due to the winner’s curse phenomenon, the effect sizes of
significant findings from the GWAS will be overestimated (51–52). In a secondary
association, however, these estimates will “shrink” toward the true effect size, and the same
SNP will yield much more modest p-values. Because of these reasons, it is reasonable to use
a smaller p-value threshold for declaring significance in the secondary association.

As with any genetic associations, our findings require replication in an independent sample
and functional validation. Thus, it is premature to suggest direct clinical applications of our
findings for prescribing antipsychotics. Rather, actualizing the promise of
pharmacogenomics and translating academic findings into clinical applications will require a
cumulative process of aggregating and jointly considering large bodies of evidence using
meta-analytic and data integration techniques. To facilitate this process we provide all p-
values (www.pharmacy.vcu.edu/biomarker) as a resource for investigators with the requisite
samples to carry out replication or meta-analysis.

The present study demonstrates the potential of GWAS to discover genes associated with
antipsychotic treatment response. A better understanding of these mechanisms and the role
of specific polymorphisms may eventually help to personalize antipsychotic medication in
order to more rationally and efficiently determine the optimal treatment for each patient.
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Figure 1.
QQ Plots of Genome-Wide Significant Associations with Clinician (CGI-S) and Patient
(PGI) Rated Global Impression Severity
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