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Abstract
Knowledge about the proportion of markers without effects (p0) and the effect sizes in large scale
genetic studies is important to understand the basic properties of the data and for applications such
as the control of false discoveries and designing adequately powered replication studies. Many p0
estimators have been proposed. However, high dimensional data sets typically comprise a large
range of effect sizes and it is unclear whether the estimated p0 is related to the whole range,
including markers with very small effects, or just the markers with large effects. In this article we
develop an estimation procedure that can be used in all scenarios where the test statistic
distribution under the alternative can be characterized by a single parameter (e.g. non-centrality
parameter of the non-central chi-square or F distribution). The estimation procedure starts with
estimating the largest effect in the data set, then the second largest effect, then the third largest
effect, etc. We stop when the effect sizes become so small that they cannot be estimated precisely
anymore for the given sample size. Once the individual effect sizes are estimated, they can be used
to calculate an interpretable estimate of p0. Thus, our method results in both an interpretable
estimate of p0 as well as estimates of the effect sizes present in the whole marker set by repeatedly
estimating a single parameter. Simulations suggest that the effects are estimated precisely with
only a small upward bias. The R codes that compute the effect estimates are freely downloadable
from the website: http://www.people.vcu.edu/~jbukszar/.
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Introduction
Genome-wide association studies offer great promise to expedite the discovery of genetic
variants affecting susceptibility to common diseases. A first challenge in the analyses is to
understand the basic properties of these massive data sets, containing millions of (imputed)
markers, such as the proportion of markers without effects (p0) and the effect sizes (ε) of
markers with effects. These basic properties provide a direct indication of the relevance of
the genotyped markers for the disease. In addition, this information is crucial for a wide
variety of applications such as the control of false discoveries and designing follow-up
studies that have adequate power to replicate the initial findings.
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High dimensional data sets typically comprise a large range of effect sizes. This presents a
problem for the wide variety of existing estimators for p0 (Allison et al. 2002; Benjamini
and Hochberg 2000; Dalmasso et al. 2005; Efron et al. 2001; Hsueh et al. 2003;
Meinshausen and Rice 2006; Mosig et al. 2001; Pounds and Cheng 2004; Pounds and
Morris 2003; Schweder and Spjøtvoll 1982; Storey 2002; Turkheimer et al. 2001). That is, it
is unclear whether the m × (1 – p0) estimated effects pertain to the whole range of effect
sizes, including markers with very small effects, or just the markers with large effects. To
solve the unclear interpretation, we would need to know the effect sizes of the markers with
effects. These effect sizes are commonly estimated by focusing on the significant markers in
the sample that has also been used for testing. However, this approach typically yields
estimates with considerable upward bias (Goring et al. 2001; Ioannidis et al. 2001). The
reason is that markers that due to sampling fluctuations appear to have a large effect size are
more likely to be declared significant. In an independent sample, however, the effect size
estimates will “shrink” towards the true effect size or be close to zero because the marker
was a false positive. Alternative methods have been proposed to obtain less biased effect
size estimates. Zollner and Pritchard (2007), for example, present a likelihood function
based on a model with population frequency, penetrance and population prevalence
parameters. They use a sophisticated optimization method to find the parameter values that
maximize the likelihood given that the marker is significant. Based on the conditional
likelihood function of the statistic of a single marker given that the marker is selected,
Zhong and Prentice (2008) propose the ML and the median estimator of the effect size.
Moreover, in order to avoid overcorrection, they present a weighted estimator, which is a
suitably chosen linear combination of the former two. In their work published at the same
time as that of Zhong and Prentice (2008), Ghosh et al. (2008) present the conditional
likelihood estimator that is essentially the same as Zhong and Prentice’ ML corrected
estimator. A significant disadvantage of all these methods is that the effect size estimate they
provide for a selected marker is dependent on the selection criterion, e.g. the significance
threshold. That is, the effect size estimate varies for different selection criteria. Another
drawback is that we will not obtain any information for markers that are not selected but
have effect. Also selected null markers will be assigned with estimated effects.

In this article we propose a novel method that yields both an interpretable estimate for the
proportion of markers without effects plus the effect sizes of markers with effects by
repeatedly estimating a single parameter. Our estimates are obtained using information from
the entire set of tested markers and not just those markers that are declared significant.
Therefore, unlike existing approaches that estimate effect sizes of only the significant
markers in the same sample that has been used for testing, it cannot suffer from the upward
bias associated with this approach (Goring et al. 2001; Ioannidis et al. 2001). Furthermore,
as we do not select markers, we obtain information for all GWAS markers.

We prefer a more general definition of what is typically referred to in the literature as an
“effect size”. More specifically, our method estimates the detectability of a marker is
defined as , where n is the sample size and ε an effect size that is a function of the allele
frequency plus a genetic effect such as the odds ratio. One reason for this more general
definition is that whether we can estimate the “effect sizes” precisely depends not only on
the effect size but also on the sample size. For example, a marker with a certain effect size
may be detectable, or estimated precisely, in a study with a large sample but not in a study
with a small sample. Note that there is a direct correspondence with statistical power that is
also determined by both effect size and sample size. Other advantages of using this more
general definition is that because detectability incorporates the samples size, by estimating
the detectability parameter rather than the effect size we can also handle missing data
conveniently.
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Instead of the widely used mixture model likelihood function, we used the more realistic real
maximum likelihood function to estimate the detectibility. The major difference between the
two is that, as in reality, in our model the number of true alternatives is a constant rather
than a binomially distributed random variable as in the mixture model. As a result of
modeling the true scenario where the number of alternatives is constant, the test statistic
distribution of all GWAS markers become dependent, which results in a likelihood function
that is much more complex than the one from the mixture model. However, we show that
the complexity of optimizing the real maximum likelihood is justified by the much better
precision. Our method starts with estimating the largest detectability in the data set, then the
second largest detectability, then the third largest detectability, etc. We stop when the
detectabilities become so small that they cannot be estimated precisely anymore with the
current sample size (i.e. are not “detectable”). Once the individual detectabilities and effect
sizes are estimated, they can be used to calculate an interpretable estimate of p0. Thus, we
can calculate p0 at any step k of the estimation sequence as p0(k) = 1 – k/m, where m denotes
the total number of markers. The calculated p0(i) has a clear interpretation, it is the estimated
proportion of markers whose effect sizes are smaller than the (estimated) k largest effect
size. For example, in a study with m = 500,000 markers where the k = 3rd largest effect is
estimated as ε(3) = 0.07, we know that the p0(3) of 0.999994 (= 1 – 3/500,000) refers to the
three markers with effect sizes 0.07 or larger. In a sense, our method avoids estimating p0
altogether and solves the unclear interpretation by estimating the effect sizes above a
threshold instead.

We implemented our method with two key adaptations that improve the precision of the
estimates and evade numerical problems. First, we will need to specify the distribution of
test statistic under the alternative hypothesis so that the estimator “recognizes” how
observed test statistic values are related to effect sizes. A complication is that the asymptotic
equivalent for the distribution of the test statistic may depend on multiple parameters
(Bukszár and Van den Oord 2005). To avoid estimating all these parameters for each
marker, we propose to use approximations of the asymptotic equivalent that rely on a single
parameter only. Fortunately, good and commonly used single value approximations exist for
the vast majority of tests performed in statistical genetics. For example, categorical tests,
quantitative tests, case–control tests, and tests used in the context of family based designs
typically have either a non-central Chi-square or non-central F distributions under the
alternative that depend on a single (non-centrality) parameter only. Second, although it is
possible to directly estimate the individual effect sizes, it turned out to be more precise to
repeatedly estimate average effect size Δ and then calculate the individual effect sizes ε from
them. Thus, we first estimate the largest effect by assuming m1 = 1, then estimate the mean
of the two largest effects by estimating Δ while assuming m1 = 2 and obtain the effect size of
the second largest effect by subtraction, etc. Thus, we are essentially estimating the largest
individual effect sizes by repeatedly estimating a single parameter.

There are two additional points that may be important to note. First, although our method
makes certain simplifying assumptions when estimating average effect size Δ, no
assumptions are made about the distribution of the individual effect sizes ε that are simply
obtained by subtraction. This is important as in genetic association studies it will be almost
impossible to justify parametric assumptions about the effect size distribution. Second,
statistics used to test for interactions or more complex models also typically have single
value approximations under the alternative (e.g. Wald test for the significance of the
interaction effect or likelihood ratio tests obtained by fitting multiple/logistic regression
models with and without the interaction effects). Thus, our method is not limited to testing
for “main” effects.
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Method and results
Estimating individual effect sizes

Maximum likelihood estimator—To estimate the individual effect sizes, ε1, ε2,…, first
we estimate the average of the k-th largest effect sizes, Δk, for k = 1, 2,…, where our effect
size parameter is a function of the allele frequency plus a genetic effect such as the odds
ratio. We initially make the crude assumption that all individual effect size parameters are
identical, and as a result they will be identical with the average effect size, Δ. In the next
section we show how this crude assumption of identical effect size parameters can be
“overwritten” when the actual individual effect sizes are calculated without making any
assumption about their distribution.

Suppose m identical hypothesis tests H1,…, Hm are performed with statistics T1,…, Tm.
Exactly m0 of the m statistics follow the null distribution characterized by density function f0
and the rest of the m1 = m – m0 statistics follow an alternative distribution characterized by
density function fΔ that depends on average effect size Δ that is unknown. Let Hi = 0 when
null hypothesis i is true, and Hi = 1 otherwise. Note that vector H = (H1,…, Hm) has m0 0
and m1 1 components. We assume that H = (H1,…, Hm) is a random variable whose possible
outcomes, the 0–1 vectors of length m with exactly m1 1′s, are taken with the same

probability, . Note that H1,…, Hm are not independent. The likelihood function on
the test statistic values t1,…, tm is

(1)

where Hi·Δ = Δ if Hi = 1 and Hi·Δ = 0 if Hi = , furthermore, the sum in the upper line is on
all possible outcomes of random variable H, and fΔ (f0) is the density function of Ti when Hi
= 1 (Hi = 0). Thus, the maximum likelihood (ML) estimator of p0 and the (average) effect
size will be  and , respectively, where  and  maximize function L. In
the second line of (1) we also indicated the sample size in subscript of the density function
to account for the fact that sample sizes may differ across markers as a result of missing
values. This will be discussed later, now we assume equal samples for the sake of simplicity.
Note that the density function does not depend on the sample size under the null hypothesis.
We stress out that our model differs from the mixture model, where H1,…, Hm are
independent Bernoulli random variables causing the number of true alternatives to be a
binomially distributed random variable, M1 ~ b(((m1)/m);m), whereas it is a constant in our
model, as in reality. It is interesting to remark, that the 1-D marginal distributions are the
same for the two likelihoods, but they are dependent for the real likelihood and independent
for the mixture model likelihood.

Due to enormous number of terms in the sum, the likelihood cannot be evaluated directly.
For example, with a total number of tests m = 100,000 of which m1 = 5 markers have an
effect, there are 8.33 × 1022 terms. We therefore developed the method below that is based
on recursive series to calculate the real likelihood. Define S(n) as
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(2)

for n = 1,…, m, and S(0) = 1, where  for i = 1,…, m. Then the maximum
likelihood function can be re-written as

One can verify the following sieve-formula

where . By this formula we can calculate S(m1) in the real likelihood
function in a recursive way starting from S(0) and S(1). The large spectrum of ai’s in
combination with the recursive use of them, will cause numerical problems when evaluating
S(n). A major technique involved partitioning the set of ai’s. That is, the distribution of ai’s
is such that the vast majority of markers have values with small range. For this set we can
use the recursive formula. For the remaining markers that have a very large range of ai’s, we
created bins of 10 markers. Because there are only 10 markers in each bin, we don’t need the
recursive formula for which a large range is problematic. Instead, we calculated S(n) directly
using (2). The S(n)’s of all bins were then combined to calculate the S(n) for all markers.

Technically, it would also be possible to maximize L(m1|Δ = c) to estimate the number of
markers  that together have average effect c. However, the use of L(Δ|m1 = k) is more
sensible. First, the average of the m1 = k largest effect sizes will always exist although for
large values of k the effects are probably very small. However, Δ = c may not exist, for
instance the specified c can be larger than the largest effects size, so that there is the risk of
trying to estimate something that is not present in the data. Second, even if the specified Δ =
c is in an existing range, it will be specified with error because it is real valued whereas m1
is an integer.

Obtaining the individual effect sizes—It will be hard to justify parametric
assumptions about the distribution of the effect sizes. We therefore avoid such assumptions.
Rather than estimating m1 and Δ simultaneously we condition on a pre-specified number m1
= k of markers with effect and then maximize the function L(Δ|m1 = k) to estimate their

average effect size . From these average effect sizes we can calculate the effect sizes of

the individual markers, ε-s. Thus, for k = 1 we can directly calculate  and for k > 1 we
have

(3)

For example, the third largest effect can be obtained as , where the average

effect of the top 3  and top 2 markers  are estimated by maximizing L(Δ|m1 = 3)
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and L(Δ|m1 = 2) respectively. As we will see we obtain a precise estimate of the average of
the highest effect sizes by maximizing L(Δ|m1 = k). Intuitively, it is so because the ML
estimator conditioned on m1 “does not see” or “barely sees” the effect sizes smaller than the
highest m1 ones. For instance, if we consider k = 3, the estimator will estimate the mean of
the three biggest effects and will not be substantially affected by smaller effects. Thus, in the
presence of higher effect sizes, the lower effects remain not or just a bit visible for the
estimator.

We need a stopping rule to determine the value of the highest k, where the recursion given in
(3) stops. Based on extensive simulations, we selected the stopping rule , where 
is either our conservative estimator with fine-tuning parameter 1 (Kuo et al. 2007) or the
Meinshausen–Rice estimator with linear bounding function and fine-tuning parameter 0.5
(Meinshausen and Rice 2006) of the number of individual effect sizes.

In principle we can estimate the m1 effect sizes directly by the maximum likelihood method.
However, even with m1 = 2, it turned out the variance of the two effect size estimators was
large and that it was much more precise to repeatedly estimate average effect size Δ and then
obtain the individual effect sizes ε by subtraction.

Detectability—A certain effect size of a causal marker may be estimated precisely (or may
be detectable), in a study with a large sample but not in a study with a small sample. How
precisely an effect can be estimated depends on both the effect size, ε and the sample size, n,
through the quantity , which we will refer to as detectability. For instance, suppose that
in experiment B the effect size of a causal marker is half of the effect size of a causal marker

in experiment A, i.e. , then in experiment B we need four times as many samples

as we had in experiment A because .

The concept of detectability is convenient to use in simulation studies as well, because with
a certain detectability choice we cover infinite selections of effect sizes and sample sizes. In
such a simulation we estimate detectabilities rather than effect sizes for convenience,
detectabilities and effect sizes can easily be calculated from each other after all. To further
illustrate the interpretation of the concept detectability, in Fig. 1 we show all combinations
of odds ratios and sample sizes that result in the same detectability  for fixed
minor allele frequency 0.2 (solid line) and 0.5 (dashed line). For example, in an experiment
with sample size 980 a marker with odds ratio 1.5 has the same detectability (3.79) as the
marker with odds ratio 1.2 in an experiment with sample size 5,128 assuming MAF is 0.2.

Handling missing values—If there is no missing observations, optimization of (1) is not
affected by sample size as it is a constant, thus, we can estimate the effect sizes without
considering the sample size. However, if there is missing data, each individual density under
the alternative would need to have the marker specific sample size included. Rather than
doing this, it is more convenient from a numerical perspective to estimate the detectability
parameter  instead of the effect size. Recall that the estimated effect sizes or
detectabilities are the attributes of the whole set of markers and not some individual
markers.

Testing the estimator
Our maximum likelihood estimator requires an approximating density function under the
null f0 and alternative fΔ. This is because effect sizes are estimated on the basis of (the
distribution of) all observed test statistics, which depend on the effect sizes under the
alternative. By choosing different functions for f0 and fΔ, the method can be applied to a
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wide variety of studies. Here we will give single value approximation for case–control
studies with SNPs.

The distribution of Pearson’s statistic is often approximated with a non-central chi-square
distribution with ν – 1 degrees of freedom and non-centrality parameter nε2 (Agresti 1990;
Cohen 1988; Weir 1996), where n is the total sample size. This approximation depends on
only the single value ε, given in (4) below, apart from the known parameter n. However, this
approximation can sometimes be inaccurate (Bukszár and Van den Oord 2005). To be able
to evaluate the precision of our estimator across a wide variety of scenarios with any
potential confounding effect of inaccuracies of the standard approximation, we derived a
slightly different single value approximation that was more accurate across a wide variety if
scenarios. In particular, define

(4)

where pi (i = 1,…, ν) is the probability that a randomly chosen case falls into category i, and
qi (i = 1,…, ν) is the probability that a randomly chosen control falls into category i,
moreover, γ and δ = 1 – γ are the proportions of cases and controls in the total sample size n.
We showed that Pearson’s test statistic is well approximated by

(5)

where χν–2 is a (central) chi-square random variable with ν – 2 degrees of freedom and

 is a chi-square random variable with 1 degree of freedom and non-centrality

parameter  (see supplemental material at http://www.people.vcu.edu/~jbukszar/ for
the proof). Note that for ε = 0, which happens if and only if the null hypothesis is true, i.e. pi
= qi for every i, the term in (5) is a central chi-square random variable with ν – 1 degrees of
freedom.

The single scalar ε can be interpreted as an effect size. For 2 × 2 tables, for example, we
have

(6)

where o = (p1(1 – q1))/(q1(1 – p1)) is the odds ratio and p1 (q1) the allele frequency in the
cases (controls). The fact that an approximation that depends on only a single parameter
exists is of great importance because it means that we only have to estimate a single
parameter to characterize the effect sizes.

Simulations—We performed simulations to test our method. We first generated a
distribution of individual effect sizes ε as defined in (6). To determine the allele frequencies
q1 we downloaded genotype calls for the Affymetrix Mapping 500 K chip set on the 270
HapMap samples (http://www.affymetrix.com/support/technical/sample_data/
500k_hapmap_genotype_data.affx). The distribution of the randomly generated odds ratios
o comprised two components. The first component represented the five “detectible” odds
ratios that were assumed to have the shape of an exponential distribution for which there is
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some empirical evidence (Hayes and Goddard 2001). For our simulation we used a rate
parameter of one where outcomes were linearly transformed to odds ratios. As the second
component we also added 37 markers with very small odds ratios that arise due to
phenomena such as genotyping errors, selection, and ascertainment differences between
cases and controls. For this purpose we used a gamma distribution (shape parameter = 7, rate
parameter = 30) and then linearly transformed the outcomes to an odds ratio scale whose
minimum was one. The exponential/gamma distributions are just used to create a “skewed”
scenario where there are many more small effects compared to big effects.

The effect sizes are probably the most important feature of the simulations. Rather than
studying a very limited number of conditions making it hard to generalize results to other
scenarios, we created 1,000 conditions with different effect sizes and estimated effect sizes
within each condition. Specifically, odds ratios were randomly drawn from the basic skewed
distribution in such a way that there were five effect sizes greater than 0.06. As doing many
simulations within each condition but that would have been problematic in terms of
computer time, for each of the 1,000 conditions we simulated a single sample of 1,000 cases
and 1,000 controls. Because the total sample size is 4,000, (1,000 cases + 1,000 controls) × 2
alleles, the 0.06 threshold for effect sizes is equivalent with the threshold

 for detectabilities.

Simulation results—We first examine how existing p0 estimators handled the above
situation comprising a broad range of effect sizes. Meinshausen and Rice (2006) gave an
estimator that is an upper bound for p0 with a pre-specified probability α. Their estimator
was included (using α = 0.1) because it is specifically designed for applications such as the
one considered in this article where the proportion of true null hypotheses is very close to
one. In addition, we included our conservative estimator with fine-tuning parameter 1 (Kuo
et al. 2007) that performed relatively well in the context of genetic studies. Two studies
(Dalmasso et al. 2005; Hsueh et al. 2003) compared additional multiple and non-overlapping
sets of estimators. In these studies the Lowest slope and Location based estimator (LBE)
showed the most favorable properties and were therefore included here. In addition, an
estimator developed Storey (Storey 2002) was included because they may be among the
most commonly used estimators. For Storey’s estimator we used the grid he suggested in his
article (0, 0.05,…, 0.95) plus a second grid (38 points from 0.00 to 10−4) that worked better
in this specific application where p0 is known to be very close to 1.

For each of the 1,000 conditions we generated a sample of 1,000 cases + 1,000 controls with
the number of markers equal to m = 100,000. We realize that arrays with 500,000 to 1 M
markers are now commonly used. However, when this many markers are tested, further
increasing the number of markers has a marginal effect on the precision of the estimates so
that we preferred m = 100,000 to reduce CPU time. Since the number of detectable effects
was 5 in each simulation, the detectable p0 was 0.99995. Table 1 shows the results. Storey’s
estimator using the standard grid and LBE did not perform well in this specific application.
They underestimate p0 considerably, have (very) large standard errors of the estimates, and
very often suggest p0 = 1. The performance of the other estimators was comparable (lowest
slope, Meinshausen–Rice, and Storey* with the tailored grid). All p0 estimators that
performed satisfactory in our simulations overestimated p0 considerably suggesting there
were only 4–5 effects rather than about 42 effects that include also the ones that are obtained
from the simulated very small odds ratios. This suggests that only the 4–5 biggest effect
sizes are detectable for the p0 estimators, hence we correctly call them detectable effect sizes
based on our definition.

In Table 2 the mean of the actual and the estimated detectabilities across the 1,000
conditions are obtained by maximizing the conditional likelihood L(. |m1 = k) with k = 1…
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10. To facilitate the evaluation, we also reported the ratios of the estimated versus real
means plus standard deviations in the final two rows of the first part of Table 2. Results
show that the detectabilities greater than 3.79, which correspond to effect sizes higher than
0.06, are estimated precisely with only a small upwards bias and standard deviation is only
slightly higher than the real standard deviation of the effect sizes. However, for
detectabilities smaller than 3.79 the upward bias is more severe and the standard deviation is
smaller.

Above we proposed the stopping rule k = m1 + 1. Table 1 shows average estimates of p0 of
0.999969 and 0.999961 for the Meinshausen and Rice and our conservative estimator,
respectively. Because m1 = m(1 – p0), the rule would suggest to stop at k = 4.2 when using
Meinshausen–Rice and k = 4.9 when using the conservative estimator. As shown in Table 2,
the first five effects can be estimated relatively precise, indicating that the stopping rule
works reasonably well. Table 2 also shows that as one goes beyond the stopping rule, i.e.
beyond the 4th or 5th column, then the effect size will become too small to be precisely
estimated, indeed. We did extensive simulations that led to the same conclusion, notably that
the precision of the effect size estimate drops when the simulation goes beyond the stopping
rule.

To study the method under the complete “null” hypotheses, we analyzed 1,000 conditions
where there were no detectabilities higher than 3.79, i.e. all effect sizes were smaller than
0.06. Results are reported in the second part of Table 2. Surprisingly the estimates of the low
(<3.79) detectabilities were considerably less biased than the estimates of the similar low
(<3.79) detectabilities in the presence of detectabilities higher than 3.79. The reduction in
bias seemed, however, accompanied by larger standard deviation of the estimates. The
results are encouraging because if there are no big effects then the estimator gives us small
effect size estimates, even more precisely in terms of bias, so we will be precisely informed
by the estimator about the absence of the big effects.

The simulations that included effects higher than 0.06 were repeated in a number of possibly
less favorable conditions. First, we re-ran the simulations assuming dependent rather than
independent markers, which could possible impact the precision of the estimates. The
dependency among markers in the human genome can be characterized by a block structure
where within block correlations are high and between block correlations are low. To
simulate the data, we assumed blocks of five markers with statistical association R2 = 0.5 as
geneticists generally do not genotype markers with correlation higher than R2 = 0.5 to avoid
redundancy (Carlson et al. 2004). Next, we increased the number of markers to 500,000, but
kept the number of effects identical. Possibly it could be more difficult to estimate the effect
size because of the much larger number and proportion of null markers, which results in p0
= 0.99999. Finally, we reduced the sample size to 500 cases and 500 controls. Results in
Figs. 2 and 3 show that the simulations assuming dependency between markers and the
presence of a larger number of null markers produce results very similar to those reported in
Table 2 for the baseline condition in the upper part of the table. Thus, whether or not
markers are dependent or the effects need to be detected among a much larger set of null
markers hardly affected the precision of the effect size estimates. Note that by varying the
total number of markers, we varied p0, which has hardly affects the results. Reducing the
sample size does have an impact, most notably on the standard deviation of the effect size
estimates. Note that reducing the sample size also reduces detectability. In addition,
increasing the proportion of null markers by almost a factor 5 (500,000 rather than 100,000
markers where the number of effects was kept the same) had only a marginal effect. In a
final set of simulations we examined extreme conditions. First, we lowered sample sizes to
250 cases/250 controls and 100 cases/100 controls. The estimates still behaved reasonably
with sample sizes of 250/250. However, with sample sizes of 100/100 the method broke
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down and even the largest effect size were severely biased with very large standard
deviation. In addition, we performed simulations assuming blocks of five markers with
statistical association as high as R2 = 0.8. Except for a somewhat higher standard error the
bias remained very similar and this high correlation did not appear to affect the estimation a
lot.

Application to empirical GWAS data
A total of 420,287 genetic markers were tested for their association with neuroticism in a
genome-wide association study (GWAS, for details see (van den Oord et al. 2008). In short,
the 1,227 subjects came from the “control” sample in the NIMH Genetics repository and
were originally part of a large schizophrenia study. We used a multi-dimensional scaling
(MDS) approach to correct for potential confounding effects of substructure. Input data for
the MDS approach were the genome-wide average proportion of alleles shared identical by
state (IBS) between any two individuals. We found that the first 3-D captured the vast
majority of genetic substructure in the sample. These three covariates together with
genotype data of an SNP formed the four predictors in the linear regression model we used
to compute the test statistic value corresponding to an SNP. The response variable was the
factor score of the subjects. We used these three covariates together with genotype data of
an SNP to compute the test statistic value corresponding to the SNP by linear regression. It
is well-known that the distribution of the test statistic is a t-distribution. The expected value
of the test statistic is

where X is a n × 4 matrix whose first column contains the genotype data of the SNP and the
last three columns contain the factor score of the covariates, and σ2 is the variance of the
observational error. The absolute value of the expectation of the test statistic can be regarded
as the detectability, which divided by  can be regarded as the effect size. This (single
value) detectability is zero if and only if the SNP is independent of the response variables,
otherwise it is positive. This enables us to use our method. According to Meinshausen–Rice
estimator (with linear bounding function and fine-tuning parameter 0.5), the number causal
markers is 4, thus, we stop at 5. The 5 highest estimated individual detectabilities are 4.338,
4.265, 4.191, 4.117 and 4.046. There are about five causal markers with about the estimated
detectabilities.

Discussion
Knowledge about the proportion of markers without effects (p0) and the effect sizes (ε) in
large scale genetic studies is important to understand the basic properties of the data and for
applications such as the control of false discoveries and designing adequately powered
replication studies. Many p0 estimators have been proposed but the estimates are difficult to
interpret as it is unclear whether they are related to the whole range of effect sizes, including
markers with very small effects, or just the markers with large effects. Furthermore, current
approaches for estimating effect sizes tend to focus on significant findings only, often
producing estimates with considerable upward bias. In this article we proposed a method
that can be used to obtain an interpretable estimate of p 0 as well as the individual effect
sizes as present in the whole marker set by repeatedly estimating a single parameter. Our
results suggested that detectible effect sizes are estimated precisely with only a small
upward bias.
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It should be stressed that the inability of our method to estimate effects below a certain
threshold is not a specific shortcoming. For example, in association testing some effect sizes
will have very low statistical power to be declared significant and are essentially also not
“detectable”. Furthermore, all existing p0 estimators are affected by the same phenomenon.
For example, the estimators that performed satisfactory in our simulations all overestimated
p0 considerably suggesting there were only 4–5 effects rather than about 42 effects we
simulated. The advantage of our method compared to existing methods, however, is that we
know how to interpret the p0 estimates in all these situations. For example, if we would
double the sample size in a study, the traditional p0 estimators would suddenly “see” more
effects. However, our estimator is not subject to such misinterpretations because our p0
estimate is tied to a specific effect size.

Very small effect size may still be very interesting from a substantive and statistical
perspective. As estimating individual effect sizes in the “undetectable” range may be
impossible for fundamental reasons, very different procedures may need to be developed.
One option would be to avoid estimating the small effects altogether and develop a method
that estimates the average of all remaining effect sizes rather than each small effect size
individually.

Our effect size estimates are obtained using information from the entire set of tested markers
and not just those markers that are declared significant. This avoids the upward bias
compared to approaches that estimate effect sizes of only the significant markers in the same
sample that has been used for testing. The flip side is that our method does not assign effect
size estimates to individual markers but estimates the effect sizes present in the whole
marker set. However, this may not necessarily limit the practical use of our method. For
example, for any set of markers declared significant, we can still calculate the individual
effect sizes on this set of significant markers as a whole and design adequately powered
replication studies. In addition, we can calculate the posterior probability that the effect size
of a marker equals εi. As the posterior probability that a marker has a certain effect size can
be expressed by a mathematical formula that incorporates only the effect sizes, the test
statistic values and the pdf of the statistics, we can estimate the posterior probability by
plugging the individual effect size estimates in this formula. Thus, by selecting the effect
size with the highest posterior probability we can still assign effect sizes to individual
markers. Of more practical importance, by this method one can estimate the probability that
a marker has no effects, i.e. the local FDR.

As an alternative approach we explored to avoid the enormous number of terms in (1) is to
use the log-likelihood function of the frequently used mixture model. In the mixture model
p0 (or equivalently m1) is a variable rather than a fixed number. Thus, whereas the
likelihood in (1) estimates the number of markers in the selected set of markers, the mixture
model approach estimates the proportion of null markers in the population of all possible
markers by drawing markers from a large number of markers. It could be argued that in a
study one is typically interested in the properties of the markers that have been genotyped
rather than the properties of the (fictitious) population of all possible markers. In addition to
being less appealing from a theoretical perspective, a simulation study (see supplementary
material) showed that the mixture model likelihood estimates of the average effect sizes
were very similar regardless of the number of effect sizes in the condition. Consequently,
estimates of the individual effect sizes that are obtained by subtraction were very poor.

A wide variety of applications are conceivable using the estimated effect sizes. For example,
it may sometimes (e.g. screening studies) be more important to ensure that a desired
proportion of markers with effect are detected rather than controlling false discoveries. For
this purpose, authors have proposed indices termed a false negative rate, false non-discovery
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rate, or miss rate in the literature (Delongchamp et al. 2004; Genovese and Wasserman
2002, 2004; Sarkar 2002, 2004; Taylor et al. 2005), which are defined as the proportion of
true positives among the markers that are not significant. However, these indices are
affected by the proportion of markers without effect p0, which is irrelevant for the purpose
of avoiding that too many true effects are eliminated. Thus, in two studies that achieve the
same miss rate, the proportion of true effects that are detected can be very different
depending on the value of p0. In contrast, the availability of an estimate of the average effect
size will allow us to calculate the P-value threshold ensuring that a desired proportion of
markers with detectable effects are detected.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
All combinations of odds ratios and sample sizes that result in the same detectability

 for fixed minor allele frequency 0.2 (solid line) and 0.5 (dashed line)
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Fig. 2.
Ratio of estimated versus real mean of effect sizes in a variety of conditions (labels have the
same order as ratios for marker 10)
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Fig. 3.
Ratio of estimated versus real standard deviation of effect sizes in a variety of conditions
(labels have the same order as ratios for marker 10)
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Table 1

Estimating p0 = 0.99958 for effect sizes with mean = 0.0262 (standard deviation = 0.00235)

Meinshausen & Rice Conservative Lowest slope Storey Storey* LBE

# p0 = 1 0 0 118 219 10 472

Mean 0.999969 0.999961 0.999972 0.994538 0.999945 0.988834

Standard deviation 0.000013 0.000015 0.000020 0.007160 0.000058 0.015589

Each of the 1,000 simulations comprised 1,000 cases + 1,000 controls, and the number of markers was m = 100,000. The 42 sample effect sizes
were randomly drawn

*
For Storey we used the 38 point grid from 0 to 10−4
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