Skip to main content
. 2014 Jan 21;119(3):339–354. doi: 10.1007/s11120-014-9969-8

Table 1.

Measured and calculated chlorophyll fluorescence parameters

Parameters Name and basic physiological interpretation
Measured or computed inputs for calculation of the key fluorescence parameters
 F, F′ Fluorescence emission from dark- or light-adapted leaf, respectively
 F 0 Minimum fluorescence from dark-adapted leaf (PSII centers open); F 0 was not corrected for PSI fluorescence, and for the possible presence of reduced QB that could produce some reduced QA in darkness.
 F m, F m Maximum fluorescence from dark- or light-adapted leaf, respectively (PSII centers closed)
 F V = F m  F 0 Maximum variable fluorescence from dark-adapted leaf
 F 0  = F 0/[(F V/F m) + (F 0/F m )] Minimum fluorescence from light-adapted leaf12
 F s Steady-state fluorescence at any light level
 α = χ/ + 76) Absorbance of incident PAR (photosynthetic active radiation) by leaf9
 χ Total chlorophyll content (in μmol m−2)
Key chlorophyll fluorescence parameters derived from the saturation pulse analysis
 F V /F m = 1  (F 0 /F m ) Estimated maximum quantum efficiency (yield) of PSII photochemistry1,7,10
 Φ PSII = (F m  F′)/F m Estimated effective quantum yield (efficiency) of PSII photochemistry at given PAR5
 ETR = 0.5 × α × PAR × Φ PSII Rate of linear electron transport in PSII at given photosynthetic active irradiance (PAR), assuming that there is equal partitioning of absorbed light between PSI and PSII (constant value 0.5)4,5
 NPQ = (F m  F m ′)/F m Non-photochemical quenching3,8
 qP = (F m   F s ′)/(F m  − F 0 ′) Coefficient of photochemical quenching based on the “puddle” model (i.e., unconnected PSII units)2,4,6
 qL = qP × (F 0/F s ) Coefficient of photochemical quenching based on the “lake” model (i.e., fully connected PSII units)12
 qCU = (F m  − F s )/((p/(1–p)) × (F s − F 0 ) + F m  − F 0 ) Coefficient of photochemical quenching based on the “connected units model” model (intermediate model)11,13 parameter p is defined in Table 2.
 Φ NO = 1/[NPQ + 1 + qL(F m/F 0 − 1) Quantum yield of non-regulated energy dissipation in PSII13
 Φ NPQ = 1  Φ PSII  Φ NO Quantum yield of pH-dependent energy dissipation in PSII13

Based on 1 Kitajima and Butler (1975); 2 Schreiber (1986); 3 Schreiber et al. (1988); 4 Björkman and Demmig (1987); 5 Genty et al. (1989); 6 Bilger and Björkman (1990); 7 Krause and Weis (1991); 8 Walters and Horton (1991); 9 Evans (1993); 10 Schreiber et al. (1995); 11 Lavergne and Trissl (1995); 12 Oxborough and Baker (1997); 13 Kramer et al. (2004)