Skip to main content
. 2014 Feb 3;14:17. doi: 10.1186/1471-2288-14-17

Table 4.

Simulation results: estimations of bias and mean squared error for the log-logistic model

 
 
 
 
 
 
Naive estimator
 
TBE
 
 
 
 
 
λ^

 
β^

 
λ^

 
β^

 
λ β p n BIAS MSE BIAS MSE BIAS MSE BIAS MSE NPM
0.05
0.5
0.25
100
6.45
44
0.384
0.16
0.258
0.25
0.041
0.008
217
 
 
 
500
6.33
40
0.372
0.14
0.043
0.01
0.005
0.001
52
0.05
0.5
0.50
100
1.05
1.2
0.319
0.108
0.045
0.012
0.020
0.006
22
 
 
 
500
1.02
1.1
0.308
0.096
0.009
0.001
0.003
0.001
0
0.05
0.5
0.80
100
0.165
0.031
0.195
0.041
0.008
0.001
0.008
0.004
0
 
 
 
500
0.158
0.026
0.189
0.036
0.001
<0.001
0.001
<0.001
0
1
0.5
0.25
100
129
17533
0.383
0.15
5.06
87
0.042
0.008
207
 
 
 
500
127
16217
0.374
0.14
1.01
6
0.008
0.001
41
1
0.5
0.50
100
21.0
467
0.317
0.106
0.93
5.0
0.019
0.006
43
 
 
 
500
20.5
426
0.308
0.096
0.20
0.6
0.004
0.001
0
1
0.5
0.80
100
3.31
12
0.201
0.044
0.209
0.55
0.016
0.005
0
 
 
 
500
3.17
10
0.190
0.037
0.037
0.09
0.002
<0.001
0
0.05
2
0.25
100
0.150
0.022
1.06
1.2
<0.001
0.001
0.08
0.085
4
 
 
 
500
0.149
0.022
1.04
1.1
-0.001
<0.001
0.01
0.018
0
0.05
2
0.50
100
0.079
0.006
0.932
0.94
<0.001
<0.001
0.06
0.094
5
 
 
 
500
0.078
0.006
0.903
0.83
<0.001
<0.001
0.01
0.017
0
0.05
2
0.80
100
0.035
0.001
0.665
0.50
<0.001
<0.001
0.03
0.078
0
 
 
 
500
0.035
0.001
0.649
0.43
<0.001
<0.001
0.01
0.013
0
1
2
0.25
100
2.99
9.0
1.07
1.2
0.024
0.57
0.08
0.089
0
 
 
 
500
2.98
8.9
1.04
1.1
-0.028
0.20
0.01
0.020
0
1
2
0.50
100
1.57
2.49
0.943
0.96
0.007
0.19
0.063
0.095
1
 
 
 
500
1.56
2.45
0.896
0.82
-0.013
0.04
0.004
0.018
0
1
2
0.80
100
0.702
0.50
0.668
0.50
0.004
0.042
0.045
0.072
0
      500 0.693 0.48 0.648 0.43 0.004 0.007 0.015 0.013 0

The mean squared error formula is MSE(λ^)=Var(λ^)+(BIAS(λ^))2. Calculations were made on the replications where there was no problem of maximization. In the last column appear the number of problems of maximization for the truncation-based approach. There was no problem of maximization for the naive approach. Abbreviations : TBE truncation-based estimator, MSE mean squared error, NPM number of maximization problems.