Table 4.
Simulation results: estimations of bias and mean squared error for the log-logistic model
| |
|
|
|
|
|
Naive estimator |
|
TBE |
||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| |
|
|
|
|
|
|
|
|
|
|
|
|
||||
| λ | β | p | n | BIAS | MSE | BIAS | MSE | BIAS | MSE | BIAS | MSE | NPM | ||||
| 0.05 |
0.5 |
0.25 |
100 |
6.45 |
44 |
0.384 |
0.16 |
0.258 |
0.25 |
0.041 |
0.008 |
217 |
||||
| |
|
|
500 |
6.33 |
40 |
0.372 |
0.14 |
0.043 |
0.01 |
0.005 |
0.001 |
52 |
||||
| 0.05 |
0.5 |
0.50 |
100 |
1.05 |
1.2 |
0.319 |
0.108 |
0.045 |
0.012 |
0.020 |
0.006 |
22 |
||||
| |
|
|
500 |
1.02 |
1.1 |
0.308 |
0.096 |
0.009 |
0.001 |
0.003 |
0.001 |
0 |
||||
| 0.05 |
0.5 |
0.80 |
100 |
0.165 |
0.031 |
0.195 |
0.041 |
0.008 |
0.001 |
0.008 |
0.004 |
0 |
||||
| |
|
|
500 |
0.158 |
0.026 |
0.189 |
0.036 |
0.001 |
<0.001 |
0.001 |
<0.001 |
0 |
||||
| 1 |
0.5 |
0.25 |
100 |
129 |
17533 |
0.383 |
0.15 |
5.06 |
87 |
0.042 |
0.008 |
207 |
||||
| |
|
|
500 |
127 |
16217 |
0.374 |
0.14 |
1.01 |
6 |
0.008 |
0.001 |
41 |
||||
| 1 |
0.5 |
0.50 |
100 |
21.0 |
467 |
0.317 |
0.106 |
0.93 |
5.0 |
0.019 |
0.006 |
43 |
||||
| |
|
|
500 |
20.5 |
426 |
0.308 |
0.096 |
0.20 |
0.6 |
0.004 |
0.001 |
0 |
||||
| 1 |
0.5 |
0.80 |
100 |
3.31 |
12 |
0.201 |
0.044 |
0.209 |
0.55 |
0.016 |
0.005 |
0 |
||||
| |
|
|
500 |
3.17 |
10 |
0.190 |
0.037 |
0.037 |
0.09 |
0.002 |
<0.001 |
0 |
||||
| 0.05 |
2 |
0.25 |
100 |
0.150 |
0.022 |
1.06 |
1.2 |
<0.001 |
0.001 |
0.08 |
0.085 |
4 |
||||
| |
|
|
500 |
0.149 |
0.022 |
1.04 |
1.1 |
-0.001 |
<0.001 |
0.01 |
0.018 |
0 |
||||
| 0.05 |
2 |
0.50 |
100 |
0.079 |
0.006 |
0.932 |
0.94 |
<0.001 |
<0.001 |
0.06 |
0.094 |
5 |
||||
| |
|
|
500 |
0.078 |
0.006 |
0.903 |
0.83 |
<0.001 |
<0.001 |
0.01 |
0.017 |
0 |
||||
| 0.05 |
2 |
0.80 |
100 |
0.035 |
0.001 |
0.665 |
0.50 |
<0.001 |
<0.001 |
0.03 |
0.078 |
0 |
||||
| |
|
|
500 |
0.035 |
0.001 |
0.649 |
0.43 |
<0.001 |
<0.001 |
0.01 |
0.013 |
0 |
||||
| 1 |
2 |
0.25 |
100 |
2.99 |
9.0 |
1.07 |
1.2 |
0.024 |
0.57 |
0.08 |
0.089 |
0 |
||||
| |
|
|
500 |
2.98 |
8.9 |
1.04 |
1.1 |
-0.028 |
0.20 |
0.01 |
0.020 |
0 |
||||
| 1 |
2 |
0.50 |
100 |
1.57 |
2.49 |
0.943 |
0.96 |
0.007 |
0.19 |
0.063 |
0.095 |
1 |
||||
| |
|
|
500 |
1.56 |
2.45 |
0.896 |
0.82 |
-0.013 |
0.04 |
0.004 |
0.018 |
0 |
||||
| 1 |
2 |
0.80 |
100 |
0.702 |
0.50 |
0.668 |
0.50 |
0.004 |
0.042 |
0.045 |
0.072 |
0 |
||||
| 500 | 0.693 | 0.48 | 0.648 | 0.43 | 0.004 | 0.007 | 0.015 | 0.013 | 0 | |||||||
The mean squared error formula is . Calculations were made on the replications where there was no problem of maximization. In the last column appear the number of problems of maximization for the truncation-based approach. There was no problem of maximization for the naive approach. Abbreviations : TBE truncation-based estimator, MSE mean squared error, NPM number of maximization problems.