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Abstract
Calcineurin-inhibitors CI are immunosuppressive agents prescribed to patients after solid organ
transplant to prevent rejection. Although these drugs have been transformative for allograft
survival, long-term use is complicated by side effects including nephrotoxicity. Given the narrow
therapeutic index of CI, therapeutic drug monitoring is used to prevent acute rejection from
underdosing and acute toxicity from overdosing, but drug monitoring does not alleviate long-term
side effects. Patients on calcineurin-inhibitors for long periods almost universally experience
declines in renal function, and a subpopulation of transplant recipients ultimately develop chronic
kidney disease that may progress to end stage renal disease attributable to calcineurin inhibitor
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toxicity (CNIT). Pharmacogenomics has the potential to identify patients who are at high risk for
developing advanced chronic kidney disease caused by CNIT and providing them with existing
alternate immunosuppressive therapy. In this study we utilized BioVU, Vanderbilt University
Medical Center’s DNA biorepository linked to de-identified electronic medical records to identify
a cohort of 115 heart transplant recipients prescribed calcineurin-inhibitors to identify genetic risk
factors for CNIT We identified 37 cases of nephrotoxicity in our cohort, defining nephrotoxicity
as a monthly median estimated glomerular filtration rate (eGFR) < 30 mL/min/1.73m2 at least six
months post-transplant for at least three consecutive months. All heart transplant patients were
genotyped on the Illumina ADME Core Panel, a pharmacogenomic genotyping platform that
assays 184 variants across 34 genes. In Cox regression analysis adjusting for age at transplant, pre-
transplant chronic kidney disease, pre-transplant diabetes, and the three most significant principal
components (PCAs), we did not identify any markers that met our multiple-testing threshold. As a
secondary analysis we also modeled post-transplant eGFR directly with linear mixed models
adjusted for age at transplant, cyclosporine use, median BMI, and the three most significant
principal components. While no SNPs met our threshold for significance, a SNP previously
identified in genetic studies of the dosing of tacrolimus CYP3A5 rs776746, replicated in an
adjusted analysis at an uncorrected p-value of 0.02 (coeff(S.E.) = 14.60(6.41)). While larger
independent studies will be required to further validate this finding, this study underscores the
EMRs usefulness as a resource for longitudinal pharmacogenetic study designs.

1. Introduction
Calcineurin-inhibitors (CI), such as tacrolimus and cyclosporine, are immunosuppressants
prescribed to recipients of allographs to reduce the risk of rejection by the immune system.
These drugs function by dampening IL-2 signaling pathway in T-cells and avoid the
vigorous inflammation and tissue damage typical of an alloresponse. While these drugs have
led to dramatically improved survival among heart transplant recipients, the nephrotoxic
side-effects of these drugs continue to diminish the long-term survival rates among patients
[1; 2]. CI are dosed in a narrow therapeutic window requiring close monitoring of serum
drug levels to prevent allograft rejection while minimizing the risk of adverse events.

Post-transplant, patients undergo continuous monitoring of their serum creatinine and
glomerular filtration rates (GFR) to determine impact of the immunosuppressants on kidney
function. A decline in kidney function is nearly universal among heart transplant recipients
with significant variability in the development of severe kidney disease. Patients are
frequently faced with the development of chronic kidney disease (CKD) which is classified
into 5 stages of increasing severity, each defined by the estimated GFR. In a retrospective
study 352 heart transplant recipients, 3% developed end-stage renal disease or CKD Stage 5
by 5 years and 12% by 10 years [3]. Clinical risk factors for developing post-transplant
CKD include pre-transplant GFR, pre-transplant diabetes mellitus, a female cardiac donor,
gender of the recipient, and post-operative renal replacement therapy [3].

Despite vast structural differences, the pharmacokinetics of cyclosporine and tacrolimus are
surprisingly similar, and both agents are targets of the P-gp efflux pump ABCB1 and the
cytochrome p450 CYP3A family of enzymes [4]. These genes are polymorphic for
functional alleles, and variants have been examined in several pharmacogenetic studies of
calcineurin-inhibitor dosing and nephrotoxicity in renal transplants [5–8]. Despite a large
number of candidate gene studies on the effects of these variants on immunosuppression
therapy, many of these analyses are narrow in their scope of genes tested. In this study, we
explored the roles of other pharmacokinetic genes outside the CYP3A family and ABCB1 on
the development of calcineurin inhibitor nephrotoxicity CNIT. For our study, we identified
127 heart transplant recipients in BioVU, Vanderbilt University Medical Center’s DNA
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biorepository linked to de-identified electronic medical records. From data collected in this
patient population, we developed a longitudinal pharmacogenetic study to test the impact of
ADME Core variants on the development of CNIT [9].

2. Methods
2.1. Study Population

As stated above, our study population of heart transplant recipients was obtained from
BioVU. A full description of BioVU as a resource, including its ethical, privacy and other
protections has been described in detail elsewhere [10]. In brief, BioVU extracts and stores
DNA from blood collected from routine clinical testing that is scheduled to be discarded
after a three-day waiting period at the Vanderbilt University Medical Center (VUMC) in
Nashville, TN. DNA samples are linked to a de-identified version of the patient’s electronic
medical record, known as the Synthetic Derivative (SD), which can be accessed by
investigators for research purposes after approval by the local internal review board and
BioVU Review Committee. Patients eligible for possible inclusion into BioVU are those
with an out-patient laboratory blood draw, have signed the consent to treatment form, and
have not made a formal indication to opt-out [11].

Using the SD, we identified initial candidates for our study by screening for patients who
met the following criteria: a) a heart transplant documented with three or more ICD9 code
V42.1 (heart replaced by transplant) and/or one CPT code 33945, b) one or more mention of
an immunosuppressant, c) DNA available in the biorepository and genotyped on the
Illumina ADME Core Panel, and d) the patient was over the age of 15 at the date of the
transplant operation. This initial screen identified 152 potential candidates. We then
manually extracted the date of the transplant operation from each record. We excluded 10
patients with an ambiguous transplant operation date in the record or miscoded with a
kidney, lung, liver, or multiple heart transplants during his/her lifespan. We extracted
immunosuppressant data from the de-identified records of this heart transplant sample
population with MedEx. MedEx extracts medications and their signature mentions from
free-text entries in the EMRs. We used only medications with at least one mention of a dose,
route, frequency or strength to limit the medications to those the patient was actually
prescribed. A more detailed description of the software has been published elsewhere [12].

We also extracted additional clinical information from the SD. For quantitative
measurements such as body mass index (BMI, kg/m2), serum creatinine (mg/dl), and
systolic and diastolic blood pressure (mmHg), monthly medians were calculated. Prior to
transplant chronic kidney disease and diabetes mellitus were defined by ICD9 codes before
the transplant date. Chronic kidney disease was defined by three or more mentions of the
following ICD9-codes: 403, 585.1, 585.2, 585.3, 585.4, 585.5, 585.6, and 585.9. Patients
were considered to have diabetes mellitus pre-transplant if they had three or more mentions
of the following ICD-9 codes: 250.3, 250.32, 250.2, 250.22, 250.9, 250.92, 250.8, 250.82,
250.7, 250.72, 250.6, 250.62, 250.5, 250.52, 250.4, 250.42, 250, and 250.02. Pre-transplant
hypertension was defined as median systolic blood pressure > 140 mmHg, systolic and /or >
90 mmHg diastolic, or prescribed one of the following hypertension medications:
hydralazine, minoxidil, renin antagonist, central alpha agonists, ACE inhibitors (ACEI)/
angiotensin receptor blockers (ARB), aldosterone antagonists, diuretics, K-sparing diuretics,
loop diuretics, alpha antagonists, calcium channel blockers (CCB), beta blockers (BB),
thiazide/BB, thiazide/ACEI/ARB, thiazide/aldosterone antagonist, thiazide/renin antagonist,
and diuretic combinations, all before the transplant date.
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2.2. Phenotype Definition
The outcome of interest was time to develop severe nephrotoxicity clinically attributed to
CNIT, which we defined in our patient population as the development of CKD stage 4 or 5
in the setting of CI use. To assess kidney function over the course of immunosuppression
therapy, we estimated the glomerular filtration rate from the “four variable” Modification of
Diet in Renal Disease formula [13]:

(1)

All patients who entered into the SD by the time of their transplant date were included in
this study. Patients who entered the SD post-transplant were included if their initial eGFR
measurement upon entering the SD was > 30 mL/min/1.73m2this included patients with
CKD stages 1, 2, and 3. These patients were assumed not to have CKD 4 or 5 in the setting
of CI prior to their entry into BioVU and were entered into the analysis at their heart
transplant date. Patients who entered the SD after their heart transplant date with an eGFR <
30 were excluded from the analysis. Our definition of severe chronic kidney disease 4 was a
monthly median eGFR of < 30 mL/min/1.73m2 for three consecutive months. This threshold
is adapted from the National Kidney Foundation’s definition for CKD stage 4: GFR of 15–
29 and CKD Stage 5: GFR < 15 or dialysis [14].

2.3. Genotyping
DNA samples from a total of 115 heart transplant recipients were genotyped on Illumina’s
ADME Core Panel as part of Vanderbilt Electronic Systems for Pharmacogenomic
Assessment (VESPA). In short, Illumina’s pharmacogenetic-targeted ADME Core panel is
designed for the genotyping of 184 markers in 34 genes. A full description of the panel’s
content and performance has been published elsewhere [9]. Genotyping for this study was
conducted at the Center for Human Genetics Research DNA Resources Core at Vanderbilt
University. Genotype calling was performed with ADME Module Version 1.0.0.3.
Formatting of the ADME Core Panel data set and quality control of the markers was
performed with PLATO and PLINK [15; 16]. SNPs were filtered from the analysis if the
allele frequency was below 5%, genotyping efficiency < 95%, or a statistically significant
deviation from Hardy Weinberg expectations (p < 0.001) in the European American
population. After filtering, 49 SNPs remained in our analysis. A principal components
analysis (PCA) was performed with the Eigensoft software using available genome-wide
data in the full dataset and in the subset of European Americans [17]. We tested for
relatedness of individuals in subsets of samples stratified by race/ethnicity. One sample from
a related pair of European Americans was removed. The genome-wide inflation factor for
this study was 1. We extracted 333,804 overlapping markers from the samples’ genotype
data from the following platforms: 18 individuals on Illumina’s HumanOmni5-Quad, 109 on
the HumanOmni1-Quad, and four on Illumina’s 1M-Duo BeadChip.

2.4. Statistical Analysis
Cox proportional hazard models were calculated using the date of the heart transplant as the
starting time in a time-to-event analysis. Genotypes were modeled additively against
development of CKD stage 4. Factors that were associated with renal function in univariate
analyses (p < 0.05) were included in the final multivariable model. Patients who did not
develop CKD stage 4 were censored from the analysis at their final eGFR measurement. For
the linear mixed effects modeling of post-transplant eGFR, we used the R package, nlme.
SNPs and covariates that met a 0.05 threshold in univariate analyses were included as fixed
effects and the subject identifier was included as a random effect. The within subject
correlation was 0.70 and we chose to account for it in our models with an autoregressive-
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moving average model with one autoregressive and one moving average parameters. Plots
were generated with STATA 11 and RStudio Version 0.97.551

3. Results
3.1. Demographics

Table 1 presents the clinical characteristics of our study population identified in BioVU.
Overall, this is an ancestrally cosmopolitan cohort where 80.8% of the patients were
administratively assigned [18] as of European descent, while the remainder was reported as
African American with the exception of one sample reported as Hispanic. The median age at
transplant was 52.5 years of age. This is a slightly overweight population with the median
body mass index of 27.4 kg/m2. Prior to transplant, 10.4% and 60.6% patients had evidence
of diabetes mellitus and hypertension, respectively. A majority of patients (52.7%) had their
heart transplant at VUMC. Twenty-five patients died during post-transplant follow up. All
patients were prescribed a calcineurin-inhibitor: 35.7% were prescribed cyclosporine alone,
25.2% tacrolimus alone, and 39.1% were prescribed a combination of the two (at different
times).

As expected for this patient population, the eGFR prior to transplant was lower than would
be expected for a healthy population (median = 68.0 mL/min/1.73m2). Follow up time for
these patients varied (Figure 1): median time to the final eGFR measurement in the SD was
8.8 years, and the median frequency of follow-up was 5.5 (IQR: 4.2–7.5) eGFR
measurements per year. Kidney function continued to decline over time (Figure 1). In the
second year (12–24 months) post-transplant 14.0, 31.4, 50.0, and 4.6 percent of individuals
had median eGFR measurements that corresponded with the first four stages of CKD,
respectively. By the fifth year (60–72 months), the distribution shifted towards lower
median eGFR levels: 3.4, 22.4, 62.0, and 12.0 percent of individuals were observed with
median eGFRs in range with the first four stages of CKD. At year ten, 11.7 and 11.7 percent
of patients median eGFR measurements corresponded to CKD stages four and five,
respectively.

3.2 Time to CKD Stage 4 and 5 Survival Analysis
Figure 2 displays the development of CNIT in this study population in months post-heart
transplant. Thirty-seven out of 115 patients (25.2) in this heart transplant cohort met the
CNIT case definition. By twelve months, eight individuals (7.0%) met the criteria for CNIT,
19 (16.5%) by 60 months, and 28 (24.3%) by 120 months. From among the various clinical
variables tested for an association with CNIT (the three most significant PCAs, gender,
systolic and diastolic blood pressure, pre-transplant diabetes, pre-transplant hypertension,
pre-transplant chronic kidney disease, age at transplant, pre-transplant eGFR, BMI, and
prescribed calcineurin inhibitor), only pre-transplant eGFR, pre-transplant CKD status, pre-
transplant diabetes mellitus status, and age at transplant met a significance threshold of p <
0.05 (Table 2).

First, in the European American subset (n=99 heart transplant recipients with 35 cases of
CKD stages 4 and 5) we tested the 49 Illumina ADME Core Panel markers that passed
quality control for association with CNIT outcome. In unadjusted analysis, no markers were
associated with CNIT after adjustment for multiple testing (p < 1.02 × 10−3). Variants in
SLC22A1 rs34305973 and UGT2B17 rs1902023 trended toward significance in the
unadjusted model (p = 0.02 and p=0.02, respectively). In models adjusted for pre-transplant
CKD, pre-transplant diabetes mellitus, age at transplant, and the three most significant
PCAs, UGT2B17 rs1902023 was the most significant (p = 0.01) among all the tested ADME
Core Panel markers (Table 2). Secondly, we expanded our analysis to the full dataset
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regardless of race/ethnicity (n=115 heart transplant recipients with 37 cases of CKD stage 4
and 5) and the results were largely unchanged (data not shown). In the adjusted models for
the full dataset, DPYD rs1801265 was the most significant (p = 9.24×10−3HR: 0.39, CI:
0.19–0.79) among all the tested ADME Core Panel markers. No marker was associated with
CNIT in unadjusted or adjusted models after correction for multiple testing when the data
were limited to cyclosporine treated only patients (n=95 heart transplant recipients with 27
cases of CKD stage 4 or 5) or tacrolimus treated only patients (n=79 heart transplant
recipients with 18 cases of CKD stage 4 or 5; data not shown).

3.2 Modeling Post-Transplant eGFR
As a secondary analysis of post-transplant kidney function, the repeated eGFR
measurements were analyzed directly using mixed effects models to account for the within
subject correlation. In univarate analyses of covariates among European Americans, only
cyclosporine use (coef(S.E) = -17.05(7.13), p = 0.02), median BMI (coef(S.E) = -1.27(0.62),
p < 0.05), and age at transplant (coef(S.E) = -1.01(0.15), p = 1.55x 10−8) were associated
with eGFR over time. No SNP met the significance threshold for multiple testing in
unadjusted or adjusted analyses. However, in unadjusted analyses, two of the three SNPs
that met a threshold of 0.05 have previously been associated with post-transplant renal
function: CYP2C19 rs4244285 (coef(S.E) = 13.28(6.17),p = 0.03) and CYP3A5 rs776746
(coef(S.E) = 21.94(8.37),p = 0.01). SNP CYP2A6 rs28399433 also met the 0.05 threshold
(coef(S.E) = 20.91(3.46), p = 0.02) in unadjusted analyses. Two of these associations
maintained significance at the 0.05 threshold in the multivariate models CYP3A5 rs776746
(coef(S.E) = 14.60(6.41), p = 0.03) and CYP2A6 rs28399433 (coef(S.E) = 17.14(8.24), p =
0.04)[19]. In analyses extended to the full dataset regardless of race/ethnicity, only CYP2A6
rs28399433 (coef(S.E) = 17.46(6.70), p = 0.01) approached significance in the adjusted
analysis (data not shown).

4. Discussion
4.1. Summary and Relevance

We used a biorepository linked to de-identified electronic medical records to identify heart
transplant patients for pharmacogenomic studies. The two outcomes of interest in the present
pharmacogenomics study was the development of advanced nephropathy (CKD Stage 4 or
5) in the setting of calcineurin-inhibitor therapy post-transplant and post-transplant eGFR
over time. In this study, we have demonstrated that EMR-based cohorts linked to DNA
samples provide ample opportunity to identify adverse drug reactions (ADR). This specific
study focused on a common ADR to calcineurin-inhibitor therapy among heart transplant
recipients. While there are several studies that have explored the relationship between a
patient’s genetic profile and calcineurin-inhibitor dosing [5; 20; 21], this is the first study of
our knowledge utilizing an EMR-based cohort of heart transplant patients to examine the
pharmacogenetics of calcineurin-induced nephrotoxicity.

Our most significant result in the time to CNIT survival analysis was DPYD rs1801265,
which approached our corrected p-value (p = 9.24 × 10−3) in the full dataset regardless of
race/ethnicity. DPYD rs1801265 defines the DPYD *9A haplotype and encodes a cysteine to
arginine missense mutation in the 29th position of the protein that some studies have
suggested to be without significant enzymatic activity [22]. The gene is located in the
centromeric region of chromosome one between 1p22 and 1q21 [23]. While the variant did
not meet our multiple-testing threshold, larger studies may confirm its role in CNIT. It is
interesting to note that CYP3A5 variants, which have been strongly associated with
tacrolimus dosing in multiple studies [5], were not associated with CNIT but one marker in
this gene trended towards significance in modeling eGFR directly. This marker rs776746
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defines the CYP3A5*3 allele, a nonexpressing variant of the gene found a high frequency in
populations of European descent[24]. In this study we found the functional CYP3A5*1
allele, which we found at comparable frequency to other studies (MAF = 0.06), to be
positively associated with eGFR post-transplant [25].

The application of a heart transplant cohort for the pharmacogenetics of calcineurin-inhibitor
nephrotoxicity has advantages over kidney and liver transplantations, as it eliminates the
potential for donor-recipient gene interactions. The donor genetic information of kidney and
liver transplant may play crucial roles in the susceptibility of nephrotoxicity. The liver is the
primary site of drug metabolism, and in the case of liver transplants, the donor’s genome
becomes the driver of metabolism. Its own unique genetic variation may lead to a different
pharmacokinetic profile of calcinineurin-inhibitor metabolism compared with the recipient.
The donor genome in the case of kidney transplant may also be a factor in developing
nephrotoxicity [26]. Therefore studies designed at identifying these interactions are
presented with experimental design challenges unlikely to be overcome in blood sample
focused biorepository [27].

4.2. Limitations
Small sample size is a pervading challenge to pharmacogenetic study design. Even in an
immense resource such as BioVU with over 160,000 samples as of July 2013, we were only
able to identify 167 patients who met the study criteria, and of those, only 35 of those
samples developed CKD stage 4 over the course of calcineurin drug therapy. This finding
highlights the need for very large repositories when studying uncommon outcomes of
medical interest. While survival analysis did afford us more power opposed to treating the
data as strict case-control and performing logistic regression, we were still underpowered to
detect an association. For example, assuming a dominant genetic model with an allele with a
frequency of 0.5, a sample size of 191 cases of CKD stage 4 would be required to detect an
association with a moderately sized hazard ratio of 1.5 at an alpha of 0.05 [28].

Heterogeneity marked another challenge when defining this study population and modeling
the association. Clinically, heart transplant recipients are a very diverse population in
regards to co-morbidities and medications. Further complicating the issue is that CNIT is not
the only cause of CKD in this population: other factors include the decline of kidney
function with age, diabetes, hypertension, heart disease, other medication exposures, and
latent infection of the BK virus [29]. In this study, we ignored phenotypic heterogeneity to
increase the sample size and overall power of the study. Also, to avoid increasing the type II
error rate, we were parsimonious in our covariate selection for our statistical model to
maximize statistical power [30]. Indeed, large multi-center studies may be required to fully
model the relationship between heart disease and kidney function. Large studies will also be
required to fully address the phenotype heterogeneity problem or to explore more
susceptible subpopulations such as high dose patients, a strategy successfully used to
identify genetic variants associated with statin-induced ADRs [31].

4.3. Conclusions
Despite the relatively small sample size for a genetic association study, the current study
represents a fairly large sample size for pharmacogenomics studies of ADRs. We have
demonstrated here that the EMR, rich in clinical data, is an excellent and logical resource to
establish pharmacogenomics studies for less common ADRs such as CNIT. While the
genetic association results presented here require replication and downstream functional and
biological interpretation, the existence of other biobanks linked to DNA samples in the
United States [32] and across the world [33] makes this future direction possible for CNIT
as well as other ADRs with a suspected genetic risk factor.
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Figure 1. Post-transplant eGFR measurements plotted on the thresholds of the five stages of
chronic kidney disease
Individual post-transplant eGFR measurements are plotted on the y-axis against time in
months after transplant on x-axis as grey dots. The dashed line represents a polynomial
function fit to all eGFR measurements collected in the study. Ten randomly selected
patient’s eGFR profiles have fitted with loess lines and colored in red if the patient
developed Chronic Kidney Disease (CKD) Stage 4 or below. Thresholds for the 5 stages of
CKD are indicated: CDK1 > 90, CKD2 60–89, CKD3 30–59, CKD4 15–29, and CKD5 < 15
mL/min/1.73m2.
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Figure 2. Kaplan-Meier plot describing the proportion of non-nephrotoxic heart transplant
recipients over time
The y-axis indicates the proportion of event-free subjects and tick marks on the plot indicate
where individuals are censored from the analysis.
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Table 1

Clinical Characteristics of heart transplant samples.

Patients 115

European Descent (%) 86.0

Female (%) 33.9

Transplant Operation at VUMC (%) 80.8

Pre-transplant Diabetes Mellitus (%) 10.4

Median Systolic (mmHg) 100.2, IQR: 94.3–107.0

Median Diastolic (mmHg) 64.0 IQR: 59.9–66.9

Pre-transplant Hypertension (%) 66.0

Pre-transplant Chronic Kidney Disease 9.56

Median Age at Tx (years) 52.5, IQR: 40.5–58.1

Required Dialysis Post-Transplant (%) 18.2

Median Post Tx Follow up Time (years) 8.8, IQR: 4.8 – 12.2

Median Pre-eGFR (mL/min/1.73m2) 68.0, IQR: 57.4–87.2

Median Body Mass Index (kg/m2) 27.4, IQR:24.6–31.1

Died (%) 21.7

Cyclosporine Only (%) 35.7

Tacrolimus Only (%) 25.2

Cyclosporine and Tacrolimus (%) 39.1
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Table 2

Results of CNIT Analysis in European Americans

Predictor Hazard Ratio (95% CI) P-value

Univariate Clinical Variable Model

Recipient Age per year 1.05 (1.01–1.08) 9.85 × 10−3

Pre-transplant CKD 3.69 (1.36–10.01) 0.01

Pre-Transplant eGFR per ml/min/1.73m2 0.96 (0.94–0.98) 1.03 × 10−3

Prior Diabetes Mellitus 6.92(2.64–18.54) 8.33 × 10−5

Multivariable Genetic Model

DPYD rs1801265 0.45 (0.22–0.93) 0.03

UGT2B17 rs1902023 2.23 (1.21–4.11) 0.01

SLCO1B1 rs4149056 0.38(0.14–0.96) 0.03

SLC22A1 rs34305973 2.14(1.18–3.90) 0.01
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