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Abstract
Purpose of review—The aim of this review is to describe disease mechanisms by which
chromosome 9 open reading frame 72 (C9ORF72) repeat expansions could lead to amyotrophic
lateral sclerosis (ALS) and frontotemporal dementia (FTD), and to discuss these diseases in
relation to other non-coding repeat expansion disorders.

Recent findings—ALS and FTD are complex neurodegenerative disorders with a considerable
clinical and pathological overlap, and this overlap is further substantiated by the recent discovery
of C9ORF72 repeat expansions. These repeat expansions are currently the most important genetic
cause of familial ALS and FTD, accounting for approximately 34.2% and 25.9% of the cases.
Clinical phenotypes associated with these repeat expansions are highly variable, and combinations
with mutations in other ALS- and/or FTD-associated genes may contribute to this pleiotropy. It is
challenging, however, to diagnose patients with C9ORF72 expansions, not only because of large
repeat sizes, but also due to somatic heterogeneity. Most other non-coding repeat expansion
disorders share an RNA gain-of-function disease mechanism, a mechanism that could underlie the
development of ALS and/or FTD as well.

Summary—The discovery of C9ORF72 repeat expansions provides novel insights into the
pathogenesis of ALS and FTD, and highlights the importance of non-coding repeat expansions
and RNA toxicity in neurodegenerative diseases.
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Introduction
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are fatal
neurodegenerative disorders for which no effective treatments are available. ALS is the most
frequent motor neuron disease, resulting in progressive weakness and death from respiratory
failure, typically within three years of symptom onset [1*]. FTD is the second most common
cause of early-onset dementia, and is characterized by behavior and personality changes and/
or language dysfunction, due to degeneration of the frontal and temporal cortex [2–5]. Most
FTD patients die 5–10 years after symptom onset.

Clinicopathological studies have long supported the concept that ALS and FTD may
represent a disease continuum with a shared underlying pathogenesis [6*,7*,8]. They often
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co-occur in a family, and the prevalence of frontal lobe impairment in ALS populations may
approach 50% [9–11]. Similarly, as many as half of FTD patients develop clinical symptoms
of motor neuron dysfunction [12]. Especially important was the identification of the
transactive response DNA-binding protein 43 (TDP-43) in 2006, as the major inclusion
protein in the vast majority of ALS patients and in the most common pathological subtype of
FTD, now referred to as frontotemporal lobar degeneration with TDP-43 pathology (FTLD-
TDP) [13,14].

Both diseases are etiologically complex with genetic and presumably environmental factors
contributing to its onset [15**,16]. A positive family history has been reported in ~10% of
ALS patients, and up to 50% of FTD patients [2,17]. Nonetheless, no genes were identified
that sufficiently explained the growing class of families in which affected members
developed either ALS or FTD or both (ALS-FTD). Last year, however, two independent
studies identified hexanucleotide repeat expansions in the chromosome 9 open reading
frame 72 gene (C9ORF72) [18**,19**]. This important discovery raised new hope with
clinicians and researchers for the development of treatments, and provided novel avenues for
studying and understanding the disease pathogenesis of ALS and FTD.

In this review, we underscore the importance of the C9ORF72 mutations in ALS and FTD,
and review current hypotheses related to its disease mechanism(s) and associated
phenotypes. We also discuss this novel mutation in relation to other repeat expansion
disorders, especially myotonic dystrophy type 1 (DM1).

Identification of repeat expansions in C9ORF72 and possible disease
mechanism(s)

Previously, genetic studies convincingly linked ALS and FTD to a region on chromosome
9p21 [20–24,25*,26,27]. Although these studies were able to minimize the region, the
genetic defect remained elusive until last year, when two independent groups described a
GGGGCC hexanucleotide repeat in a non-coding region of C9ORF72 [18**,19**]. One of
these groups focused on family VSM-20, a large ALS-FTD family, and used primers
flanking the repeat region to amplify the region and to determine the size of the repeat in
affected and unaffected family members [18**]. Intriguingly, their results appeared to
indicate that all affected individuals were homozygous for the repeat, while none of their
affected children seemed to have inherited their alleles. Their findings underlined the need
for an alternative methodology, since a pathogenic repeat expansion may not be amplified
by a conventional PCR, and therefore, they developed a repeat-primed PCR assay, resulting
in the identification of the pathogenic repeat expansion. The other group employed next-
generation sequencing to study a Welsh ALS-FTD family [19**]. Their efforts revealed a
drop off in the sequence coverage in the region of the repeat, emphasizing the polymorphic
nature of this region, which eventually led to the detection of the pathogenic repeat
expansion.

The GGGGCC hexanucleotide repeat is located between two five prime non-coding exons
of C9ORF72, which encodes a completely uncharacterized protein with unknown function.
Two different isoforms of the protein are predicted to be generated from a total of three or
more different C9ORF72 transcripts. Unexpectedly, several groups showed reduced levels
of at least one C9ORF72 transcript in expanded-repeat carriers, suggesting a possible loss-
of-function disease mechanism [18**,19**,28*]. The accumulation of transcripts containing
the GGGGCC repeat as nuclear RNA foci in the frontal cortex and spinal cord of C9ORF72
mutation carriers, however, has also been demonstrated, favoring a toxic RNA gain-of-
function disease mechanism in line with most other non-coding expansion disorders [18**].
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Frequency of C9ORF72 repeat expansions
Until the discovery of the pathogenic repeat expansion in C9ORF72 only 20–30% of the
familial ALS cases could be explained by mutations in the superoxide dismutase-1 gene
(SOD1), and the genes encoding TDP-43 (TARDBP) and fused in sarcoma (FUS), while
mutations in the microtubule-associated protein tau gene (MAPT), progranulin gene (GRN),
and, less commonly, the valosin containing protein gene (VCP) and the charged
multivesicular body protein 2b gene (CHMP2B) were responsible for 20–30% of the FTD
cases [15**,29**,30*,31*]. Mutations in these genes were also present in 1–5% of the
sporadic ALS and FTD cases.

To date, less than a year after the discovery, more than thirty articles have described
frequencies of C9ORF72 repeat expansions in ALS and FTD populations: from the United
States of America to Europe, Australia and Asia [18**,19**,28*,29**,32**–41*,42**–46*,
47**–49*,50**–52*,53**–56*,57**]. In Figure 1, we have provided a graphic
representation of these frequencies. Even though heterogeneity between populations and
study design hampers this comparison (Supplementary Table 1) our representation suggests
that C9ORF72 mutations account for 34.2% (standard error [SE] 4.5) of the familial ALS
cases, 5.9% (SE 1.3) of the sporadic ALS cases, 25.9% (SE 5.9) of the familial FTD cases,
5.1% (SE 2.0) of the sporadic FTD cases, and 0.17% (SE 0.07) of the control subjects.
Hence, these frequencies underline that C9ORF72 repeat expansions are currently the major
genetic cause of ALS and/or FTD worldwide.

Oligogenic etiology
Interestingly, more than twenty patients have been described that harbor mutations in
C9ORF72 in combination with mutations in other ALS- and/or FTD-associated genes [29**,
33*,36*,42**,43*,51*,58*,59*]. In these patients, mutations were also detected in SOD1,
TARDBP, FUS, angiogenin (ANG), optineurin (OPTN), ubiquilin-2 (UBQLN2), vesicle-
associated membrane protein B (VAPB), D-amino-acid oxidase (DAO), peripherin (PRPH),
GRN and presenilin-2 (PSEN2). It is important to note, however, that more than half of these
additional mutations have also been reported in control subjects, and that their effects, as
predicted by in silico programs, remain unclear (Table 1). Although it could therefore be
argued that they merely represent benign polymorphisms, a recent ALS study has
demonstrated that the frequency of multiple mutations is higher than expected on the basis
of chance [29**]. This could indicate that these mutations act as disease modifiers, which
could contribute to the pleiotropy that is encountered in patients with C9ORF72 mutations.

Clinicopathological phenotypes associated with C9ORF72 repeat
expansions

Clinical data of patients with C9ORF72 mutations demonstrates that approximately 55.8%
(SE 2.4) is male; the mean age at onset is 56.1 years (SE 0.9), and the mean disease duration
is 49.9 months (SE 4.9) (Table 2 and Supplementary Table 2) [18**,28*,36*–38*,42**,
44*–47**,49*,50**–52*,53**–56*,57**,69*,70*]. Importantly, age at onset and disease
duration are highly variable, even within a single family. Based on the current literature, the
age at onset ranges from 27 to 83 years [46*,47**,56*], and the disease duration varies
between 3 and 264 months [47**,52*,54*]. Nevertheless, there seems to be a tendency
towards a younger age at onset and shorter disease duration in patients with C9ORF72
repeat expansions, as compared to patients without them [28*,45*,46*,49*,51*,56*].

Approximately 29.3% (SE 3.3) of the patients with C9ORF72 mutations displays symptoms
of both ALS and FTD (Table 2). Of the patients with ALS, 44.2% (SE 5.0) presents with a
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bulbar onset of symptoms, which is higher than the expected frequency of 19–30% [72]. In
81.0% (SE 5.0) of the FTD patients with C9ORF72 mutations, the behavioral variant is
detected, while the expected frequency is ~50% [31*].

Additional symptoms have also been described in patients with C9ORF72 mutations,
including signs of parkinsonism and psychotic phenomena [46*,50**,51*,54*,55*,69*,
73,74*–77*]. Furthermore, in patients with clinical diagnoses of Alzheimer’s disease (AD),
Parkinson disease (PD), corticobasal syndrome (CBS), and olivopontocerebellar
degeneration (OPCD) C9ORF72 mutations have been detected as well, but they appear to be
rare, and may be due to clinical misdiagnoses (<3%) [75*,78*–80*,81]. All these findings
highlight the substantial clinical heterogeneity that is detected in patients with C9ORF72
mutations, both between and in families [82**].

Apart from clinical studies, neuropathological investigations have shown that repeat
expansions in C9ORF72 are characterized by TDP-43 pathology in various neuroanatomical
regions, and ubiquitin-positive but TDP-43-negative neuronal cytoplasmic inclusions in the
cerebellar granular layer, hippocampal pyramidal neurons and other neuroanatomical sites,
which are unique to C9ORF72 repeat expansions carriers [18**,28*,45*,50**,51*,52*,54*–
57**,69*,70*,83*]. Several research groups are now focusing on identifying the nature of
the ubiquitinated protein in these TDP-43 negative inclusions, as it may shed light on the
disease mechanism(s) associated with C9ORF72 expansions.

Critical issues associated with size and sequence composition of C9ORF72
repeats

In the general population, the vast majority of the C9ORF72 alleles contain two to thirty
GGGGCC hexanuceotide repeats [18**,19**]. Affected individuals with C9ORF72
mutations harbor one normal allele and one expanded allele with hundreds to thousands of
these repeats [18**,19**]. Consequently, a cut-off of thirty repeats is commonly used to
differentiate between pathogenic and non-pathogenic repeat sizes [19**]. It is important to
realize, however, that repeat sizes of thirty or more are also present in approximately 0.17%
of the control subjects (Supplementary Table 1) [18**,19**,28*,29**,33*,35*,38*,42**–
44*,46*,47**,49*,51*,53**,54*,57**], and therefore, a cut-off of thirty repeats should be
used with caution.

A second problem relates to the repeat-primed PCR method that is commonly used to screen
ALS and FTD patients. Even though this method is fast and cost effective, it does not
provide an accurate estimate of the number of repeats. Therefore, Southern blot analysis
should be used to estimate the number of repeats in expanded repeat carriers, however, its
application appears to be challenging, and currently only a handful of samples has been
tested [18**,39*]. Moreover, neither repeat-primed PCR methods nor Southern blot analysis
are able to reveal the actual DNA composition of the expanded repeat, and thus, new
protocols and methods are needed to guarantee more reliable diagnostic testing.

Finally, somatic heterogeneity is likely to be common in repeat expansion carriers, resulting
in varying repeat sizes in different tissues from a single patient. As a result, repeat sizes
determined using DNA extracted from whole blood may not adequately reflect the
C9ORF72 repeat sizes in a patient’s brain or spinal cord tissue, and may hamper genotype-
phenotype correlations.
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Can we learn from other repeat expansion disorders?
Pathogenic repeat expansions have already been identified in at least 24 other neurological
disorders [84–86**] (Table 3). In coding regions, repeat expansions can cause long stretches
of amino acids, for instance, of polyglutamine or polyalanine. These stretches can disrupt
the normal function of encoded proteins and result in toxic aggregate formation
[104,105**]. The underlying mechanism of non-coding repeat expansions disorders, on the
other hand, most commonly involves an RNA gain-of-function, independently of the
encoded proteins [106]. This mechanism has been thoroughly studied for DM1, which is
caused by more than fifty CTG repeats in the three prime untranslated region of the
dystrophia myotonica-protein kinase gene (DMPK) [107,108]. These CTG repeat
expansions result in flawed RNA transcripts that prevent translation into proteins, and can
cause nuclear retention in RNA foci [109,110]. It is thought that these RNA foci will alter
the function of one or more RNA-binding proteins, such as muscleblind-like 1, resulting in
downstream changes in gene expression and/or alternative splicing of a range of transcripts
[111–113].

RNA foci have also been detected in a growing number of other non-coding repeat
expansion disorders, including myotonic dystrophy type 2 (DM2), Fragile X-associated
tremor ataxia syndrome (FXTAS), Huntington’s disease-like 2 (HDL2), spinocerebellar
ataxia type 36 (SCA36), spinocerebellar ataxia type 31 (SCA31), spinocerebellar ataxia type
8 (SCA8), spinocerebellar ataxia type 10 (SCA10) [85,86**,112,114–116], and now
C9ORF72-associated ALS and FTD [18**,19**]. These findings support a common RNA
gain-of-function mechanism in many non-coding repeat expansion disorders [104,105**,
117], and further support the importance of these foci in C9ORF72-positive patients [18**].
To better understand the role of RNA misprocessing in C9ORF72 mutation carriers, total
RNA sequencing studies in affected tissue should now be performed to identify the specific
downstream targets affected in these patients.

Previous studies performed on DM1 can also help us learn about their diagnostic challenges
and therapeutic strategies for C9ORF72 repeat expansions. Patients with DM1 can harbor
several thousands of repeats, and the number of repeats shows a high degree of instability
[118]. This instability appears to predispose towards further expansion, and could be
associated with the progressive nature of the disease [119]. It could also account for the
differences in DM1 alleles that are detected both between and within tissues of the same
patient [120–126]. Furthermore, it explains why children may inherit repeat lengths that are
considerably longer than those of their parents [127], and why an earlier age at onset or
increased severity are reported in successive generations (genetic anticipation)
[108,121,128–133]. The degree of instability associated with C9ORF72 repeat expansions
still needs to be determined; however, some studies have suggested that families with
C9ORF72 mutations can display anticipation as well [18**,19**,28*,40*,43*,49*,50**,51*,
56*,69*,74*,77*].

For diagnostic purposes, DM1 flow charts have been developed. Firstly, a conventional PCR
has to be performed to determine whether an individual has two alleles with a low number
of repeats. If only one allele size is detected, then additional testing is necessary. Alleles up
to ~100 CTG repeats can be identified with a repeat-primed PCR, both robustly and reliably
[118,134,135**]. Because of extinction of the signal in higher size regions, however, no
trustworthy information about the precise length of the expanded repeats can be obtained.
Moreover, rare interruptions in the CTG repeats may result in a failure to detect expansions
[135**]. Alleles containing 100 CTG repeats and over, can be assessed with Southern blot
analysis. This method is the gold standard, but it is time-consuming and requires a large
amount of genomic DNA [118,135**]. Southern blot analysis often results in a diffused
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band, consistent with somatic heterogeneity and correlating with the age of the patient [136].
Therefore, diagnostic DM1 tests usually report a size range (5–35, 36–50, 50–150 and
>150), instead of an exact repeat length, and are based on comparisons with molecular
weight standards and/or characterized control samples [135**]. If more is known about the
C9ORF72 repeat sizes in control subjects and ALS and/or FTD patients, it would be
possible to develop a similar flow chart and size range for diagnostic C9ORF72 testing.

Lastly, promising therapeutic strategies are currently being developed for DM1, including
antisense oligonucleotides that hybridize to cellular mRNAs, inhibit gene expression, and
could target mRNA for degradation, which could halt progression or reverse damage
induced by toxic RNA [137**]. It is the hope that a similar approach may one day be used in
FTD and ALS patients with C9ORF72 repeat expansions.

What is the role of other repeat expansions in FTD and ALS?
Previously, other repeat expansions have already been implicated in ALS and/or FTD, these
include repeat expansions in the ataxin-2 gene (ATXN2) and in the non-imprinted Prader-
Willi/Angelman syndrome region protein 1 gene (NIPA1) [138*–140*,141]. In addition, a
rare intronic GGCCTG repeat expansion in the NOP56 ribonucleoprotein homolog gene
(NOP56) has recently been identified in patients with spinocerebellar ataxia and motor
neuron involvement [86**].

These expansions, however, may only represent the tip of the iceberg, and the actual
contribution of repeat expansions to the etiology of ALS and/or FTD may be much higher.
For example, the C9ORF72 mutation is only one out of 109 repeats in the human genome
with at least three GGGGCC repeat units, several of which are in non-coding regions, and
expansions of either one of these repeats could be implicated in disease. Unfortunately, until
novel methods are developed that are designed to systematically screen for repeat
expansions on a genome-wide level, the actual contribution of repeat expansions to the
pathogenesis of ALS and/or FTD remains undetermined.

Conclusions and future directions
Despite the excitement, it is important to acknowledge that it is still early days, and several
key questions related to the C9ORF72 mutation presently remain unanswered: Are the RNA
foci observed in C9ORF72 repeat carriers toxic and which downstream targets are affected?
Which protein accumulates in the ubiquitinated TDP-43-negative inclusions and do they
have a role in disease pathogenesis? What determines whether someone develops ALS, FTD
or both? Which role does the repeat length play in determining disease onset and
presentation, and is there a minimal number of repeats needed for pathogenicity?

In this review, we have provided an up-to-date overview of the current C9ORF72 literature,
and we have discussed this mutation in relation to other non-coding repeat expansion
disorders, which emphasizes the crucial role of repeat expansions, and RNA toxicity, in a
broad range of neurodegenerative disorders.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Key points

• C9ORF72 repeat expansions are currently the major genetic cause of ALS and/
or FTD worldwide, accounting for approximately 34.2% of the familial ALS
cases, and 25.9% of the familial FTD cases.

• Mutations in other ALS- and/or FTD-associated genes may act as disease
modifiers, which could contribute to the pleiotropy that is encountered in
patients with C9ORF72 mutations.

• Somatic heterogeneity is likely to be common in repeat expansion carriers, and
as a result, repeat sizes determined using DNA extracted from whole blood may
not adequately reflect the C9ORF72 repeat sizes in a patient’s brain or spinal
cord tissue.

• C9ORF72 expansions are probably pathogenic due to a toxic RNA gain-of-
function mechanism in line with most other non-coding repeat expansion
disorders.

• The actual contribution of repeat expansions to the etiology of ALS and/or FTD
may be much higher; non-coding expansions that have been identified thus far
may only represent the tip of the iceberg.
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Figure 1.
C9ORF72 mutation frequencies worldwide. Percentages reported in (A) familial ALS
patients, (B) familial FTD patients, (C) sporadic ALS patients, and (D) sporadic FTD
patients. Cohorts of less than ten subjects were not included. Only reported subjects with
more than 29 repeat expansions were considered to have a C9ORF72 mutation. In general,
error bars represent 95% confidence intervals, as calculated with the Wald method. If
multiple studies were conducted for one country, then error bars represent standard errors.
For these countries the average of all conducted studies was calculated, applying equal
weight to all of them. The same method was used to calculate an average for all reported
countries in Europe, countries in North America, other countries (Other), and an overall
average (World). Graphpad Prism version 5.04 (http://www.graphpad.com) was used to
perform these analyses. When mutation frequencies of other genes were reported, they were
incorporated, to give a better impression of the actual mutation percentage in the general
ALS/FTD population. If authors stated that the same (sub)group was used in multiple
studies, then this (sub)group was only included in one of the studies. Majounie et al. [47**],
Chio et al. [49*], and Renton et al. [19**], however, did include the same subset of 29
familial ALS samples without specification, and therefore, this relatively small amount of
samples could not be excluded. More details about the studies included in our comparison
can be found in Supplementary Table 1.
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