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Abstract

Rift Valley fever virus (RVFV, family Bunyaviridae) is a mosquito-borne pathogen of both livestock and humans, found
primarily in Sub-Saharan Africa and the Arabian Peninsula. The viral genome comprises two negative-sense (L and M
segments) and one ambisense (S segment) RNAs that encode seven proteins. The S segment encodes the nucleocapsid (N)
protein in the negative-sense and a nonstructural (NSs) protein in the positive-sense, though NSs cannot be translated
directly from the S segment but rather from a specific subgenomic mRNA. Using reverse genetics we generated a virus,
designated rMP12:S-Swap, in which the N protein is expressed from the NSs locus and NSs from the N locus within the
genomic S RNA. In cells infected with rMP12:S-Swap NSs is expressed at higher levels with respect to N than in cells infected
with the parental rMP12 virus. Despite NSs being the main interferon antagonist and determinant of virulence, growth of
rMP12:S-Swap was attenuated in mammalian cells and gave a small plaque phenotype. The increased abundance of the NSs
protein did not lead to faster inhibition of host cell protein synthesis or host cell transcription in infected mammalian cells.
In cultured mosquito cells, however, infection with rMP12:S-Swap resulted in cell death rather than establishment of
persistence as seen with rMP12. Finally, altering the composition of the S segment led to a differential packaging ratio of
genomic to antigenomic RNA into rMP12:S-Swap virions. Our results highlight the plasticity of the RVFV genome and
provide a useful experimental tool to investigate further the packaging mechanism of the segmented genome.
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Introduction

The Bunyaviridae family is composed of five genera: Orthobunya-

virus, Hantavirus, Nairovirus, Phlebovirus and Tospovirus [1]. Rift Valley

fever virus (RVFV) is a member of the Phlebovirus genus and is a

mosquito-borne pathogen of both livestock and humans that is

found primarily in Sub-Saharan Africa and the Arabian Peninsula.

In ruminants, RVFV disease is characterised by foetal deformities,

abortion and high rates of mortality among young animals that

can approach 100% [2]. In humans infection usually results in a

self-limiting febrile illness, though on occasion it can develop into

retinitis, encephalitis and haemorrhagic disease with an overall 1%

case fatality rate [3].

As with the other viruses of the Phlebovirus genus, RVFV

contains a tripartite RNA genome comprising two negative-sense

and one ambisense segments. The large (L) segment encodes the

viral RNA-dependent RNA polymerase. The medium (M)

segment codes for four proteins in a single open reading frame

(ORF): two nonstructural proteins designated NSm1 and NSm2,

and the virion envelope glycoproteins Gn and Gc, whose synthesis

is dictated by which of five methionine codons are used to initiate

translation [4,5]. The small (S) segment (approx. 1.7 kb) encodes

the nucleocapsid protein (N) and a nonstructural protein (NSs) in

an ambisense manner. The N protein is translated from a

subgenomic mRNA transcribed from the genomic RNA, while

NSs is translated from a subgenomic mRNA transcribed from the

antigenomic (replicative-intermediate) RNA [6,7].

The multifunctional NSs protein plays an important role in the

pathogenesis of RVFV and acts to overcome the host innate

immune response. NSs disrupts host cell metabolism at the

transcriptional level by sequestering the p44 subunit and

degrading the p62 component of the basal transcription factor

TFIIH, while other subunits of the TFIIH core are reduced in

infected cells. As a consequence, TFIIH cannot assemble and its

concentration drops rapidly within the cell, leading to a drastically

reduced transcriptional activity [8,9]. NSs has also been shown to

degrade the double-stranded RNA-dependent protein kinase

(PKR) thereby preventing PKR-mediated phosphorylation of the
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translation initiation factor eIF2a and allowing the continual

translation of viral proteins [10,11]. More recently, the degrada-

tion of PKR has been demonstrated to be independent of the NSs-

mediated degradation of p62 [12]. To further antagonise host

defence mechanisms, NSs also specifically represses transcriptional

activation of the interferon (IFN)-b promoter early in infection

through its interaction with Sin3A-associated protein 30 (SAP30)

mediated by the transcription factor YY1 [13]. This interaction

maintains the repressor complex of YY1, SAP30 and other Sin3A-

associated factors on the IFN-b promoter. In addition, using a

minigenome system, NSs was shown to inhibit the viral

polymerase [14] and thus could play a role in regulating viral

RNA synthesis. However, despite these multitude of activities, NSs

is not essential for replication in either cultured cells or in animals,

though viruses lacking NSs are attenuated to various degrees in

these systems [15–19].

The ambisense S RNA coding strategy adopted by phlebo-

viruses was originally suggested to provide temporal control over

gene expression [7,20–23] in that NSs would be translated

relatively late in the infectious cycle after replication had

commenced with the synthesis of antigenome RNA. However,

given that the major function of NSs is as an interferon antagonist,

it might be expected that this protein would be required early in

infection. Evidence was presented that for Uukuniemi phlebovirus

(UUKV) some copies of the S antigenome are packaged into

progeny virions [20], and subsequently it was shown that all three

antigenome RNAs were packaged into RVFV particles [24].

Furthermore, it was demonstrated that NSs could be translated

from mRNA transcribed from infecting antigenome RNA [24]. It

was also reported that the ratio of antigenomes to genomes

packaged into virions varied from 1:5 to 1:100, depending on the

cells in which the virus was grown. However, this does not seem an

efficient strategy to express NSs early in infection, as not all

infectious virions would package the S antigenome.

To investigate the ambisense expression strategy of the RVFV

S segment in more detail we asked what the consequences would

be of swapping the N and NSs coding sequences on viral

replication. To this end we created a recombinant virus by

reverse genetics, based on the MP12 attenuated strain of RVFV,

in which the N ORF was inserted into the NSs locus and the NSs

ORF into the N locus. The virus, called rMP12:S-Swap, thus has

an ambisense S segment with N and NSs genes in the opposite

orientation to parental MP12 virus. rMP12:S-Swap was attenu-

ated in mammalian cell cultures and had a small plaque

phenotype. We show that swapping ORFs on the S genomic

RNA led to an increased expression of NSs mRNA and protein in

rMP12:S-Swap-infected cells that had implications for the virus’

ability to persistently infect mosquito cell lines. Interestingly, in

mammalian cells the over-expression of NSs did not lead to an

increased inhibition of host cell protein synthesis or degradation

of PKR. Rearrangement of the S segment derived ORFs also

caused a differential packaging of genomic or antigenomic S

RNA species into progeny virions. We discuss the implications of

these findings for determining RVFV genome packaging and for

understanding the biological role of the RVFV coding strategy in

the mammalian host.

Results

Generation of recombinant viruses
The ambisense S segment of RVFV comprises 39 and 59

terminal untranslated regions, with the coding regions for the N

and NSs proteins separated by an untranslated intergenic region

that contains the signals for mRNA transcription-termination [25].

The S segment genomic RNA is defined as that in which the N

ORF is in the negative-sense and the NSs ORF is in the positive-

sense; hence the N mRNA is transcribed from the genomic RNA

and the NSs mRNA is transcribed from the antigenomic RNA

(Figure 1A). In order to transpose the N and NSs coding sequences

an S segment cDNA was synthesised where the N ORF is in the

positive-sense at the NSs locus, and the NSs ORF is in the

negative-sense at the N locus, but all of the untranslated sequences

were untouched (Figure 1A). The cDNA was cloned into pTVT7

[26] to create the plasmid pTVT7-GS:S-Swap. This plasmid was

used together with transcription plasmids pTVT7-GL and

pTVT7-GM and support plasmids pTM1-N and pTM1-L in

the reverse genetics protocol [27]. A recombinant virus was

obtained and designated rMP12S:Swap. As a control, a recom-

binant form of the parental MP12 virus, called rMP12, was

recovered at the same time.

An RT-PCR approach was used to confirm the structure of the

presumptive swapped S RNA segment within rMP12:S-Swap

(Figure 1B). BHK-21 cells were infected with rMP12 or rMP12:S-

Swap at a multiplicity of infection (MOI) of 1 and total cellular

RNA was extracted at 48 h p.i. The RNA was reverse-transcribed

using a segment specific oligonucleotide targeted towards the 59

end of the S segment (Oligo 1; Figure 1A), and PCR reactions

were designed with oligonucleotides to anneal to the 59 end of the

S segment (Oligo 1) or within the S RNA intergenic region (IGR)

(Oligo 2). When using Oligos 1 and 2 and rMP12 derived cDNA

as a template a product of 918 nt was detected corresponding to

the size of the 59UTR, NSs ORF and IGR. In contrast when

rMP12S:Swap cDNA was used a product of 858 nt was detected

corresponding to the size of the 59UTR, N ORF and IGR. The

cDNA-containing plasmids pTVT7-GS (parental MP12) and

pTVT7-GS:S-Swap (Swap) were used as controls for the RT-

PCR product sizes (Figure 1B). Sequence analysis of RT-PCR

products confirmed the expected sequence of the reconfigured

segment and that no mutations had been introduced during the

cloning or virus rescue processes.

We also generated transcription plasmids in which the NSs

ORF was replaced with that of enhanced green fluorescent protein

Author Summary

Rift Valley fever virus (RVFV) is a mosquito-borne bunya-
virus found primarily in sub-Saharan Africa that can infect
both domestic animals and humans. RVFV has a tripartite
RNA genome that encodes seven proteins. The smallest (S)
segment has an unusual ambisense coding strategy
whereby two genes (for the nucleocapsid N and nonstruc-
tural NSs proteins) are encoded in opposite orientations on
the genomic RNA, and are translated from specific
subgenomic mRNAs. N is the major structural protein of
the virus while NSs is the major virulence factor. To
investigate the biological significance of this coding
arrangement, we used reverse genetics to create a
recombinant virus in which the N and NSs coding
sequences were swapped on the S segment. The recom-
binant virus grew less well in tissue culture cells compared
to the parental virus, and rather than maintain persistence
in insect cells, infection resulted in their death. In addition,
packaging of the modified S genome segment into new
virus particles was altered. We also showed that a foreign
protein could be expressed to high levels when cloned in
place of the NSs gene in the recombinant virus. These
studies have implications for vaccine development and
vector control strategies.
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(eGFP) in both pTVT7-GS and pTVT7-GS:S-Swap, which were

designated pTVT7-GSDNSs:eGFP and pTVT7-GS:S-SwapDNS-

s:eGFP. These constructs were then used in the reverse genetics

protocol to generate NSs-deleted forms of the viruses that

expressed eGFP, called rMP12DNSs:eGFP and rMP12:S-

SwapDNSs:eGFP. Multiple stocks of all recombinant viruses were

prepared in BHK-21 cells and had mean titres of 2.286106 PFU/

ml (rMP12S:Swap), 2.156106 PFU/ml (rMP12:S-SwapDNS-

s:eGFP), 1.516108 PFU/ml (rMP12) and 6.166107 PFU/ml

(rMP12DNSs:eGFP). Titres of rMP12:S-Swap and rMP12:

S-SwapDNSs:eGFP were found to be statistically lower (Student’s

t-test; p.0.05) than that of the parental rMP12 virus (Figure 1C).

The plaque phenotypes of the recombinant viruses produced

after 96 h growth in BHK-21 cells are shown in Figure 1D; the

plaques produced by rMP12:S-Swap and rMP12:S-SwapDNS-

s:eGFP were smaller than those produced by the parental MP12-

derived viruses.

Growth properties of recombinant viruses
The growth properties of rMP12:S-Swap were compared to

those of the parental virus in BHK-21 and A549 cells at high

(5 PFU/cell) and low (0.01 PFU/cell) MOI (Figure 2A). At

different times post infection the tissue culture supernatants were

harvested and virus titres determined by plaque assay in BHK-21

cells. In both cell lines and at both multiplicities of infection the

replication of rMP12S:S-Swap was slower than that of rMP12,

and peak titres at 48 h p.i. were 10- to 1000-fold lower (Figure 2A).

The viruses grew to higher titres in BHK-21 cells (which are

interferon incompetent) compared to A549 cells (which are

interferon competent) presumably because they did not have to

overcome host innate immune defences. It was noted in previous

work in our laboratory that for some attenuated viruses, the higher

the initial infecting MOI, the lower the resulting titre recorded in

certain cell lines [19,28]. This was thought to be caused by an

auto-interference effect associated with the production of defective

Figure 1. Creation of rMP12:S-Swap. A. Schematic of the transcription and replication products of the S segments of rMP12 and rMP12:S-Swap.
The sites at which oligonucleotides 1 and 2 anneal are indicated. B. Agarose gel showing RT-PCR products to confirm structure of S segment. BHK-21
cells were infected with rMP12 (MP12) or rMP12:S-Swap (SWAP) viruses at an MOI of 1. Total cellular RNA was extracted at 48 h p.i., and S-segment
RT-PCR was performed. As a control, PCR on the appropriate cDNA-containing plasmids was performed with the same primers. C. Titres of
recombinant virus stocks from multiple independent preparations were determined by plaque assay in BHK-21 cells. The mean titre and standard
error of n = 4 preparations of each recombinant virus stock are shown (* p.0.05) D. Comparison of plaque sizes of rMP12, rMP12:S-Swap,
rMP12DNSs:eGFP or rMP12:S-SwapDNSs:eGFP on BHK-21 cells. Cell monolayers were fixed at 96 h p.i. with 4% paraformaldehyde and stained with
Giemsa solution.
doi:10.1371/journal.ppat.1003922.g001
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virus particles [19]. We therefore tested the effect of MOI on virus

yield from rMP12- or rMP12:S-Swap-infected BHK-21 cells

infected at MOI ranging from 0.0005 to 5 PFU/cell (Figure 2B).

At 48 h p.i. tissue culture supernatants were harvested and titrated

by plaque assay on BHK-21 cells. As seen previously there was

little effect on virus yield of rMP12 infected at the different

multiplicities, with yields ranging from 1.55 to 2.556108 PFU/ml.

For rMP12:S-Swap the highest yield obtained (2.16108 PFU/ml)

was from cells infected at the lowest MOI, and at higher

multiplicities of infection a decrease in yield by up to 10-fold

was observed (Figure 2B).

The growth of recombinant viruses in which the NSs ORF had

been replaced with that of eGFP were also examined in mosquito

cells (Aedes albopictus C6/36 and U4.4 cells, and Aedes aegypti Ae cells)

at a MOI of 1 (Figure 2C). This was the highest MOI that could be

used because mosquito cells are small and thus there are more cells

per given area of a tissue culture plate; for comparison BHK-21 cells

infected at the same MOI were included. In all cell lines, viruses that

contained a swapped S-RNA segment (rMP12:S-Swap or rMP12:S-

SwapDNSs:eGFP) produced 10- to 100-fold less virus over a 48 h or

96 h period. It should be noted that initial titres of virus released

from mosquito cells (e.g. at 6 h p.i.) were relatively high in these

experiments because it is not possible to completely remove residual

inoculum by extensive rinsing as the cells do not adhere firmly to the

culture vessels, as noted previously [29].

Protein synthesis in infected cells
BHK-21 cells were infected with the recombinant viruses at a

MOI of 0.01 and cell monolayers harvested at the time points

indicated. Western blotting of cell lysates was performed to

monitor the expression of N, NSs, Gn, and, in the case of the NSs

deletion viruses, eGFP (Figure 3A). This low MOI was used as

preliminary experiments had shown a temporal difference

between N and NSs expression in rMP12-infected cells, which

was not seen at higher MOI (unpublished observations). In

rMP12-infected cells, N protein was clearly detected at 12 h p.i.

with NSs protein faintly detectable at this time point (Figure 3A,

left panel). The intensity of N and NSs bands increased over the

48 h time course. Conversely, in rMP12:S-Swap-infected BHK-21

cells the NSs band was very obvious at 12 h p.i. whereas the N

protein band was barely detectable (Fig 3A, left panel). The

intensity of the NSs band increased over 48 h, and was always

stronger than NSs in the corresponding time point from rMP12-

infected cells. On the other hand, the amount of N detected in

rMP12:S-Swap-infected cells was substantially less than that

detected in rMP12-infected cells at the same time points and the

amount of N protein produced did not increase dramatically over

the 48 h period. There was significantly less Gn glycoprotein

synthesised in rMP12:S-Swap-infected cells at early time points,

and although by 48 h p.i. Gn was clearly detected, its accumu-

lation was less than in rMP12-infected cells (Figure 3A, left panel).

Figure 2. Growth properties of recombinant viruses. A. Viral growth curves in BHK-21 and A549 cells infected with rMP12 or rMP12:S-Swap
(MOI of 0.01 or 5 as indicated). B. The effect of multiplicity of infection on viral yield in BHK-21 cells. Cells were infected with rMP12 or rMP12:S-Swap
at multiplicities from 0.0005 to 5 PFU/cell. Viral supernatants were harvested at 72 h p.i. and titrated by plaque assay. Graphs are presented for one
representative experiment. C. Viral growth curves in mosquito cells. A. albopictus C6/36 and U4.4, and A. aegypti Ae, cells were infected with rMP12,
rMP12:S-Swap, rMP12DNSs:eGFP or rMP12:S-SwapDNSs:eGFP at MOI of 1; BHK-21 cells were similarly infected as a control.
doi:10.1371/journal.ppat.1003922.g002
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Figure 3. Protein expression by recombinant viruses. A. Western blot analysis of proteins synthesised in BHK-21 cells infected with rMP12 (M),
rMP12:S-Swap (S), rMP12DNSs:eGFP (MD) or rMP12:S-SwapDNSs:eGFP (SD) at MOI of 1. Cell lysates, prepared at the indicated h p.i., were fractionated
by SDS-PAGE, and after transfer, membranes were reacted with rabbit antibodies specific for N, NSs, Gn or eGFP as indicated. Anti-tubulin antibodies

Reconfiguring the RVFV Ambisense S Genome Segment
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To assess if the difference in N expression between the two

viruses could be an effect of the increased early synthesis of NSs

(due to the swapping of the N and NSs ORFs) we compared

protein synthesis by the two NSs-deleted viruses, rMP12DNSs:

eGFP and rMP12:S-SwapDNSs:eGFP, that contain eGFP in the

place of the NSs coding sequence (Figure 3A, right panel). Similar

to results with NSs-expressing viruses, accumulation of N and Gn

was much lower in rMP12:S-SwapDNSs:eGFP-infected cells,

whereas the expression of eGFP mimicked that of NSs. These

results suggest that the reduced expression of N and Gn was not

due to the amount or timing of NSs production.

We also visualised eGFP fluorescence directly in cells infected

with rMP12DNSs:eGFP or rMP12:S-SwapDNSs:eGFP over 48 h.

Images were recorded at the same brightness setting on the

microscope. At all-time points, the intensity of eGFP fluorescence

observed in rMP12:S-SwapDNSs:eGFP-infected cells was signifi-

cantly greater than that in rMP12DNSs:eGFP-infected cells

(Figure 3B). These data corroborate the western blot results

shown above.

Protein synthesis was also examined in the mosquito cell lines.

No NSs or eGFP protein was detected by western blotting in any

cell line infected with rMP12 or rMP12DNSs:eGFP other than

NSs in C6/36 cells, whereas N protein was readily detectable and

increased over the time course in all cell lines (Figure 3C, upper

panel). It was noted that N protein expression was rather lower in

infected Ae cells compared to the A. albopictus cell lines. No eGFP

fluorescence was observed in any of the cell lines (Figure 3D, upper

panel). However, when mosquito cells were infected with

rMP12:S-Swap NSs protein expression was readily detected in

U4.4. and Ae cells, and levels of NSs were dramatically increased

in C6/36 cells compared to rMP12 infected cells (Figure 3C, lower

panel). eGFP protein was also detected in the three mosquito cell

lines infected with rMP12:S-SwapDNSs:eGFP. N protein could

also be detected, at lower levels compared to rMP12 infection but

its expression was again particularly weak in infected Ae cells.

eGFP fluorescence was also observed by microscopic examination

of infected cells though was weaker in Ae cells (Figure 3D, lower

panel).

NSs localisation and filament formation
A characteristic feature of RVFV NSs protein is that it forms

ribbon-like structures in the nuclei of infected cells [30]. As the

data shown in Figure 3 indicated that there was an augmented

expression of NSs in rMP12:S-Swap-infected cells, we examined

the effect of increased levels of NSs on cellular localisation and

filament formation by immunofluorescent imaging. Vero-E6, C6/

36, U4.4 or Ae cells were infected with rMP12 or rMP12:S-Swap

at an MOI of 1, fixed at 12, 24 or 48 h p.i., and stained with anti-

NSs and anti-tubulin antibodies (Figure 4). In rMP12-infected

Vero-E6 cells thin NSs filaments in the nuclei were seen from 12 h

p.i., and there was little cytoplasmic staining (Figure 4A). By

contrast, in rMP12:S-Swap-infected cells, the nuclear filaments

appeared thicker, and there was more abundant cytoplasmic

staining of NSs, particularly by 24 h p.i. (Figure 4A). The average

thickness of the filaments was determined by measuring the width

of about 50 structures derived from each virus; those of rMP12

averaged 1.19 mm while those produced by rMP12:S-Swap

averaged 2.21 mm (Figure 4B). The difference was statistically

significant (Student’s t-test, p,0.0001).

NSs protein was detected in the nuclei of A. albopictus C6/36

cells infected with both rMP12 or rMP12:S-Swap, though not in

the form of filaments as seen in Vero-E6 cells (Figure 4C, upper

panel, and 4D). Staining appeared granular or as large aggregates.

In the majority of rMP12-infected U4.4 or Ae cells no NSs was

detected, but in rMP12:S-Swap-infected cells aggregates of NSs

were observed in the nuclei (Figure 4D). The infection status of the

rMP12-infected insect cell monolayers was monitored in duplicate

cultures by staining with the anti-N antibody, which showed that

by 48 h p.i. all cells in the monolayer were infected despite a lack

of NSs staining (Figure 4C, lower panel).

Persistence of recombinant viruses in mosquito cell lines
As previously reported by Léger et al. [31] infection of mosquito

cells (in this case A. albopictus U4.4 and A. aegypti Aag2 cells) with a

virulent strain of RVFV leads to the establishment of a persistent

infection, though differences in the expression of NSs were

observed in the different cell types. In agreement with their

findings we observed suppression of NSs production in U4.4 cells

and in the Aedes egypti derived Ae cells, and the cells became

persistently infected as shown by detection of N protein (Figure 5)

and of released virus by plaque assay (data not shown) during

sequential passage. The NSs protein was readily detected in

rMP12-infected C6/36 cells for two passages, after which the

abundance of the protein decreased to undetectable levels by

passage 5 through to passage 10 during the establishment of

persistence (Figure 5). The S RNA segment of virus released from

the cells at passages 5 and 10 was amplified by RT-PCR and the

nucleotide sequence determined. In all cases no mutations in the S

segment were observed and the NSs ORF was intact (data not

shown). Different effects were noted in cells infected with

rMP12:S-Swap. C6/36 cells showed dramatic over-expression of

NSs during 3 passages, after which the cells detached from the

substrate and were killed by the infection. In U4.4 cells NSs was

readily detected during establishment of persistent infection, but

the cells showed cytopathic effects that were widespread at passage

3. However, sufficient viable cells were harvested to allow

continued passage, but maintenance of the cells beyond passage

5 was not possible due to the death of all remaining cells. NSs was

detectable at each passage (though not as much as in C6/36 cells)

with the decrease seen at passage 3 due to a reduced number of

cells available to assay. Similarly, the apparent lack of N at passage

3 was due to the reduction in the amount of cells to assay; N was

detectable at both passages 4 and 5. Ae cells did not facilitate

rMP12:S-Swap persistence in the monolayers and the virus was

lost after one passage, evidenced by the lack of N or NSs in cell

lysates (Figure 5).

NSs-induced inhibition of mammalian cell protein and
RNA synthesis

One of the mechanisms of action of NSs in mammalian cells is a

global inhibition of host protein synthesis, mediated at both the

transcriptional level through the degradation of the p62 and the

sequestration of the p44 subunits of TFIIH [8,9], and the

translational level by the degradation of the cellular kinase PKR

were used as a loading control. B. eGFP fluorescence in BHK-21 infected with rMP12DNSs:eGFP or rMP12:S-SwapDNSs:eGFP as above. C. Western blot
analysis of infected mosquito cells. A.albopictus C6/36, U4.4 or A. aegypti Ae cells were infected with recombinant viruses (MOI of 1) and lysates
prepared at different times post infection. Fractionated proteins were probed with the indicated antibodies. D. eGFP fluorescence in mosquito cells
infected with rMP12DNSs:eGFP or rMP12:S-SwapDNSs:eGFP as above. Note that eGFP fluorescence in parts B and D was recorded first and then the
same cells were harvested for the western blotting.
doi:10.1371/journal.ppat.1003922.g003
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[10,11]. We therefore investigated if there was a difference in

protein synthesis inhibition in recombinant virus-infected cells.

A549 (interferon competent) or A549 NPro (interferon incompe-

tent) cells were infected or mock infected with recombinant viruses

at a MOI of 3. At the time points indicated, the cells were labelled

with [35S] methionine/cysteine for two hours, and cell lysates

separated by SDS-PAGE (Figure 6). In rMP12-infected cells the N

protein was identified at 8 h p.i with a faint NSs band visible

above, and by 24 h p.i. there was a marked reduction in

incorporation of radiolabel into host proteins compared to

mock-infected cells. The decrease was even more pronounced at

48 h p.i. in both A549 and A549 NPro cell lines. In rMP12:S-

Swap-infected cells, even though there was considerably greater

synthesis of NSs, there was no increase in host cell protein

synthesis inhibition in comparison to rMP12-infected A549 or

A549 NPro cells. In fact, the degree of inhibition assessed by

densitometry of the lanes was less than in rMP12 infected cells. As

a control, and to show that host protein synthesis inhibition was

largely mediated by the presence of NSs, rMP12DNSs:eGFP and

rMP12:S-SwapDNSs:eGFP cell lysates were also examined. In all

cases, the incorporation of radiolabel over the 48 h duration of the

experiment was greater than in the cells infected with NSs-

expressing viruses.

As protein synthesis reflects the relative abundance of cellular

mRNAs within the cell, we also determined the level of

transcriptional activity in infected cells. A549 cells were infected

with recombinant viruses at MOI of 3 or mock-infected. A dish of

mock-infected cells was also treated with actinomycin D (Act-D) as

a positive control for transcriptional inhibition. One hour before

the time points indicated the uridine analogue 5-ethynyl uridine

(EU) was added to the medium to enable RNA synthesized within

this hour period to be detected by click chemistry [32,33], and

then cells were stained with anti-NSs antibody (Figure 6B, panels

a-h). In rMP12-infected cells punctate nuclear NSs staining was

detected by 8 h p.i. (panel b), and by 12 h p.i. the characteristic

RVFV NSs nuclear filaments were seen in the nuclei of infected

cells (panel d). In rMP12:S-Swap-infected cells, NSs staining was

also detected by 8 h p.i. (panel g), though the staining was

predominantly cytoplasmic rather than nuclear. Irregular and

thicker nuclear filaments were detected in rMP12:S-Swap-infected

cell nuclei from 10 h p.i. onwards along with an increased and

more intense cytoplasmic staining of NSs. In the early stages of

infection (6 h p.i.) RNA synthesis could be detected in the nuclei of

cells infected by either virus. However, RNA staining was

markedly reduced when NSs nuclear filaments were first observed,

similar to that the effect seen when cells were treated with Act D

(Figure 6B, panel j). Thus rMP12:S-Swap inhibited host RNA

synthesis similarly to rMP12.

Next we examined fate of PKR and p62 in A549 cells infected

with rMP12 or rMP12:S-Swap at a MOI of 3 (Figure 7A, upper

panels). At this multiplicity, N and NSs proteins were first detected

at 5 h p.i. in rMP12-infected cells. The amount of PKR detected

started to decrease from 5 h p.i. and was undetectable by 9 h p.i.

The amount of p62 present in the cell lysate was also depleted

starting at 3 h p.i. and was undetectable by 5 h p.i. In rMP12:S-

Swap-infected A549 cells, NSs was first detected at 7 h p.i. and N

at 9 h p.i. Unexpectedly, there was little decrease in the amount of

PKR present in the cells over the 12-hour time course (Figure 7A).

By contrast, a decrease in p62 was noted by 5 h p.i. Thus in both

rMP12- and rMP12:S-Swap-infected cells degradation of p62 was

observed just before NSs was readily detected.

Act-D treatment of infected A549 cells had a small effect on N

and NSs expression by both viruses compared to the levels

observed in the respective untreated cells (Figure 7A, lower

panels). However, more noticeable was that PKR degradation

occurred in rMP12:S-Swap-infected Act-D treated A549 cells

from 4 h p.i. whereas no degradation was seen in uninfected

control cells. Loss of p62 was observed by 3–4 h p.i. for both

viruses, suggesting that ActD treatment induced a decrease in p62

faster than NSs (Figure 7A).

Lastly, we examined the production of interferon in cells

infected with the recombinant viruses at a MOI of 5 after 18 hours

using a biological assay [34]. A549-NPro cells were treated with

UV-inactivated medium from infected cells before being infected

with the interferon-sensitive encephalomyocarditis virus (EMCV).

Subsequently the cells were examined for the protection or not

from EMCV-induced cytopathic effects. rMP12 induced approx-

imately twice as much interferon as rMP12:S-Swap, whereas both

of the NSs deletant viruses generated approximately 64 times as

much interferon (Figure 7B and 7C).

Analysis of viral RNA in infected cells and virus particles
Viral RNAs present in infected cells were examined to ascertain

if the difference in levels of N and NSs protein synthesised by

rMP12- or rMP12S:Swap was mediated at the transcriptional

Figure 4. Intracellular localization of NSs in rMP12- or rMP12:S-Swap-infected cells. A. Vero-E6 cells were infected at MOI of 1, and at the
time points indicated the cells were fixed with 4% paraformaldehyde, followed by co-staining with anti-NSs (green) and anti-tubulin (red) antibodies.
Cells were examined with a Zeiss LSM confocal microscope. B. Width of NSs filaments. The widths of NSs filaments (50) in rMP12- or rMP12:S-Swap
were measured using the LSM Image Browser Software (Carl Zeiss MicroImaging GmbH) and the results presented as the mean width of the filaments
and SEM of the two groups (**** = p,0.0001; see Methods). C. Detection of NSs in mosquito cells infected with rMP12. A.albopictus C6/36, U4.4 or A.
aegypti Ae cells were infected with recombinant viruses (MOI of 1), and at 48 h p.i. the cells were fixed with 4% paraformaldehyde, followed by co-
staining with anti-NSs (green) and anti-tubulin (red) antibodies (upper panels). Duplicate monolayers were stained with anti-N antibodies (lower
panels). D. Detection of NSs in mosquito cells infected with rMP12:S-Swap. Cells were infected and stained with anti-NSs (green) and anti-tubulin
(red) antibodies as above.
doi:10.1371/journal.ppat.1003922.g004

Figure 5. Serial passage of mosquito cells infected with rMP12
or rMP12:S-Swap. A. albopictus C6/36, U4.4 cells or A. aegypti Ae were
infected with rMP12 or rMP12:S-Swap at a MOI of 0.01. Cell monolayers
were passaged (split ratio 1:5) every 5–7 days (when 100% confluency
was observed). Cell extracts were prepared from each passage, proteins
fractionated SDS-PAGE, transferred to a membrane, and blots probed
with anti-N, anti-NSs and anti-tubulin antibodies as indicated. C3/36
cells infected with rMP12:S-Swap died after passage 3.
doi:10.1371/journal.ppat.1003922.g005
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Figure 6. Inhibition of host cell protein and RNA synthesis. A. Protein synthesis. A549 or A549 NPro cells were infected with rMP12, rMP12:S-
Swap, rMP12DNSs:eGFP or rMP12:S-SwapDNSs:eGFP at a MOI of 3. Cells were labelled with 30 mCi [35S] methionine/cysteine for 2 h at the time points
indicated, and cell extracts were fractionated by SDS-PAGE. The positions of the viral N and NSs proteins are shown. Total lane intensities were
measured by densitometry and compared to the mock-infected sample for each virus time course as indicated. B. RNA synthesis. A549 cells were
infected with rMP12 (panels a to d) or rMP12:S-Swap (panels e to h) at a MOI of 3. One hour prior to the time points indicated the uridine analogue 5-
ethynyl uridine (EU) was added to the medium and then cells were fixed in 4% formaldehyde. Cells were processed using Click-iT RNA AF488 Imaging
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Kit (newly synthesised RNA stains green), and then reacted with anti-NSs antibodies and secondary goat anti-rabbit Alexa Fluor 633 antibody (red). As
controls, mock-infected cells were left untreated (i) or treated with actinomycin D (Act D) at 5 mg/ml for 1 h prior to 5-EU treatment (j).
doi:10.1371/journal.ppat.1003922.g006

Figure 7. Effect of RVFV NSs on host cell factors. A. Effect on PKR and p62. A549 cells or A549 cells treated with 5 mg/ml actinomycin D were
infected with rMP12 or rMP12:S-Swap at a MOI of 3, or mock-infected. Cell extracts were prepared at the time points indicated, proteins fractionated
by SDS-PAGE, and blots probed with anti-N, anti-NSs, anti-PKR, anti-p62, and anti-tubulin antibodies as indicated. B. Induction of interferon. A549
cells were infected with rMP12, rMP12DNSs:eGFP, rMP12:S-Swap or rMP12:S-SwapDNSs:eGFP at MOI of 5, and supernatants harvested at 18 h p.i.
After UV treatment, 2-fold dilutions were applied to A549-NPro cells for 24 h, before infection with EMCV. Monolayers were stained with Giesma after
a further 96 h. C. The amount of IFN produced is expressed as relative IFN units (RIU), defined as RIU = 2N where N = the number of two-fold dilutions
of the supernatants that protected the reporter cells from EMCV challenge.
doi:10.1371/journal.ppat.1003922.g007
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level. Northern blot analysis of total cellular RNA from infected

BHK-21 cells was undertaken using strand-specific digoxigenin-

labelled RNA probes for N, NSs and Gn coding regions

(Figure 8A). The NSs(2) probe detected full-length S RNA

(1690 nt) in both rMP12- and rMP12:S-Swap-infected cells,

corresponding to genomic and anti-genomic RNA respectively.

There appeared less anti-genomic S RNA in rMP12:S-Swap

infected cells. The subgenomic NSs mRNA (approximately

900 nt) was also detected with the NSs(2) probe, and was more

abundant in rMP12:S-Swap-infected cell lysates than in cells

infected with the parental virus rMP12. Hybridisation with the

N(+) probe detected the N mRNA (approximately 850 nt) in cells

infected with either rMP12 or rMP12:S-Swap, however to a much

greater extent in rMP12-infected cells. The N(+) probe also detected

rMP12 S anti-genomic RNA and rMP12:S-Swap genomic RNA

species. No detectable difference in the amount of M genomic RNA

Figure 8. Analysis of viral RNAs. A. Intracellular RNAs in infected BHK-21 cells. Cells were infected with rMP12 or rMP12:S-Swap (MOI of 1),
and total cell RNA isolated at 48 h p.i. Northern blotting was performed using DIG-labelled probes complementary to the N, NSs, and Gn coding
regions in the viral genomic (2) sense RNA and the N coding region in the viral anti-genomic (+) sense RNA. The polarity of the RNA detected by each
probe is indicated below the blot: G, genomic sense RNA and AG, anti-genomic sense RNA, defined by the sequence of the 39/59 untranslated
regions. B. S segment derived mRNAs produced in mosquito cells. A. albopictus C6/36, U4.4 cells or A. aegypti Ae were infected with rMP12 or
rMP12:S-Swap at MOI of 1, and total cellular RNA extracted at the indicated times p.i. Northern blotting was performed using the N(+) and NSs(2)
probes. C. Analysis of RNA packaged into virions. RNA was extracted purified rMP12 or rMP12:S-Swap grown in BHK-21 cells, and Northern blotting
performed with the probes as detailed in (A) above. D. Quantitative RT-PCR analysis of viral RNAs. Total cellular RNA (upper panels) or RNA in purified
virus particles (lower panels) of rMP12 or rMP12:S-Swap was analysed using probes specific form the S or M segments as described in Methods. The
results are presented as the percentage of genomic RNA species compared to the total RNA of the same segment. Cell line abbreviations: B, BHK-21;
C, C6/36; U, U4.4; and A, Ae.
doi:10.1371/journal.ppat.1003922.g008
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was detected between the rMP12 or rMP12:S-Swap intracellular

RNA samples using the Gn(2) probe (Figure 8A).

A similar approach was used to examine the N and NSs

subgenomic mRNAs produced in rMP12- or rMP12:S-Swap-

infected C6/36, U4.4 or Ae total cell RNA extracts over a 96 h

time course of infection (Figure 8B). N and NSs mRNAs were

readily detected in C6/36 cells infected with either virus. In

rMP12-infected U4.4 or Ae cells, NSs mRNA was barely

detectable, if at all, reflecting earlier data shown in Figure 3C

that no NSs protein was made during this period. When rMP12:S-

Swap-infected total cell RNA extracts were examined, NSs

message was strongly detected in these cells, whereas the signal

for N mRNA was much weaker (Figure 8B).

The RNA packaged into rMP12 and rMP12:S-Swap virus

particles was also examined by Northern blotting. For rMP12

virion RNA, the N(2) and NSs(2) probes detected S genomic

RNA and the N(+) probe also detected a lesser amount of

packaged antigenomic RNA. Conversely, when rMP12:S-Swap

derived virion RNA was analysed, the N(2) and NSs(2) probes

detected antigenomic S RNA and the N(+) probe detected

genomic sense RNA, which was present in the lesser amounts.

As a control the genomic M RNA was analysed by hybridisation

with the Gn(2) probe and showed similar amounts of virion RNA

were loaded on the gel from rMP12 or rMP12:S-Swap virus

particles (Figure 8C).

The above results suggested that there were different ratios of

genomic to antigenomic S RNA present in infected cells and

packaged into virions. As it is difficult to quantify levels of RNA in

infected cells by Northern blotting, we re-examined the same RNA

samples using strand-specific qRT-PCR (Figure 8D). (Optimisa-

tion of the assay is presented in Supplementary Figures S1 and S2,

and Table S2). Viral genomic or antigenomic S- or M-segment

RNA was selectively amplified with segment-specific tagged

oligonucleotides as described above. In rMP12-infected BHK-21

cells the mean proportion of the two S RNA species was 72.0%

genomic RNA and 28.0% antigenomic RNA. However, when the

rMP12:S-Swap infected-cell BHK-21 RNA was examined the

mean proportion of S genomic RNA was reduced to 23.2% of the

S RNA present in the cell. In contrast there was no difference in

the mean proportions of M segment RNA in either rMP12 or

rMP12:S-Swap infected BHK-21 cells, with 98.9% or 99.1%

genomic RNA and 1.1% or 0.9% antigenomic RNA recorded

respectively (Figure 8D).

Next, we investigated whether the difference in the ratio of

genomic to antigenomic S RNA seen in rMP12- and rMP12:S-

Swap-infected cells was reflected in the RNA packaged into

progeny virions. For rMP12 grown in BHK-21 cells, we observed

mean values of 82% genomic and 18% anti-genomic S RNA,

whereas for rMP12:S-Swap the mean values were 43.7% genomic

and 56.3% anti-genomic RNA. In contrast there was no significant

difference in the proportions of packaged M segment RNAs

between the two viruses: 98.6%:1.4% genomic:antigenomic for

rMP12 and 98.1%:1.9% genomic:antigenomic for rMP12:S-

Swap. We also investigated the RNA species packaged when the

viruses were grown in mosquito cells, and saw similar patterns to

that described for BHK-21 cell grown viruses (Figure 8D).

We analysed these data to determine whether the differences in

RNA populations in total cell RNA and virion RNA were

statistically significant. Five independent RNA preparations were

analysed for each cell type, and the mean percentage of genomic

RNA (defined by the 39 genomic UTR sequence of rMP12) was

calculated. The composition of the RNA population was analysed

using a one-way ANOVA with Tukey’s multiple comparison post-

test; significance was set at p,0.05. The results are summarised in

Table 1 (raw data can be found in Supplementary Table S3 and

S4). In all cell lines tested there was a significant difference in the

percentage of genomic S segment RNA produced within the

infected cell and between the relative amounts of genomic S

segment RNA packaged in virus particles when comparing rMP12

to rMP12:S-Swap. Conversely, there was no significant difference

in the proportion of genomic M segment RNA present in either

rMP12- or rMP12:S-Swap total cellular RNA samples or virion

RNA. This suggests that changes in proportions of S RNA species

present in infected-cells or packaged into a virion were associated

with the reconfigured S-RNA. However, there was no significant

difference in the proportion of genomic RNA present in total cell

RNA extracts compared to that detected in virions: that is,

whatever polarity of viral RNA segment that was most abundant

within the total cell RNA population was also the prevalent species

packaged in virus particles (Table 1).

Discussion

The ambisense coding strategy adopted by some members of

the Bunyaviridae and the Arenaviridae is an intriguing way of

regulating temporal gene expression [22,23]. The ambisense

RVFV S segment encodes the N and NSs proteins that are

Table 1. Summary of qRT-PCR analysis.

S Segment

Samples Compared C6/36 U4.4 Ae BHK

rMP12 Virion vs. rMP12:S-Swap Virion YESa YES YES YES

rMP12 Virion vs. MP12 Total NOb NO NO NO

rMP12:S-Swap Virion vs. rMP12:S-Swap Total NO NO NO NO

rMP12 Total vs. rMP12:S-Swap Total YES YES YES YES

M Segment

Samples Compared C6/36 U4.4 Ae BHK

rMP12 Virion vs. rMP12:S-Swap Virion NO NO NO NO

rMP12 Total vs. rMP12:S-Swap Total NO NO NO NO

a, significantly different, p,0.05 (see Methods for details).
b, not significantly different,
doi:10.1371/journal.ppat.1003922.t001
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translated from individual subgenomic mRNAs. The N mRNA is

transcribed from the genomic S segment whereas the NSs mRNA

is transcribed from the antigenome S segment (Figure 1A). In this

study, we investigated the consequences of swapping the N and

NSs coding sequences on the S segment by directly substituting the

N ORF into the NSs locus and the NSs ORF into the N locus

(Figure 1). We were able to recover, by reverse genetics, a virus

that contained the modified S segment, designated rMP12:S-

Swap. This strategy left the 39, 59, and intergenic untranslated

regions untouched, though it is possible that cis-acting signals

spanning untranslated and coding sequences (e.g. for packaging or

transcription termination) could be disrupted. The replication

kinetics of rMP12:S-Swap, the parental virus rMP12, and

recombinant viruses in which the NSs ORF was replaced with

that of the eGFP (rMP12DNSs:eGFP and rMP12:S-SwapDNS-

s:eGFP) were compared in a range of mammalian and insect cell

lines. Viruses that contained the reconfigured genomic S segment

gave titres 10- to 1000-fold lower than the corresponding viruses

with the normal S segment configuration (rMP12 or

rMP12DNSs:eGFP) in all cell lines tested (Figure 2A, 2C).

Reduced growth appeared to be correlated with the marked

reduction in the amount of N protein produced over 48 h in

rMP12:S-Swap- and rMP12:S-SwapDNSs:eGFP-infected cells

compared to that of the parental viruses. Although synthesis of

the Gn glycoprotein was less in reconfigured viruses early in

infection, this appeared to reflect their slower replication kinetics.

At 18 and 24 h p.i. the titre of rMP12:S-Swap was approximately

1000-fold less than rMP12 and Gn was weakly detected. However,

by 48 h p.i., there was only a 10-fold difference between the virus

titres, and much less difference in the intensity of Gn bands

(Figure 3A).

Initially, it was thought that the decrease in the amount of N

produced in rMP12:S-Swap infected cells could have been due to

the increased and earlier expression of the NSs protein. Previous

work in our laboratory had shown that the NSs protein of RVFV

could inhibit a Renilla-based minigenome in a dose dependent

manner [14], implying a regulatory role of NSs in RVFV

polymerase activity. However, the NSs-deleted virus rMP12:S-

SwapDNSs:eGFP also showed a reduced amount of N protein

(Figure 3A) indicating that NSs was not involved.

A direct visual comparison of the differential protein expression

between the parental and reconfigured viruses was provided by

observing eGFP fluorescence in rMP12DNSs:eGFP- and

rMP12:S-SwapDNSs:eGFP-infected BHK-21 monolayers: eGFP

fluorescence was more intense in rMP12:S-SwapDNSs:eGFP-

compared to that of rMP12DNSs:eGFP-infected cells. This

indicates that the authentic MP12 ‘N promoter’ sequence

(antigenomic 59 UTR) driving eGFP expression in rMP12:S-

SwapDNSs:eGFP is much stronger than that of the authentic

MP12 ‘NSs promoter’ sequence (genomic 59 UTR). Earlier studies

have reported that the UTRs on different segments have different

promoter strengths [25,35–40], and though a direct comparison of

N and NSs promoter strengths was not obtained, it was observed

that NSs mRNA levels were significantly less than those of N

mRNA in infected cells. Thus differences between promoter

strengths on genomic and antigenomic RNAs are likely to be

responsible for the difference in N protein levels observed between

parental and reconfigured viruses, rather than any specific

inhibition of N protein production.

Previous reports have suggested potential roles for the

nonstructural proteins of bunyaviruses in the maintenance of a

virus in the natural infectious cycle, persistence in infected insect

cells, and dissemination of a virus throughout an infected mosquito

[29,31,41–45]. Therefore we investigated how the differential

expression of NSs affected the ability of the virus to replicate in

cultured mosquito cells. We found that NSs protein was readily

detectable in rMP12-infected A. albopictus C6/36 cells, as was the

NSs subgenomic mRNA (Figure 8B) but neither NSs nor eGFP

could be detected in A. albopictus U4.4 or A. aegypti Ae cells that had

been infected with rMP12 or rMP12DNSs:eGFP respectively.

Similarly NSs mRNA could not be detected by Northern blotting

(Figure 8B). This is in line with published results showing that in

U4.4 and another A. aegypti cell line, Aag2, NSs expression is down

regulated at the transcriptional level by a Dicer-2 mediated RNAi

response. This RNAi response, characterised by 21-nt long

viRNAs, is non-functional in C6/36 cells, due to a deletion in

the dicer-2 gene, and may explain why NSs can be expressed

during infection (Figure 3C) [31,46]. The difference in RNAi

responses is presumably the reason why rMP12 grows to higher

titres in C6/36 cells (Figure 2C) compared to other mosquito lines.

Unexpectedly, there was no detectable eGFP expression in C6/36

cells infected with rMP12DNSs:eGFP. Despite not having a

functional Dicer-2 protein, C6/36 cells are able to mount a Piwi-

mediated RNAi response [47–49], characterised by 24–30-nt long

viRNAs, and in the absence of NSs expression (as in

rMP12DNSs:eGFP-infected cells) the Piwi-pathway may be

sufficient to degrade the eGFP-mRNA [31].

When the three insect cell lines were infected with either

rMP12:S-Swap or rMP12:S-SwapDNSs:eGFP, the NSs protein

was detected in cell lysates by western blotting or eGFP

fluorescence was observed microscopically as appropriate. By

contrast, N protein levels were much reduced, particularly in U4.4

and Ae cells, compared to infection with parental viruses

(Figure 3C, 3D). Based on the western and northern blot data,

it is not possible to determine whether RNAi contributes to the

down-regulation of N observed in U4.4 and Ae cells, or whether

the lower amounts of N just reflect the weaker promoter driving

transcription of its mRNA. The study by Léger et al. [31]

revealed hot spots for viRNA targets amongst the genome

segments, one of which appears to be in the antigenomic sense

NSs region that could degrade its mRNA. It would be instructive

to compare the profiles of small RNAs produced in mosquito

cells infected with rMP12 and rMP12:S-Swap to investigate

whether the pattern of S segment viRNA hot spots differs with

the reconfigured S RNA.

Down-regulation of NSs by RNAi is thought necessary for

RVFV to establish persistence in mosquito cells, as a persistent

infection could not be established by the ZH548 strain in Dicer-2

deficient C6/36 cells [31]. Accordingly, persistent infections of

U4.4 cells and Ae cells were readily established by rMP12 and no

NSs protein could be detected. However, we were able also to

establish persistent infection of C6/36 cells with rMP12; NSs levels

markedly decreased at each passage of the cells, perhaps mediated

by piRNAs. The MP12 strain contains mutations on all three

segments that attenuate replication in mammalian cells [50]; it

would be of interest to determine which mutations are associated

with the ability to establish persistence in A. albopictus C6/36 cells.

However, when C6/36 cells were infected with rMP12:S-Swap,

western blotting showed that NSs was hyper-expressed, and many

cells detached from the monolayer during infection. By passage 3

all the cells had been killed by the infection and hence persistence

could not be maintained. U4.4 cells also showed similar evidence

of cytopathic effect, and cells did not survive beyond passage 5.

Thus we suggest that the RNAi response is able to modulate

though not ablate NSs expression. Taken together, the data

indicate that high levels NSs are toxic to mosquito cells, perhaps

through a comparable transcriptional inhibition as occurs in

mammalian cells. The RNAi system in U4.4 cells normally
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represses NSs expression almost completely when infected with

virulent or attenuated strains; initially, it seems able to control NSs

expression sufficiently to enable cell survival when infected with

rMP12:S-Swap. However, accumulation of NSs after a few

passages resulted in cell death. In this regard analysis of viRNA

populations in U4.4 cells persistently infected with rMP12:S-Swap

would be of interest. We were unable to establish persistence in Ae

cells infected with rMP12:S-Swap. It is possible that the RNAi

response is even more robust in these cells compared to U4.4. cells,

and as no cytopathic effects were seen following infection with

rMP12:S-Swap, we presume that the amount of N protein

produced was insufficient to enable a productive replication cycle

to begin.

The NSs protein characteristically forms nuclear filaments in

infected mammalian cells [30,51,52], and filament formation is

independent of other viral proteins [53]. A consequence of the

increased expression of NSs by rMP12:S-Swap was that the

filaments were much thicker than those produced by rMP12,

and in addition there was an increased abundance of NSs

protein in the cytoplasm of rMP12:S-Swap-infected Vero-E6

cells at later times during infection. In contrast, although NSs

was detected in the nuclei of infected mosquito cells, no filament

formation was observed. Interestingly, the NSs protein expressed

by the virulent ZH548 strain of RVFV did form intranuclear

filaments in infected A. albopictus C6/36 cells [31] whereas the

NSs of the attenuated MP12 strain appeared to form aggregates

(Figure 4C). There is a single amino acid difference between the

two NSs proteins (residue 160 is valine in ZH548 and alanine in

MP12; [50]) but in the absence of structural information on NSs

it is not possible to understand how this residue affects filament

formation.

In mammalian cells a major function of the NSs protein is to

elicit global inhibition of host cell transcription, mediated by

effects on transcription factor TFIIH subunits [8,9]. We

therefore examined the effect that excess NSs (produced during

rMP12:S-Swap infection) had on the ability of the virus to shut

off protein or RNA synthesis (Figure 6). Surprisingly, there was

no difference in the ability of rMP12:S-Swap to abrogate protein

synthesis compared to the parental virus, despite a very obvious

over-expression of the NSs protein at 16 and 24 h p.i. in

rMP12:S-Swap-infected cell lines. This suggests that the amount

of NSs produced in an rMP12-infected cell is already at a

saturating level and that any excess NSs produced (such as

during rMP12:S-Swap infection) cannot increase the rate at

which global host cell protein synthesis inhibition occurs

(Figure 6A). Inhibition of RNA synthesis was strongly correlated

with formation of nuclear NSs filaments. A marked reduction in

RNA synthesis was seen in infected-cells upon detection of

nuclear localised NSs staining, indicating that NSs expressed by

rMP12:S-Swap was able to inhibit host cell RNA synthesis in the

same manner as that of rMP12, in agreement with previous

reports [9,12].

In both rMP12- and rMP12:S-Swap-infected cells we observed

rapid depletion of p62, the timing of which correlated with

expression of NSs. However, there was no appreciable reduction

in the level of PKR in the presence of enhanced NSs expression in

rMP12:S-Swap-infected cells. PKR degradation in RVFV-infected

cells is mediated by NSs via the ubiquitin cellular proteasomal

pathway [10,11]. Therefore, our data suggest that in rMP12:S-

Swap-infected cells this pathway could be blocked somehow,

perhaps due to an overwhelming amount of NSs being present in

the cytoplasmic compartment of the cell (visualised in Figure 4A).

Our data are also consistent with a recent report that p62 and

PKR are degraded in virus-infected cells independently of one

another [12]. In this paper the authors described a recombinant

virus rMP12-NSsR173A, which expressed NSs containing substi-

tution of amino acid 173, that inhibited host RNA synthesis and

IFN-b gene expression, but was unable to degrade PKR.

Furthermore, the mutant NSs filaments appeared different from

those of parental NSs, forming an irregular mosaic-like pattern.

The authors suggested that the PKR degradation might involve a

domain in NSs containing residue 173. The phenotype of

rMP12:S-Swap is remarkably similar to that of rMP12-

NSsR173A, and perhaps the over-expression of NSs by the

former virus sterically inhibits the interaction needed for PKR

degradation. Alternatively, the delay in inhibition of transcription

observed in rMP12:S-Swap infected cells may allow sufficient

expression of a factor that prevents PKR degradation once NSs is

expressed.

Finally, to assess whether the changes in NSs protein expression

were represented at the transcriptional level we examined the

production of viral RNAs in virus-infected cells. There was

substantially more NSs mRNA transcribed from the viral

genomic S RNA of rMP12:S-Swap than from the viral anti-

genomic S RNA of rMP12 suggesting that this is basis for the

increased NSs protein production seen during rMP12:S-Swap

infection (Figure 8A). This effect was particularly evident when

examining the subgenomic N and NSs mRNAs produced during

infection of insect cells. As discussed earlier, it appears that the

insect RNAi response targets the NSs mRNA of rMP12 and

reduces the cellular concentration of any mRNA originating

from that locus: NSs in rMP12 and N in rMP12:S-Swap

(Figure 8B).

Importantly, there also appeared to be a substantial difference

in the relative abundance and polarity of RNA packaged into

progeny virions between the two viruses. rMP12 packages more

genomic than antigenomic S RNA whereas for rMP12:S-Swap the

opposite was apparent. This indicates that the panhandle structure

formed by the 39 and 59 termini of each RNA segment is not the

only prerequisite for the packaging of specific polarities of viral

RNA, as the UTRs of both viruses have remained unchanged

[54,55]. It is possible that a packaging signal (RNA sequence or

structure) resides within the anti-sense N coding sequence which

determines what particular polarity of RNA is incorporated into a

virus particle. On the other hand, as the population of RNAs, be it

genome or antigenome, present in the infected cell reflected that

packaged into virions, there may not be a selective packaging

mechanism for one polarity of RNA over another, but rather it is a

stochastic mechanism that packages the most abundant viral RNA

species into the virus particle. Additional work is underway to

investigate polarity-specific packaging further.

In conclusion, by transposing the relative orientations of N and

NSs ORFs on the RVFV S genome segment, we have generated a

virus whose growth is attenuated in cell culture and whose

replication is cytotoxic in cultured mosquito cells. It would be of

interest to assess whether rMP12:S-Swap or derivatives thereof

could be useful for vaccine development. For instance, a version

expressing a marker epitope in place of NSs would likely be

attenuated in animals and capable of inducing protective

immunity, as demonstrated for other NSs-deleted viruses

[15,16], and antibodies to the highly-expressed epitope could be

useful in differentiating infected from vaccinated animals (DIVA).

Alternatively, a protective antigen from another pathogen could be

over-expressed instead of NSs to create a divalent vaccine. On the

other hand, if over-expression of NSs results in death of an infected

mosquito, this feature might be exploited to generate non-

transmissible live vaccines. Such possibilities warrant further

investigation.
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Materials and Methods

Cells and viruses
Vero-E6, A549 and A549-NPro [56] cells were grown in

Dulbecco’s modified Eagle’s medium (DMEM) supplemented with

10% fetal calf serum (FCS). BSR-T7/5 cells [57], which stably

express T7 RNA polymerase, were grown in Glasgow minimal

essential medium (GMEM) supplemented with 10% FCS, 10%

tryptose phosphate broth (TPB) and 1 mg/ml G418. BHK-21 cells

were grown in GMEM supplemented with 10% newborn calf

serum (NCS) and 10% TPB. All mammalian cell lines were grown

at 37uC with 5% CO2 unless otherwise stated.

Aedes albopictus C6/36 and U4.4 and Aedes aegypti Ae cells were

grown at 28uC in Leibovitz 15 medium (Gibco) supplemented with

10% fetal calf serum (FBS) and 10% tryptose phosphate broth, as

described previously [29].

All experiments with infectious virus were conducted under

BSL-3 conditions. Stocks of recombinant viruses were grown in

BHK-21 cells at 33uC by infecting at a multiplicity of infection

(MOI) of 0.01 and harvesting the culture medium at 72 h post

infection (p.i.).

Plasmids
Plasmids for the recovery of RVFV have been described

previously [27]. pTM1-L and pTM1-N contain the RVFV MP12

L and N ORFs under the control of T7 promoter and

encephalomyocarditis virus internal ribosome entry site sequence;

pTVT7-GS, pTVT7-GM and pTVT7-GL contain full-length

cDNAs to the RVFV strain MP12 antigenome segments flanked

by T7 promoter and hepatitis delta ribozyme sequences. Plasmid

pTVT7-GS:S-Swap contains a full-length cDNA to the RVFV S

segment in which the two S segment derived ORFs encoding the

N and NSs proteins have been swapped, thereby creating a

genomic S segment in which the N protein is expressed at the NSs

locus and the NSs protein at the N locus. The swapped genomic

segment was synthesised by GenScript USA Inc. and cloned into

pTVT7 using BbsI restriction sites. The constructs pTVT7-

GSDNSs:eGFP or pTVT7-GS:S-SwapDNSs:eGFP were created

by replacing the NSs coding sequences with that of the enhanced

green fluorescent protein (eGFP).

Generation of recombinant viruses from cDNA
Recombinant RVFV were generated by transfecting 76105

BSR-T7/5 cells with 0.5 mg each pTM1-L and pTM1-N, and

1 mg each pTVT7-based plasmid expressing the viral antigenomic

segments as appropriate, using 3 ml Lipofectamine 2000 (Invitro-

gen) per mg of DNA. After 5 to 7 days, when extensive cpe was

observed, the virus-containing supernatants were collected,

clarified by low speed centrifugation and stored at 280uC.

Virus titration by plaque assay
BHK-21 cells were infected with serial dilutions of virus and

incubated under an overlay consisting of GMEM supplemented

with 2% NCS and 0.6% Avicel (FMC BioPolymer) at 37uC for 4

days. Cell monolayers were fixed with 4% paraformaldehyde and

plaques were visualized by Giemsa staining.

Western blotting
At different time points after infection cell lysates were prepared

by the addition of 300 ml lysis buffer (100 mM Tris-HCl, pH 6.8;

4% SDS; 20% glycerol; 200 mM DTT, 0.2% bromophenol blue

and 25 U/ml Benzonase (Novagen)) and proteins separated on a

SDS-4–12% gradient polyacrylamide gel (Invitrogen). Proteins

were transferred to a Hybond-C Extra membrane (Amersham),

and the membrane was blocked by incubating in saturation buffer

(PBS containing 5% dry milk and 0.1% Tween 20) for 1 h. The

membrane was reacted with anti-N and anti-NSs polyclonal rabbit

antibodies [14], an anti-Gn antibody (ProSci Inc.), an anti-eGFP

antibody (Invitrogen) or an anti-tubulin monoclonal antibody

(Sigma). This was followed by incubation with either horseradish

peroxidase (HRP)-labelled anti-rabbit (Cell Signalling Technology)

or anti-mouse (Sigma) antibodies. Visualization of detected

proteins was achieved using SuperSignal WestPico chemilumines-

cent substrate (Pierce), followed by exposure to x-ray film.

Metabolic radiolabeling
A549 or A549 NPro cells were infected with recombinant

viruses at a MOI of 3. At the time points indicated, cells were

incubated in starvation media lacking methionine for 30 min,

washed, and then labelled with [35S] methionine/cysteine

(30 mCi/ml; Amersham Pharmacia Biotech) for 2 h. Cell lysates

were prepared by the addition of 300 ml lysis buffer (100 mM Tris-

HCl, pH 6.8; 4% SDS; 20% glycerol; 200 mM DTT, 0.2%

bromophenol blue and 25 U/ml Benzonase (Novagen)) and

proteins separated by SDS-PAGE as described above. Visualisa-

tion of labelled proteins was achieved by exposure to a Storm840

Phospho-imager (Molecular Dynamics) or to X-ray film.

Biological assay for interferon production
A549 cells in 35 mm dishes were infected with 5 PFU/cell of

the recombinant viruses and incubated at 37uC for 18 h. The

medium was removed and treated with UV light to inactivate any

virus [34] and two-fold serial dilutions of the medium were applied

to A549-NPro cells for 24 h. The cells were then infected

with interferon-sensitive encephalomyocarditis virus (EMCV;

0.05 PFU/cell), and cells incubated for 4 days at 37uC. The cells

were fixed with formaldehyde and stained with Giemsa stain to

monitor development of CPE. The relative IFN units (RIU) are

expressed as 2N where N is the number of two-fold dilutions that

protect the reporter cells.

Immunofluorescent detection of host RNA synthesis
A549 cells were grown on glass cover-slips (13 mm diameter),

and either infected with recombinant viruses, mock-infected or

mock-infected and treated with Actinomycin D (5 mg/ml). The

uridine analogue 5-ethynyl uridine (EU) was added to the culture

medium for 1 h prior to harvest at the time points indicated,

following the manufacturer’s instructions (Click-iT RNA AF488

Imaging Kit; Invitrogen). Briefly, after 5-EU treatment, cells were

permeabilized in 0.5% Triton X-100 in PBS and then incubated

with the Click-iT reaction cocktail. Following treatment cells were

reacted with RVFV anti-NSs primary (1:250) and Alexa Fluor 633

anti-rabbit (1:200) secondary antibodies. Localisation of the

fluorescently labelled proteins and RNA was examined at various

times post infection using a Zeiss LSM confocal microscope.

Northern blotting and reverse transcription-PCR
BHK-21 cells were infected at a MOI of 1 and total cellular

RNA was extracted at 48 h p.i. using TRIzol reagent (Invitrogen).

Four micrograms of RNA was electrophoresed through a 1.2%

agarose gel in TAE buffer [58] and then transferred to a positively

charged nylon membrane (Roche). For the isolation of RNA from

virus particles, RNA from 16106 virions of either rMP12 or

rMP12:S-Swap virus stocks were extracted using the QIAamp

Viral RNA Minikit (Qiagen). Equal volumes of eluted RNA were

then electrophoresed through a 1.2% TAE gel and transferred to a

positively charged nylon membrane as described above. The
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membranes were hybridized with digoxigenin-labelled RNA

probes complementary to genome sense (2) or anti-genome sense

(+) sequences representing Gn, N or NSs protein coding regions

(150 ng of each probe); detection was carried out using a DIG

Northern Starter Kit (Roche).

For reverse transcription-PCR (RT-PCR), 1 mg of total cellular

RNA was mixed with a segment-specific oligonucleotide, 0.5 mM

46 dNTP mix (Promega), 40 U rRNasin (Promega) and 200 U

M-MLV reverse transcriptase (Promega), and incubated at 42uC
for 3 hours. The resulting cDNA was used in PCR reactions with

primers as described in Results, and the products were visualized

by agarose gel electrophoresis. Details of oligonucleotides used can

be found in Table S1.

Quantitative RT-PCR
Total cell RNA or virion RNA was extracted as described

above, the resulting RNA quantified (Nanodrop Spectrophotom-

eter; Thermo Scientific) and standardised to 2 ng/ml. Reverse

transcription was performed as described above with an additional

final incubation step of 90uC for 10 minutes to inactivate enzyme.

Each reaction included a segment and strand-specific oligonucle-

otide (Table 2). A standardised control reaction was performed on

in-vitro transcribed genomic and anti-genomic RNA to allow for

normalisation of differences in experimental sensitivity. Details of

oligonucleotides used in qPCR reactions can be found in Table 2.

Quantitative PCR (qPCR) was carried out using MESA Blue

qPCR MasterMix for SYBR Assay (Eurogentec) on a ABI 7300

platform (Applied Biosystems). Each reaction was performed in a

10 ml volume (8.4 ml qPCR MasterMix, 0.3 ml strand specific

primer (10 mM) and 0.3 ml of TAG-primer (10 mM) and 1 ml

cDNA template). Each reaction contained the opposing primer to

the one used in the RT reaction and the TAG-primer (e.g. the

rMP12 S genomic RNA RT-primer was N REV-TAG and the

qPCR primers were N FWD and TAG-primer). The cycling

parameters were 50uC for 2 minutes, 95uC for 10 minutes,

followed by 40 cycles of 95uC for 15 s and 60uC for 60 s. A

dissociation stage was included at the end of each reaction as a

quality control step. A melt curve analysis at the end of each assay

consisted of 95uC for 15 seconds, 60uC for 1 minute before

increasing temperature to 95uC at 0.1uC per second. Each

reaction was performed in triplicate with a mean Ct value

calculated post assay. Each cell type and virus combination was

tested a minimum of five times with unique infections and RNA

preparations.

Ct values obtained for genome and antigenome assays were

compared to determine the ratio of genome to antigenome in the

original RNA preparation. Ct values were corrected using data

from the segment specific standard curves. Differences in Ct values

were calculated (genome Ct – antigenome Ct). The square root of

the square of this number was calculated to remove any negative

values. The relative amount difference between the two values was

calculated using the formula x = e(0.6931 y) where y is the difference

in Ct values.

The calculated figure gives the relative amount difference

between the genomic and antigenomic S or M segments in the

original RNA sample. From this a percentage was be calculated

(% genome = x/(x+1) ) which was used in all further statistics and

figures. Graphs were produced, and one-way ANOVA with

Tukey’s multiple comparison post-test were performed, using

GraphPad Prism version 5.0a for Mac OS X (GraphPad Software,

La Jolla California USA, www.graphpad.com). Significance was

set at p,0.05.

Indirect immunofluorescent staining and live cell
imaging

Vero-E6, C6/36, U4.4 or Ae cells were grown on glass

coverslips (13 mm diameter), infected with recombinant viruses

and fixed at the time points indicated with 4% paraformaldehyde

in PBS. After permeabilization with 0.1% Triton X-100 in PBS

the cells were reacted with specific primary antibodies, followed by

secondary antibody conjugates. Localisation of the fluorescently

labelled proteins was examined at various times post infection

using a Zeiss LSM-510 confocal microscope. The widths of 50

rMP12 or rMP12:S-Swap NSs filaments were measured using the

LSM Image Browser Software (Carl Zeiss MicroImaging GmbH)

and the results presented as the mean and standard error of the

mean of the two groups.

Images of infected cell monolayers were visualised for eGFP

fluorescence using an EVOS FL Cell Imaging System (AMG,

Invitrogen).

Table 2. Oligonucleotides used in reverse transcription and qRT-PCR reactions.

Oligo Sequence 59-39

Genome Position (Genomic
Sense)

S Segment

N FWD AACTCTACGGGCATCAAACC 1539–1558a

N REV-TAG GGCCGTCATGGTGGCGAATAAGAGCTTGCGATCCAGTT 1620–1639a

NSs FWD-TAG GGCCGTCATGGTGGCGAATGGACTCCTTTGCTGGCTTAC 502–521a

NSs REV GCACTGTACGTGAGCAACCT 597–616a

M Segment

M FWD CCGGTGCAACTTCAAAGAGT 10–29b

M REV AGGCAGCAGCAGTCTCAAGT 90–109b

M FWD-TAG GGCCGTCATGGTGGCGAATCCGGTGCAACTTCAAAGAGT

M REV-TAG GGCCGTCATGGTGGCGAATAGGCAGCAGCAGTCTCAAGT

TAG Oligo GGCCGTCATGGTGGCGAAT

aFrom Rift Valley fever virus strain MP-12 segment S, DQ380154.
bFrom Rift Valley fever virus strain MP-12 segment M, DQ380208.
Tagged oligonucleotides were used for strand specific reverse transcription. The TAG sequence is underlined.
doi:10.1371/journal.ppat.1003922.t002
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Supporting Information

Figure S1 Sensitivity of anti-N and anti-NSs antibodies.
BSR-T7/5 cells were transfected with either 0.5 or 1.0 mg of

expression constructs pTM1-N or pTM1-NSs expressing the

MP12 N or NSs proteins respectively. 48 h post transfection, cell

lysates were prepared by the addition of 300 ml lysis buffer

(100 mM Tris-HCl, pH 6.8; 4% SDS; 20% glycerol; 200 mM

DTT, 0.2% bromophenol blue and 25 U/ml Benzonase (Nova-

gen)) and proteins separated on a 4–12% SDS-PAGE gel

(Invitrogen). Proteins were transferred to a Hybond-C Extra

membrane (Amersham), and the membrane was blocked by

incubating in saturation buffer (PBS containing 5% dry milk and

0.1% Tween 20) for 1 h. The membrane was reacted with anti-N

and anti-NSs polyclonal antibodies at concentrations of 1:1000,

5000, 10000 or 20000 for 1 h at room temperature. This was

followed by incubation with horseradish peroxidase (HRP)-

labelled anti-rabbit (Cell Signalling Technology). Visualization of

detected proteins was achieved using SuperSignal WestPico

chemiluminescent substrate (Pierce), followed by exposure to x-

ray film.

(DOCX)

Figure S2 Standard curves for qRT-PCR. Standard Curves

for the S segment genome/antigenome and M segment genome/

antigenome. 10-fold serial dilutions from in-vitro transcription

generated RNAs (of known concentrations and hence copy

number) were used to construct the curves. Calculation shows

the gradient and R2 value for the curve.

(DOCX)

Figure S3 Melt curve analysis of PCR products. Melt

curve analysis on the qPCR products for S segment genome (A)

and antigenome (B), and M segment genome (C) and antigenome

(D). The Tm of the S segment genome and antigenome assays were

80.8uC and 82.3uC respectively. The M segment genome and

antigenome assays utilized the same primers and produced similar

PCR products which ensures that the Tm’s are identical, 79.3uC
(DOCX)

Table S1 Oligonucleotides used for RT-PCR.
(DOCX)

Table S2 Validation parameters. Validation parameters of

the standard curves. Amplification efficiency was calculated using

the following function: E = 21+10(21/slope)

(DOCX)

Table S3 Ratio of genome to antigenome (shown as a
percentage of total) from the qPCR assays for virion
extraction RNA. Data collected for the repeated qPCR assays

for BHK-21, C6/36, U4.4, and Ae cells infected with both rMP12

and rMP12:S-Swap viruses. The mean value is for each sample set

is shown at the base of the table.

(DOCX)

Table S4 Ratio of genome to antigenome (shown as a
percentage of total) from the qPCR assays for total
extraction RNA. Data collected for the repeated qPCR assays

for BHK-21, C6/36, U4.4, and Ae cells infected with both rMP12

and rMP12:S-Swap virus. The mean value is for each sample set is

shown at the base of the table.

(DOCX)
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