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Abstract

Barnacles are major sessile components of the intertidal areas worldwide, and also one of the most dominant fouling
organisms in fouling communities. Larval settlement has a crucial ecological effect not only on the distribution of the
barnacle population but also intertidal community structures. However, the molecular mechanisms involved in the
transition process from the larval to the juvenile stage remain largely unclear. In this study, we carried out comparative
proteomic profiles of stage Il nauplii, stage VI nauplii, cyprids, and juveniles of the barnacle Balanus amphitrite using label-
free quantitative proteomics, followed by the measurement of the gene expression levels of candidate proteins. More than
700 proteins were identified at each stage; 80 were significantly up-regulated in cyprids and 95 in juveniles vs other stages.
Specifically, proteins involved in energy and metabolism, the nervous system and signal transduction were significantly up-
regulated in cyprids, whereas proteins involved in cytoskeletal remodeling, transcription and translation, cell proliferation
and differentiation, and biomineralization were up-regulated in juveniles, consistent with changes associated with larval
metamorphosis and tissue remodeling in juveniles. These findings provided molecular evidence for the morphological,
physiological and biological changes that occur during the transition process from the larval to the juvenile stages in B.
amphitrite.
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Introduction genetic development associated with metamorphosis includes

) ) o ) decortication of the cyprid carapace, formation of a new chitinous
The life cycles of most sessile marine invertebrates include a layer, migration of the naupliar eye, degeneration of the
bl bl

microscopic and planktonic larval stage that may last for minutes compound eyes and antenna, and development of the feeding
to .rnoths,. as well as benthic juvenile and adult stages during cirri [6]. In addition, physiological, structural and functional
Whld.‘. individuals at_taCh to a Submer_ng surface [1]. The changes occur, all of which are regulated by functional genes and
transition from pelagic to sessile stages is referred to as larval proteins [7]. Six cyprid-specific genes were first isolated from a

attachment and metamorphosis (collectively known as larval cyprid ¢DNA library [8], and responded differentially to
settlement), which is associated with morphological, physiological settlement cues [9]. Recently, we conducted a comparative

and b}ocheml];al Chlangelz‘s. Larva.l Setgémﬁ;t 18 Cmmzl not only f.or transcriptomic study and identified several genes with potential
recruitment but also for species distribution and community roles in the larval settlement process [3].

structures [2]. Although details of the signal transduction pathways
and mechanisms that regulate larval settlement have been partially
reported in some species [3,4], the associated molecular mecha-
nisms remain largely unknown in most marine invertebrate
species, due to their high biological diversity.

There is no predictive correlation between mRNA and protein
levels. Because proteins directly mediate most biological events,
evaluation of changes in their levels could provide comprehensive
biological insights [10]. An earlier 2-DE-based proteomic study
from our laboratory revealed approximately 400 spots and
identified some proteins that were differentially expressed during
barnacle larval settlement [10]. Furthermore, a significantly higher
number of protein spots were obtained when implementing
additional solution-phase IEF sample prefractionation and nar-
row-pH-range IEF [11]. However, the 2-DE method has a

The barnacle Balanus amphitrite is a dominant fouling organism
worldwide. B. amplutrite larvae released from adults molt 6 times
and transit to cyprids, the competent stage for subsequent
settlement. The process of settlement can be divided into 3
phases: attainment of competency, attachment to a suitable
substratum, and metamorphosis into juveniles [5]. The morpho-
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relatively poor reproducibility, low sensitivity, and narrow linear
dynamic ranges [12]. In addition, few proteins exhibiting a
relatively lower expression level could be identified using mass
spectrometry in a 2-DE-based analysis. In contrast, a gel-free
proteomics technique incorporating a combination of multidi-
mensional liquid chromatography (LC) separation, MS analysis
and sequence database searches could provide a robust and
effective platform for direct analysis of the proteome of the
bryozoan Bugula neritina [13]. In the present study, we used a label-
free quantitative proteomic platform to profile the proteomes of 4
developmental stages of B. amphitrite, compared 4 proteomes to
identify many differentially expressed proteins that might play key
roles in the settlement of B. amphitrite, and confirmed the
expression patterns of numerous proteins using quantitative real-

time polymer chain reaction (QRT-PCR).

Materials and Methods

Sample preparation

The barnacle, Balanus amphitrite, that we used for this study is a
common species of marine invertebrates. It is a biofouling species
and not endangered or protected. Balanus amphitrite adults were
collected from a dock in Pak Sha Wan, Hong Kong (22.21'45" N,
114.15"35" E). No specific permits were required for the described
field studies. The dock does not belong to any national parks,
protected areas, or privately-owned places. The filed studies did
not involve any endangered or protected species.

Larvae of different stages were obtained and cultured according
to the methods described by Thiyagarajan and Qian [10]. Briefly,
newly released larvae were maintained in filtered seawater (FSW)
for 2 h and then collected as stage II nauplii. Other larvae were
cultured at 27°C and fed with Chaetoceros gracilis Schutt for 3 to 4 d
until they had developed into stage VI nauplii with 2 compound
eyes. After 18-24 h, a portion of the cyprids undergoing molting
from stage VI nauplii was collected; the remaining cyprids
attached to polystyrene Petri dishes (Falcon no. 1006) in the dark.
Most of the cyprids attached to the dishes within 24 h and
completed metamorphosis into juveniles within 48 h. The
juveniles were then scraped off the dishes. All of the samples were
stored at —80°C until use.

Protein extraction and digestion

The samples were resuspended in 1 mL protein lysis buffer
containing 0.1 M Tris-HCI (pH 7.6), 2% SDS, 0.1 M dithiothre-
itol and protease inhibitor cocktail (Roche Diagnostics, Mann-
heim, Germany). After homogenization, the samples were
sonicated 3 times using a Misonix sonicator-XL2020 (Misonix,
Farmingdale, NY) and then incubated in boiling water for 5 min.
Larvae and debris that were not lysed were pelleted by
centrifugation at 15,000 ¢ for 10 min at 4°C. The protein-
containing supernatant was transferred into a new tube, and the
protein concentration was quantified using the RC/DC protein
assay kit (BioRad, Hercules, CA). Due to the presence of pigments
and other contaminants in the barnacle protein extract, one
dimensional gel electrophoresis was performed before trypsin
digestion to remove impurities, including pigments, detergents,
and buffer components. This purification step facilitated the
subsequent liquid chromatographic separation. Specifically, pro-
tein samples were loaded in a 10% SDS-PAGE gel and separated
for 25 min to purify the proteins from other non-proteins/small
molecules. Following Coomassie blue staining, the concentrated
protein bands were removed from the gel and ready for in-gel
digestion as previously described [14].
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Liquid chromatography/mass spectrometry (LC/MS)
analysis

The digests were resuspended and fractionated by strong cation
exchange chromatography [15]. Each dried fraction was recon-
stituted in 30 pL of 0.1% formic acid. The samples were run as 3
replicates using a Proxeon EASY-nLC unit (Thermo Scientific,
San Jose, USA) with an LTQ-Orbitrap mass spectrometer (Velos,
Thermo Scientific). Peptide separation was conducted in a
capillary column (0.1x150 mm, with C18 AQ of 3 pum particles
and 200 A pore size, Bruker Michrom BioResources). Mobile
phase A (0.1% formic acid in HyO) and mobile phase B (0.1%
formic acid in ACN) were used to establish a 75-min gradient
consisting of 45 min from 100 to 65% A, 10 min from 65 to 20%
A, and 20 min at 20% A. The LC was operated at a constant flow
rate of 0.5 pL./min. The ion source was set as a capillary voltage of
1.5 kV and a source temperature of 160°C. The LTQ-Orbitrap
was set to perform data-dependent acquisition in positive ion
mode with a selected MS survey mass range of 350-1600 m/z. The
10 most intense ions above a 500-count threshold and carrying a
charge from 2+ to 4+, were selected for MS/MS fragmentation.
Dynamic exclusion was activated using a repeat count of 2, an
exclusion duration of 45 s, and a mass tolerance of =5 ppm. The
CID parameters included a normalized collision energy of 35%,
an activation Q) of 0.25, an isolation width of 3.0 and an activation
time for 10 ms.

Database search and data analysis

The raw MS data were converted into mascot generic files using
Proteome Discover (1.2) and then submitted to Mascot version 2.2
(Matrix Sciences Ltd., London, UK) for searching against an in-
house protein database developed in our transcriptome study [3].
The mass tolerances were set at 10 ppm for the peptide precursors
and 0.5 Da for the fragment ions. A decoy option was included.
Carboxamidomethylation at cysteine residues was set as a fixed
modification, and oxidation at methionine residues was set as a
variable modification. Up to 1 missed trypsin cleavage was
permitted.

The resulting .dat files from the Mascot search were processed
using Scaffold (version 4.0, Proteome Software Inc., OR, USA) to
validate the MS/MS identification. Peptide identification was
accepted if the result could established at >95.0% probability by
the Scaffold Local FDR, whereas protein identification was
accepted if the result had a probability of >99.0% and contained
at least 1 identified peptide. Peptide and protein probabilities
assigned by the PeptideProphet [16] and ProteinProphet [17].
Protein XML files were then exported from Scaffold to calculate
the protein abundances were calculated using APEX quantitation
proteomics tools [18,19]. A 1.5-fold change was set as the cutoff,
and only proteins with >5,000 molecules per cell during at least
one stage were considered for significantly up-regulated proteins
and proteins with >5,000 molecules per cell during at least 3
stages were considered for significantly down-regulated proteins

[20].

Phylogenetic analysis of vitellogenin

Amino acid sequences of vitellogenin from various species were
downloaded from GenBank and aligned using MUSCLE [21]via
the CIPRES Portal v2.2 [22]. Neighbor-joining analysis was
performed with MEGA4. All of the positions containing alignment
gaps and missing data were eliminated in pairwise sequence
comparisons (pairwise deletion option). The topological stability
was evaluated based on 1,000 bootstrapping (BS) replications.
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Quantitative real-time polymerase chain reaction (qRT-
PCR)

Total RNA from each stage as well as from adults was extracted
by using TRIzol reagent (Invitrogen, Carlsbad, CA) according to
the manufacturer’s protocol. The quantity and quality of the RNA
were assessed using agarose gel electrophoresis and a NanoDrop
1000 spectrophotometer (Thermo Fisher Scientific, Waltham,
MA), respectively. Trace genomic DNA in the RNA solution was
removed using the Turbo DNAfree Kit (Ambion Inc, Austin, TX).
First-strand cDNA was synthesized from RNA using MMLV
reverse transcriptase (USB, Cleveland, OH) with oligo dT ;g
primer. Gene-specific primers were designed with Primer3
software [23], and the sequences of all primers used are listed in
Table S1. According to the standard protocol, the qRT-PCR
assays were conducted using SYBR Green Supermix (BioRad) on
an ABI 7500 fast real-time PCR machine (Applied Biosystems,
Foster City, CA). Cytochrome b (Cyb) was employed as an internal
control for normalization [24]; the relative expression patterns
were calculated based on the 27 *A“* method [25,26]. Significant
differences in expression patterns were analyzed by one-way
ANOVA followed by the Tukey’s post-hoc test.

Results

Four developmental stages of B. amphitrite were collected for our
proteomic profiling. After MS profiling, 2,121 proteins were
isolated from stage II nauplii, 785 from stage VI nauplii, 1,036
from cyprids, and 1176 from juveniles (Figure 1A, Table S2).
Among the total 2,520 proteins, 360 proteins were common to all
4 developmental stages. Using gene ontology (GO), 1,793 of 2,520
proteins (accounting for 71.15% of the total proteins) were
categorized into several functional groups, including 1,555 of
2,118 (73.42%) in stage II nauplii, 570 of 783 (72.80%) in stage VI
nauplii, 790 of 1,034 (76.40%) in cyprids and 895 of 1,174
(76.24%) in juveniles (GO categories are shown in Figure 2). The
majority of the proteins displayed binding and catalytic activity
(37.47%-44.14%), and the remainder were associated with
structural molecule activity and transporter functions (4.19%—
7.90%). Unlike the other 3 developmental stages, stage VI nauplii
had more proteins that displayed catalytic (44.09%) rather than
with binding activity (37.47%). The remaining categories included
electron carrier activity, enzyme regulator activity, receptor
activity, antioxidant activity, nucleic acid binding, and transcrip-
tion factor activity, among others.

Comparative proteomic analysis among the 4 developmental
stages of B. amphitrite revealed that 398 proteins met the established
criteria, displaying a 1.5-fold change and >5,000 molecules per
cell in at least one stage (Figure 1B). Among them, 143 in stage 1I
nauplii, 80 in stage VI nauplii, 80 in cyprids and 95 in juveniles
were significantly up-regulated (listed in Tables 1, 2, S3 and S4).
Interestingly, 118 proteins were uniquely expressed in stage II
nauplii, accounting for 82.51% of the total 143 proteins. In
contrast, 36, 22 and 27 proteins were uniquely expressed in stage
VI nauplii, cyprids and juveniles, respectively. In addition, 129
proteins were significantly down-regulated in the 4 developmental
stages, which is less than the up-regulated ones (Figure 1B). Among
them, 19 were in stage II nauplii, 82 in stage VI nauplii, 9 in
cyprids and 19 in juveniles (listed in Table S5, S6, S7 and S8). To
identify the important proteins involved in the larval settlement
process of barnacles, proteins that were significantly up-regulated
in cyprids (listed in Table 1) were categorized into a diverse set of
functional groups using GO and ecukaryotic orthologous groups
(KOG). Approximately 30% proteins were related to energy and
metabolism; others were associated with structural molecules,
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nervous system-related molecules, and signaling molecules, among
others. Additionally, proteins that were significantly up-regulated
in juveniles (T'able 2) might be crucial for tissue reorganization and
development postlarval settlement. The top 3 categories detected
were structural, transcription and translation, and energy and
metabolism proteins. The other proteins were categorized into
various functional groups such as cell differentiation-related, cell
proliferation-related, shell calcification-related, and stress-induced
proteins.

To analyze the gene expression of the selected proteins, qRT-
PCR was conducted. As shown in Figure 3, a positive correlation
between transcription and translation expression patterns was
detected in several proteins, such as neuroglian, failed axon
connection protein and lipoprotein receptor. In contrast, the
expression trends observed for some proteins, including fructose-
bisphosphate aldolase, histone cluster 1 H2ad and glutathione S-
transferase Mu 3, did not display any similarity with their gene
expression profiles. Interestingly, some transcripts accumulated
prior to the peak expression of the protein products, as observed
for fructose 1,6-bisphosphatase, arginine kinase, histone HI, n-
myc downstream gene protein, cyclophilin B and peptidyl-prolyl
cis-trans isomerase.

Discussion

Barnacle larval settlement includes the attainment of compe-
tency by swimming cyprids, attachment to the substratum, and the
metamorphosis of attached cyprids into juveniles, which involve
energy-related, neurotransmission-related, and cell proliferation
and differentiation-related molecules are involved [5]. With a
special focus on larval settlement and subsequent juvenile
development, we identified 80 and 95 proteins that were
significantly up-regulated in the cyprid and the juvenile proteome,
respectively.

Proteins that were significantly up-regulated in cyprids

Energy and metabolism proteins. Twenty-four energy-
related proteins were significantly up-regulated in cyprids,
accounting for approximately 30% of the up-regulated proteins
in the larval stage (shown in Table 1). Fructose-bisphosphate
aldolase, fructose 1,6-bisphosphatase, glucose-6-phosphate isom-
erase, glucosamine-6-phosphate isomerase 1 and mannose-6-
phosphate isomerase are involved in the metabolism of fructose
6-phosphate, which is one of the key products in glycolysis and its
reverse process, gluconeogenesis, for converting a non-carbohy-
drate to glucose [27]. Because cyprids do not feed, they rely on
stored lipids and proteins as primary energy sources to swim,
search for a suitable surface for attachment and metamorphosis
[28]. The up-regulation of fructose 1,6-bisphosphatase in cyprids
suggested that lipids and proteins were converted to glucose via
active gluconeogenesis to support cyprid energy consumption.
Interestingly, the transcript displayed a higher expression level in
stage VI nauplii than in other stages (Figure 3B). Furthermore,
because two of the enzymes catalyzed reactions in both glycolysis
and gluconeogenesis, fructose-bisphosphate aldolase and glucose-
6-phosphate isomerase might play important roles in maintaining
the balance between these two metabolic pathways in cyprids.

In the present study, acetyl-CoA acetyltransferase was signifi-
cantly up-regulated during the cyprid stage, which is consistent to
the results of an early study demonstrating that the acetyl-CoA
acetyltransferase gene was significantly up-regulated during this
stage [29]. Acetyl-CoA carboxylase 2 and acyl-CoA oxidase
participate in the catabolism of lipids through fatty acid oxidation
[30,31]. The product of acetyl-CoA enters citric acid cycle to
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Figure 1. The numbers of overlap proteins among the 4 developmental stages of B. amphitrite (A) and the numbers of differentially
expressed proteins during each developmental stage (B). In the Venn diagram, the numbers in parentheses are the number of quantified
proteins expressed during each stage. Shaded numbers show the number of the common proteins; Nau2: stage Il nauplii, Naué: stage VI nauplii, Cyp:

cyprids, and Juv: juveniles.
doi:10.1371/journal.pone.0088744.g001

produce energy. Acetyl-CoA acetyltransferase is involved in
several metabolic pathways, including ketone body synthesis and
degradation, fatty acid metabolism and pyruvate metabolism.
Cyprids become less active and their settlement rate decreases in
response to treatment with butenolide [32], as acetyl-CoA
acetyltransferase is one of the binding targets of butenolide in
barnacle cyprids and is involved in the inhibition of larval
settlement triggered by butenolide [29]. Taken together, these
results indicated that acetyl-CoA acetyltransferase is a crucial

PLOS ONE | www.plosone.org

enzyme for maintaining barnacle cyprid activity and their
subsequent successful settlement.

In the barnacle proteome, two vitellogenins were identified.
Vitellogenin 1o was only detected in the stage II nauplii (Table
S2); however, its gene expression level was 1,000 times higher in
adults (Figure 3D), suggesting that this maternal vitellogenin lo
might function as a storage protein for embryonic and early larval
development, similar to the general vitellogenin in other species.
Interestingly, unlike vitellogenin 1o, vitellogenin 1p was highly
expressed in stage VI nauplii and cyprids (Table S2), and its
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Figure 2. Percentage distribution of the molecular functions of identified proteins in 4 developmental stages, including stage Il
nauplii (A), stage VI nauplii (B), cyprids (C) and juveniles (D). The top 4 categories were binding, catalytic activity, structural molecule activity
and transporter activity, followed by regulators of the activity of enzymes, receptors, molecular transducers, electron carriers, nucleic acid binding
transcription factors, protein binding transcription factors, antioxidants, translation regulators, metallochaperones, and receptor regulators.

doi:10.1371/journal.pone.0088744.g002

expression pattern was similar to that of the cyprid major protein.
Cyprid major protein is utilized as an energy resource during
cyprid settlment and metamorphosis [33]. It was identified as a
vitellogenin 1B-like protein based on the results of SDS-PAGE and
LC-MS analysis [34]. To better explore the relationship between
the two vitellogenins detected in B. amplutrite, we conducted
phylogenetic reconstruction (Figure 4). Our results revealed the
monophyly of copepod Vitellogenin 1 (BS =100), copepod
Vitellogenin 2 (BS =100) and the sister-relationship between
Vitellogenin 1ot and 18 (BS =81). Furthermore, the last two genes
also formed the sister taxon of copepod Vitellogenin 1 (BS =58).
These relationships suggest that barnacle Vitellogenins have
functions similar to other vitellogenins; however, Vitellogenin 18
has evolved a novel and related function after gene duplication
such that it is highly expressed in stage VI nauplii and cyprids
rather than embryos or adults.

Nervous system-related molecules. Cyprids possess a
more complicated nervous system compared with nauplii and

PLOS ONE | www.plosone.org

adults [35]. Extensive studies have been conducted to investigate
neurotransmitters such as serotonin and prostanoid [36,37]. In the
current study, we detected one neurotransmitter receptor, ie,
acetylcholine receptor, with a high expression level in cyprids. This
receptor binds to the neurotransmitter acetylcholine, which is
involved in barnacle cyprid muscular contraction and cement
gland exocytosis [38]. Elevated levels of acetylcholine lead to a
higher settlement rate of cyprids [38]. The up-regulation of this
receptor in cyprids herein confirmed that acetylcholine has a key
role in barnacle larval settlement.

N-acetylated alpha-linked acidic dipeptidase is responsible for
the cleavage of the neuropeptide N-acetyl-L-aspartate-L-gluta-
mate (NAAG), which is abundant in the central nervous system
and functions as a neurotransmitter [39]. A previous study
revealed the effects of NAAG on the reduction of cAMP levels and
the release of GABA [40,41]. In B. amphitrite, the intracellular
cAMP level affects the patterns of cyprid settlement [42]. As a
neurotransmitter, GABA controls thoracic muscle contraction and
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?nau2, the stage Il nauplii; nau6, the stage VI nauplii; cyp, the cyprids; juv, the juveniles; Ave, average; SD, standard deviation; N.D., not detected, p value was obtained by Student t-test.
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modulates eye vision and antennule activity [43]. Thus, in cyprids,
N-acetylated alpha-linked acidic dipeptidase may be involved in
regulating of cAMP and GABA levels by catabolizing NAAG.

In addition, we identified neuroglian, which belongs to the Ig
superfamily and is essential for the development of neuroglia and
the formation of synapses [44]. Neuroglian gene expression
increased during larval development and peaked in cyprids, but
no significant difference was observed after settlement (Figure 3E).
The expression of its protein product displayed similar trends
during all larval stages but decreased after settlement (Table 1).
Barnacle neuroglian was found to contain 6 Ig superfamily
domains and possess region homologies to cell adhesion molecules
or a neuroglian-like isoform in insects. It has been reported that
neuroglian regulates glial morphogenesis and antennal lobe
development in Drosophila larvae undergoing metamorphosis [45].

Signaling molecules. In the present study, the CUB-serine
protease was found to be uniquely expressed in cyprids, the
antennules of which contain an olfactory receptor neuron-like
structure. The CUB-serine protease was first located in the
olfactory organ and eyestalk of the spiny lobster Panulirus argus,
which suggested that it functions in the olfactory system [46].
When barnacle cyprids were treated with the anti-settlement
compound meleagrin, the protein expression of the CUB-serine
protease was modulated [34]. Up-regulation of the CUB-serine
protease in barnacle cyprids suggested that this protein might be
involved in the cyprid olfactory chemoreception system during the
search for an ideal settlement spot.

Furthermore, in the present study, we identified a putative G
protein-coupled receptor in the barnacle proteome that was
significantly up-regulated during the cyprid stage. In the red
abalone Haliotis refescens, a G protein-coupled receptor and
downstream PKA-dependent cyclic AMP (cAMP) pathway are
crucial participants in the pathway controlling larval settlement
and metamorphosis [47]. In B. amphatrite, it has been suggested that
a G protein-coupled receptor binds to the exogenous metamorphic
cue while the settlement signal is conducted via a PKA
independent pathway [48,49]. Therefore, the G protein-coupled
receptor identified in the current study may play a crucial role in
recognizing of the settlement cue. Interestingly, we did not find
any other cAMP-pathway-related proteins that were differentially
expressed in cyprids, yet 1 cAMP-dependent protein kinase (PKA)
was up-regulated in juveniles. Signal transduction regulated by
cAMP is required for the development of a metazoan [50]. Down-
regulation of PKA in cyprids and up-regulation in juveniles
indicates that this PKA may be important for juvenile develop-
ment rather than for larval settlement.

Structural proteins. 7 structural proteins were differentially
expressed during the cyprid stage. Among them, 5 belonged to the
connectin/titin family, including projectin, twitchin and 3 titins
(Table 1). Titins are giant proteins that contribute to muscle
assembly and contraction, especially in striated muscle [51]. In
barnacle cyprids, striated muscle is distributed in antennules,
thoracopods and their related muscles [52]. Antennules and
thoracopods function differently in cyprids: antennules are the
prime locomotor and sensory apparatus, which helps these
organisms contact with the substratum during the attachment
process. In contrast, thoracopods enable cyprids to move or stay in
the water column [53]. The up-regulation of the proteins involved
in the assembly and contraction of striated muscle supported the
active searching and swimming behavior displayed during
barnacle larval settlement.

Functionally ungrouped proteins. In addition to the
functional groups mentioned above, we also identified many
proteins that belonged to some other functional groups or which
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unknown functions. Opsin 5 showed the most similarity to Limulus
opsin 5, the protein component of visual pigment that is sensitive
to visible light (400-700 nm) [54]. Barnacle cyprids, which have a
pair of stage-specific compound eyes and 1 naupliar eye, display a
phototactic response to light flux. The photoreception in cyprids
has been suggested to be associated with a visual sensory system
needed for larval settlement and distribution [553].

A previous study described the cloning of 6 barnacle cyprids
larva-specific genes (bcs) by screening cDNA libraries [8]. As an
‘early’ gene, bcs-2 was highly expressed in cyprids, and then
decreased dramatically when larval settlement occurred [8]. In the
present study, the protein product of this gene displayed the same
abundance in cyprids but could not be detected in juveniles, which
suggested a specific role for Bes-2 in barnacle cyprids.

Proteins that were significantly up-regulated in juveniles

Energy and metabolism proteins. In juveniles, we identi-
fied 12 proteins that were related to energy and metabolism.
Among these 12 proteins, arginine kinase was significantly up-
regulated during the juvenile stage, whereas its gene expression
was 2-fold higher in stage VI nauplii and cyprids than in the other
3 stages (Figure 3C). These results indicated that the arginine
kinase transcript might be accumulated prior to that of fructose
1,6-bisphosphatase. Arginine kinase often serves as a temporal
energy buffer system, increasing the efficiency of the reversible
phosphorylation of arginine by ATP and of fluctuating energy
requirements in invertebrates [56,57]. In addition, both pyruvate
dehydrogenase and ATP citrate lyase were up-regulated in
juveniles. This up-regulation might ensure the production of
acetyl-CoA for subsequent energy production and fatty acid
synthesis, as the pyruvate dehydrogenase complex catalyzes the
transformation from pyruvate to acetyl-CoA via pyruvate decar-
boxylation. Alternately, this phenomenon might stimulate the
generation of acetyl-CoA from acetate and CoA via the catalysis of
acetyl-CoA synthetase [58]. In contrast, ATP citrate lyase is
involved in the generation of acetyl CoA together with the ATP
hydrolysis [59].

Structural proteins. In the juvenile proteome, 17 structural
proteins were significantly up-regulated. Among them, several
proteins were found to be involved in muscle assembly and
contraction, including 4 connectin/titin family proteins, 2
troponin isoforms, myosin light chain and transgelin (Table 2).
In addition, several actin-binding proteins were detected, such as
vinculin, laminin, talin, B-parvin, and thymosin B. Spectrin is
another actin scaffold protein that helps maintain the shape of the
cell and plays a crucial role in the survival and development of
Drosophila larval [60]. The up-regulation of these cytoskeletal
proteins was not unexpected, as barnacles must undergo drastic
tissue degeneration and organ remodeling during metamorphosis,
such as the reduction of larval muscles, the formation of juvenile
muscles, rotation of the thorax, the development of cirri, and
raising of the body, among others [61].

Proteins related to transcription and translation. Thirteen
proteins related to transcription and translation were significantly up-
regulated during the juvenile stage. By comparison, only 6 proteins
were up-regulated during the cyprid stage. We identified two
heterogeneous nuclear ribonucleoproteins (F and Q) and 1 polyad-
enylate-binding protein, all of which were found to be involved in
gene transcription and post-transcriptional modification by regulating
mRNA metabolism [62,63]. A similar expression pattern was
observed for histone H2ad and histone HI, which are coupled to
DNA replication, and elongation factor 2, which facilitates translation
elongation. Interestingly, the gene expression of histone H2ad did not
show much fluctuation during the larval stage or in juveniles but
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14

Gel-Free Proteomics for Barnacle Larval Settlement

increased dramatically in adults. However, the histone H1 gene was
expressed at least 2.4-times higher in cyprids than during any other
stage (Figures 3F & 3G). These results suggested that histone H1
might be important for juvenile development only and that histone
H2ad might function in both juveniles and adults. In short, the up-
regulation of these proteins indicated that active transcription and
translation might occur in barnacle juveniles.

Proteins related to cell proliferation and differentia-
Proteins involved in cell proliferation and differentiation were
significantly up-regulated in juveniles only. In total, we identified 4
kakapos, one of which was detected only in juveniles. Kakapo, a
cytoskeletal-associated protein expressed in Drosophila tendon cells, may
be important for muscle-dependent tendon cell differentiation [64]. In
barnacles, tendon cells, which are specially organized epithelial cells,
function as a link between muscles and the overlying chitinous
exoskeleton [65]. Up-regulation of these 4 kakapo proteins indicated
that they have crucial functions in cell differentiation, mainly in the
barnacle integument. In addition, N-myc downstream regulated gene
(NDRG) protein was highly abundant in the juvenile proteome. This
protein was down-regulated during the larval stage and increased in
juveniles (Table 2); however, its gene expression peaked in cyprids
(Figure 3H). The NDRG protein family contributes to cell differenti-
ation and proliferation in diverse tissues of various animals [66]. Our
results suggested that NDRG functions in cell differentiation processes
associated with tissue reorganization in barnacle juveniles.

In the current study, we identified one annexin that was
differentially expressed in juveniles. The expression of this protein
was first detected in cyprids and then peaked in juveniles (4.8-fold
higher than in cyprids) (Table 2). Annexins comprise a group of
proteins that bind to phospholipids in a calcium-dependent
manner. Previous studies have shown that the expression patterns
of annexins change significantly when cells undergo proliferation
or differentiation [67]. During silkworm metamorphosis of Bombyx
mori, 20-hydroxyecdysone (20-HE) triggers programmed cell death
to remove larval-specific tissues. Annexin, identified as a 20-HE
inducible gene, was shown to be involved in this process [68]. The
20-HE gene has also been detected in barnacle cyprids, and its
regulation of barnacle larval metamorphosis has been verified
[69]. Although the detailed mechanism by which 20-HE affects
barnacle larval metamorphosis remains unclear, the expression
levels of annexin might be modulated by the tissue degeneration
reorganization that occurs during barnacle larval development
and metamorphosis, which in turn might be regulated by 20-HE.

Shell calcification proteins. Two carbonic anhydrases
related to shell calcification were significantly up-regulated in
juveniles and might be involved in biomineralization in B.
amphitrite, especially oo CA, which was uniquely expressed in
juveniles. Carbonic anhydrase (CA) participates in a variety of
metabolic pathways and is widely distributed in the tissues that are
responsible for the formation of calcium carbonate [70]. It is also
important for the molting cycle in crustaceans [71]. Inhibition of
CA activity prevents shell development and growth of the barnacle
Balanus improvisus, resulting in a failure in the initiation of normal
development [70].

Functionally ungrouped proteins. In the present study, we
discovered that the protein product of the bcs-4 gene was uniquely
expressed in juveniles. Compared with bes-2, bes-4 is a ‘late’ gene
showing weak expression levels in young cyprids that have recently
molted from nauplii, increasing gradually as cyprids age, and
beginning to decline in settled larvae [8]. This time lag between
the expression of gene and protein supports the possibility that
accumulation of the gene is required prior to protein function in
juveniles.

tion.
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Figure 3. Quantitative real-time PCR (qRT-PCR) results of the levels of 13 genes with protein products that were significantly up-
regulated in either cyprids or juveniles (white bars). The corresponding protein expression levels are presented as line charts. The detected
developmental stages included stage Il nauplii (Nau2), stage VI nauplii (Nau6), cyprids (Cyp), young juveniles (Juv) and adults (Adu). Values are
expressed as the mean = SD of 3 different experimental replicates. In the figures, a, b, ¢, d and e in the figures showed significantly different
expression patterns among the samples detected, as determined by one-way ANOVA followed by Tukey’s post-hoc test (P<<0.05).
doi:10.1371/journal.pone.0088744.g003
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Figure 4. Neighbor-joining tree based on vitellogenin protein sequences. Branch lengths represent substitutions per site, and numbers at
each node represent bootstrap values. The sequences used were as follows: Tigriopus japonicas vtg1 (ABZ91537), Tigriopus japonicas vtg2 (ACJ12892),
Paracyclopina nana vtg1 (ADD73551), Paracyclopina nana vtg2 (ADD73552), Lepeophtheirus salmonis vtg1 (ABU41134), Lepeophtheirus salmonis vtg2
(ABU41135), Bombyx mori vtg (BAA06397), Bombus ignites vtg (ACM46019), Pteromalus puparum vtg (ABO70318), Culex quinquefasciatus vtg
(AAV31930), Lethocerus deyrollei vtg (BAG12118), Nilaparvata lugens vtg (AEL22916), Pseudocentrotus depressus vtg (AAK57983), Macrobrachium
rosenbergii vtg (BAB69831), Charybdis feriata vtg (AAU93694), Portunus trituberculatus vtg (AAX94762), Litopenaeus vannamei vtg (AAP76571),
Homarus americanus vtg (ABO09863), Cherax quadricarinatus vtg (AAG17936), Chlamys farreri vtg (ADE05540), Crassostrea gigas vtg (BAC22716),
Anguilla japonica vtg (AAV48826), Gallus gallus vtg (AAA49139.1), and Xenopus laevis vtg (AAA49982).

doi:10.1371/journal.pone.0088744.9g004

In addition to Bsc-4, one cement protein-100k was found to be the expression levels of HSP70 and HSP90 increase in response to
uniquely expressed during the juvenile stage. Its gene transcript cell differentiation and tissue morphogenesis occur in the
was detected in the adult but not in the larval transcriptome [5]. In vetigastropod Haliotis asinina [79].

fact, several proteins have been identified, such as two 20 kDa-
cement proteins characterized in the cyprids of B. amphitrite and Comparison of proteome profiles with other marine
large cement proteins fractionated from the adult cement of invertebrates

Megabalanus rosa (100 kDa, 68 kDa & 52 kDa) [72,73].

Three proteins belonging to the heat shock protein (HSP) family
were significantly up-regulated in juveniles. HSPs were initially
known as stress-responsive proteins and later found to interface
with various developmental pathways, as molecular chaperones
associated with protein folding, assembly and transport [74,75].
HSP70 is developmentally regulated in a diverse range of
organisms, and HSP90 functions as a regulator during metamor-
phosis and the molt cycle of invertebrates [76-78]. Additionally,

In addition to the present study, proteomic approaches have
been applied to study larval attachment and metamorphosis in
several marine invertebrates. Although the species were from
several evolutionarily distant phyla, common changes in the
proteome were observed. First, during attachment and metamor-
phosis, a larva goes through serial body reconstructions, including
the degeneration of larval structures and the subsequent emer-
gence of juvenile tissues. The larvae of the bryozoan Bugula neritina
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and the polychaete Hydrowdes elegans, swim via beating cilia, and all
of these ciliated tissues degenerate during metamorphosis,
resulting in drastic changes in structural proteins, such as actin
and tubulin, during larval settlement [20,80]. Barnacle larvae
swim by beating thoracopods driven by striated muscles. Actin and
tubulin were not differentially expressed in the barnacle
proteomes, but several proteins related to muscle structures and
muscle contraction were up-regulated. In addition to structural
proteins, in the present study, proteins involved in transcription
and translation, such as ribosomal proteins, histones and
elongation factors, were highly expressed during larval settlement
in the bryozoan B. neriina [20], the polychaete Pseudopolydara
vextllosa [81] and so as in B. amphitrite. These findings indicated that
transcription and translation level were active when larvae
underwent metamorphosis.

Larval settlement is an extremely energy-consuming process,
especially for the whole larval settlement process. Proteins involved
in the citric acid cycle, glycolysis, and fatty acid metabolism have
been found to be up-regulated during the competent larval stage of
B. neritina, P. vexillosa and the polychaete Capitella sp. 1 [20,80,81].
Similarly, these proteins were found to be up-regulated in barnacle
cyprids herein. In addition, some proteins related to energy and
metabolism were also up-regulated in barnacle juveniles, as
described for P. vexillosa [81].These findings indicated that these
organisms might require different energy metabolism pathways for
larval competency and metamorphosis. Interestingly, vitellogenins
have been described in competent larvae of B. neritina, B. anphitrite
and Capitalla [20,82], indicating that the non-feeding larvae of
different phyla all consume vitellogenins as an energy source.

Carbonic anhydrase was detected in juveniles of both B. neritina
and B. anplutrite, which require a calcified body wall or a calcareous
shell [83]. This result indicated that carbonic anhydrase is
important for the calcification of marine invertebrates.

Conclusions

This study investigated the regulation of protein expression
patterns in response to larval development and settlement of the
barnacle B. amphitrite. 'The utilization of label-free quantitative
proteomics allowed us to conduct a comparative proteomics
analysis among different developmental stages and to identify
protein candidates that might be involved in barnacle larval
settlement. Functional analysis of 4 proteins revealed their
significant up-regulation of proteins involved in energy and
metabolism, the nervous system, and signaling transduction in
the cyprid stage. In addition, proteins related to cytoskeletal
remodeling, translation and transcription, cell proliferation and
differentiation, and biomineralization were up-regulated in the
juvenile proteome. Notably, the expression patterns of some
proteins, such as neuroglian, failed axon connection protein, and
lipoprotein receptor, displayed the same trends as their transcripts;
In contrast, the expression of fructose-1, 6-bisphosphatase,
cyclophilin B, NDRG, and histone H1 transcripts occurred 1

References

1. Qian PY (1999) Larval settlement of polychaetes. Hydrobiologia 402: 239-253.

2. Underwood AJ, Fairweather PG (1989) Supply-side ecology and benthic marine
assemblages. Trends in Ecology & Evolution 4: 16-20.

3. Pechenik JA, Cochrane DE, Li W, West ET, Pires A, et al. (2007) Nitric oxide
inhibits metamorphosis in larvae of Crepidula fornicata, the slippershell snail. Biol
Bull 213: 160-171.

4. Bishop CD, Bates WR, Brandhorst BP (2001) Regulation of metamorphosis in
ascidians involves NO/cGMP signaling and HSP90. J Exp Zool 289: 374-384.

5. Chen Z-F, Matsumura K, Wang H, Arellano SM, Yan X, et al. (2011) Toward
an understanding of the molecular mechanisms of barnacle larval settlement: a
comparative transcriptomic approach. PLoS One 6: ¢22913.

PLOS ONE | www.plosone.org

17

Gel-Free Proteomics for Barnacle Larval Settlement

developmental stage earlier than their protein products. The
expression levels of some other proteins, such as fructose-
biphosphate aldolase, were not associated with their mRNA
expression. These results provide information about the molecular
activities related to the changes in morphology, physiology,
structure, and function that occur during barnacle larval
settlement and juvenile development. Additional functional assays
and characterization of protein candidates, for instance, nervous
system-related proteins, signaling molecules, shell calcification
proteins and heat shock proteins, could help identify more detailed
molecular mechanisms underlying barnacle larval settlement.

Supporting Information

Table S1 Primers for genes under real-time PCR assay.

(XLSX)

Table S2 Total proteins identified and quantified from

each LC-MS experiments.
(XLSX)

Table S3 Significantly up-regulated proteins in stage II
nauplii.

(XLSX)

Table $4 Significantly up-regulated proteins in stage VI
nauplii.

(XLSX)

Table S5 Significantly down-regulated proteins in stage
II nauplii.

(XLSX)

Table S6 Significantly down-regulated proteins in stage
VI nauplii.
(XLSX)

Table S7 Significantly down-regulated proteins in cy-
prids.
(XLSX)

Table S8 Significantly down-regulated proteins in juve-
niles.
(XLSX)

Acknowledgments

We thank Gen Zhang for his help with the sample collection and larval
cultures; Dr. Kai He, Dr. Jin Sun and Ms. Xing-Cheng Yan for their
technical advice and constructive discussions.

Author Contributions

Conceived and designed the experiments: Z-FC HZ. Performed the
experiments: Z-FC HZ HW. Analyzed the data: Z-FC HZ HW KM.
Contributed reagents/materials/analysis tools: Z-FC HZ TR P-YQ), Wrote
the paper: Z-FC HZ HW KM YHW P-YQ.

6. Bernard FJ, Lane CE (1962) Early settlement and metamorphosis of the
barnacle Balanus amphitrite niveus. J Morphol 110: 19-39.

7. Heyland A, Moroz LL (2006) Signaling mechanisms underlying metamorphic
transitions in animals. Integr Comp Biol 46: 743-759.

8. Okazaki Y, Shizuri Y (2000) Structures of six cDNAs expressed specifically at
cypris larvae of barnacles, Balanus amphitrite. Gene 250: 127-135.

9. Li H, Thiyagarajan V, Qian P-Y (2010) Response of cyprid specific genes to
natural settlement cues in the barnacle Balanus (= Amphibalanus) amphitrite. ] Exp
Mar Biol Ecol 389: 45-52.

February 2014 | Volume 9 | Issue 2 | 88744



21.

22.

23.

24.

27.

28.

30.

31.

32.

34.

36.

37.

. Thiyagarajan V, Qian PY (2008) Proteomic analysis of larvae during

development, attachment, and metamorphosis in the fouling barnacle, Balanus
amphitrite. Proteomics 8: 3164-3172.

. Zhang Y, Xu Y, Arellano SM, Xiao K, Qian P-Y (2010) Comparative proteome

and phosphoproteome analyses during cyprid development of the barnacle
Balanus (= Amphibalanus) amphitrite. J Proteome Res 9: 3146-3157.

. Zhang H, Lin Q, Ponnusamy S, Kothandaraman N, Lim TK, et al. (2007)

Differential recovery of membrane proteins after extraction by aqueous
methanol and trifluoroethanol. Proteomics 7: 1654-1663.

. Wang H, Zhang H, Wong YH, Voolstra C, Ravasi T, et al. (2010) Rapid

transcriptome and proteome profiling of a non-model marine invertebrate,
Bugula neritina. Proteomics 10: 2972-2981.

. Meng W, Zhang H, Guo T, Pandey C, Zhu Y, et al. (2008) One-step procedure

for peptide extraction from in-gel digestion sample for mass spectrometric
analysis. Anal Chem 80: 9797-9805.

. Zhang H, Zhao C, Li X, Zhu Y, Gan CS, et al. (2010) Study of monocyte

membrane proteome perturbation during lipopolysaccharide-induced tolerance
using iTRAQ-based quantitative proteomic approach. Proteomics 10: 2780
2789.

. Keller A, Nesvizhskii Al, Kolker E, Aebersold R (2002) Empirical statistical

model to estimate the accuracy of peptide identifications made by MS/MS and
database search. Anal Chem 74: 5383-5392.

. Nesvizhskii Al, Keller A, Kolker E, Acbersold R (2003) A statistical model for

identifying proteins by tandem mass spectrometry. Anal Chem 75: 4646-4658.

. Lu P, Vogel C, Wang R, Yao X, Marcotte EM (2007) Absolute protein

expression profiling estimates the relative contributions of transcriptional and
translational regulation. Nat Biotechnol 25: 117-124.

. Braisted JC, Kuntumalla S, Vogel C, Marcotte EM, Rodrigues AR, et al. (2008)

The APEX quantitative proteomics tool: generating protein quantitation
estimates from LC-MS/MS proteomics results. Bmc Bioinformatics 9: 529.

. Zhang H, Wong YH, Wang H, Chen Z, Arellano SM, et al. (2010) Quantitative

proteomics identify molecular targets that are crucial in larval settlement and
metamorphosis of Bugula neritina. J Proteome Res 10: 349-360.

Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy
and high throughput. Nucleic Acids Research 32: 1792-1797.

Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science
Gateway for inference of large phylogenetic trees. Proceedings of the Gateway
Computing Environments Workshop (GCE), New Orleans LA 14 Nov. 2010:
pp- 1-8.

Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for
biologist programmers. Methods Mol Biol 132: 365-386.

De Gregoris TB, Borra M, Biffali E, Bekel T, Burgess JG, et al. (2009)
Construction of an adult barnacle (Balanus amphitrite) cDNA library and selection
of reference genes for quantitative RT-PCR studies. BMC Mol Biol 10: 62.

. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using

real-time quantitative PCR and the 2~ 22" method. Methods 25: 402-408.

5. Wang H, Yin G, Yu C, Wang Y, Sun Z (2013) Inhibitory effect of sanguinarine

on PKC-CPI-17 pathway mediating by muscarinic receptors in dispersed
intestinal smooth muscle cells. Res Vet Sci 95: 1125-1133.

Berg JM, Tymoczko JL, Stryer L (2002) Chapter 16, Glycolysis and
Gluconeogenesis. Biochemistry. 5th edition. New York: W H Freeman.

Lucas MI, Walker G, Holland DL, Crisp DJ (1979) An energy budget for the
free-swimming and metamorphosing larvae of Balanus balanoides (Crustacea:

Cirripedia). Mar Biol 55: 221-229.

. Zhang Y-F, Zhang H, He L, Liu C, Xu Y, et al. (2013) Butenolide inhibits

marine fouling by altering the primary metabolism of three target organisms.
ACS Chem Biol 7: 1049-1058.

Bianchi A, Evans JL, Iverson AJ, Nordlund A-C, Watts TD, et al. (1990)
Identification of an isozymic form of acetyl-CoA carboxylase. J Biol Chem 265:
1502-1509.

Footitt S, Cornah JE, Pracharoenwattana I, Bryce JH, Smith SM (2007) The
Arabidopsis 3-ketoacyl-CoA thiolase-2 (kat2-1) mutant exhibits increased flowering but
reduced reproductive success. J Exp Bot 58: 2959-2968.

Zhang Y-F, Wang G-C, Ying X, Sougrat R, Qian P-Y (2011) The effect of
butenolide on behavioral and morphological changes in two marine fouling
species, the barnacle Balanus amphitrite and the bryozoan Bugula neritina.
Biofouling 27: 467-475.

Shimizu K, Satuito CG, Saikawa W, Fusetani N (1996) Larval storage protein of
the barnacle, Balanus amphitrite: biochemical and immunological similarities to
vitellin. J Exp Zool 276: 87-94.

Han Z, Sun J, Zhang Y, He F, Xu Y, et al. (2013) iTRAQ-based proteomic
profiling of the barnacle Balanus amphitrite in response to the antifouling
compound meleagrin. J Proteome Res 12: 2090-2100.

. Harrison DCS (1999) Morphology of the nervous system of the barnacle cypris

larva (Balanus amphitrite Darwin) revealed by light and electron microscopy. Biol
Bull 197: 144.

Yamamoto H, Tachibana A, Kawaii S, Matsumura K, Fusetani N (1996)
Serotonin involvement in larval settlement fo the barnacle, Balanus amphitrite.
J Exp Zool 275: 339-345.

Khnight J, Rowley AF, Yamazaki M, Clare AS (2000) Eicosanoids are modulators
of larval settlement in the barnacle, Balanus amphitrite. ] Mar Biol Asso UK 80:
113-117.

. Faimali M, Falugi C, Gallus L, Piazza V, Tagliafierro G (2003) Involvement of

acetyl choline in settlement of Balanus amphitrite. Biofouling 19: 213-220.

PLOS ONE | www.plosone.org

39.

40.

41.

42,

43.

44.

46.

47.

48.

49.

54.

&
o

56.

57.

58.

59.

60.

61.

62.

63.

64.

66.

67.

68.

Gel-Free Proteomics for Barnacle Larval Settlement

Neale JH, Bzdega T, Wroblewska (2002) N-acetylaspartylglutamate.
J Neurochem 75: 443-452.

Wroblewska B, Wroblewski JT, Saab OH, Neale JH (1993) N-acetylaspartyl-
glutamate inhibits forskolin-stimulated cyclic amp levels via a metabotropic
glutamate receptor in cultured cerebellar granule cells. ] Neurochem 61: 943—
948.

Zhao J, Ramadan E, Cappicllo M, Wroblewska B, Bzdega T, et al. (2001)
NAAG inhibits KCl-induced [*H]-GABA relcase via mGluR3, cAMP, PKA and
L-type calcium conductance. Eur J Neurosci 13: 340-346.

Clare A, Thomas R, Rittschof D (1995) Evidence for the involvement of cyclic
AMP in the pheromonal modulation of barnacle settlement. J Exp Biol 198:
655-664.

Gallus L, Ferrando S, Gambardella C, Diaspro A, Bianchini P, et al. (2009) The
GABAergic-like system in the cyprid of Balanus amphitrite (= Amphibalanus
amphitrite) (Cirripedia, Crustacea). Biofouling 26: 155-165.

Godenschwege TA, Kristiansen LV, Uthaman SB, Hortsch M, Murphey RK
(2006) A conserved role for Drosophila neuroglian and human L1-Cam in central-
synapse formation. Curr Biol 16: 12-23.

. Chen W, Hing H (2008) The L1-CAM, Neuroglian, functions in glial cells for

Drosophila antennal lobe development. Dev Neurobiol 68: 1029-1045.
doi:10.1002/dneu.20644.

Levine MZ, Harrison PJH, Walthall WW, Tai PC, Derby CD (2001) A CUB-
serine protease in the olfactory organ of the spiny lobster Panulirus argus.
J Neurobiol 49: 277-302.

Baxter GT, Morse DE (1992) Cilia from abalone larvae contain a receptor-
dependent G-protein transduction system similar to that in mammals. Biol Bull
183: 147-154.

Clare AS (1996) Signal transduction in barnacle settlement: calcium re-visited.
Biofouling 10: 141-159.

Yamamoto H, Tachibana A, Matsumura K, Fusetani N (1995) Protein kinase ¢
(PKC) signal transduction system involved in larval metamorphosis of the
barnacle, Balanus amphitrite. Zool Sci 12: 391-396.

. Lane ME, Kalderon D (1993) Genetic investigation of cAMP-dependent protein

kinase function in Drosophila development. Genes Dev 7: 1229-1243.

. Labeit S, Kolmerer B (1995) Titins: Giant Proteins in Charge of Muscle

Ultrastructure and Elasticity. Science 270: 293-296.

. Lagersson NC (2002) The ultrastructure of two types of muscle fibre cells in the

cyprid of Balanus amphitrite (Crustacea: Cirripedia). ] Mar Biol Ass 82: 573-578.
Lagersson NC, Hoeg JT (2002) Settlement behavior and antennulary
biomechanics in cypris larvae of Balanus amphitrite (Crustacea: Thecostraca:
Cirripedia). Mar Biol 141: 513-526.

Katti C, Kempler K, Porter ML, Legg A, Gonzalez R, et al. (2010) Opsin co-
expression in Limulus photoreceptors: differential regulation by light and a

circadian clock. J Exp Biol 213: 2589-2601.

. Anil AC, Khandeparker L, Desai DV, Baragi LV, Gaonkar CA (2010) Larval

development, sensory mechanisms and physiological adaptations in acorn
barnacles with special reference to Balanus amphitrite. ] Exp Mar Biol Ecol 392:
89-98.

Schneider A, Wiesner R]J, Grieshaber MK (1989) On the role of arginine kinase
in insect flight muscle. Insect Biochemistry 19: 471-480.

Chamberlin M (1997) Mitochondrial arginine kinase in the midgut of the
tobacco hornworm (Manduca sexta). ] Exp Biol 200: 2789-2796.

Chou TC, Lipmann F (1952) Separation of acetyl transfer enzymes in pigeon
liver extract. ] Biol Chem 196: 89-103.

Srere PA, Lipmann F (1953) An enzymatic reaction between citrate, adenosine
triphosphate and coenzyme Al. J Am Chem Soc 75: 4874-4874.

Lee JK, Coyne RS, Dubreuil RR, Goldstein LS, Branton D (1993) Cell shape
and interaction defects in alpha-spectrin mutants of Drosophila melanogaster. J Cell
Biol 123: 1797-1809.

Maruzzo D, Aldred N, Clare AS, Hoeg JT (2012) Metamorphosis in the
cirripede crustacean Balanus amphitrite. PLoS One 5: €37408.

Dreyfuss G, Swanson MS, Pifiol-Roma S (1988) Heterogeneous nuclear
ribonucleoprotein particles and the pathway of mRNA formation. Trends
Biochem Sci 13: 86-91.

Goss DJ, Kleiman FE (2012) Poly(A) binding proteins: are they all created equal?
WIREs RNA 4: 167-179.

Strumpf D, Volk T (1998) Kakapo, a novel cytoskeletal-associated protein is
essential for the restricted localization of the neuregulin-like factor, Vein, at the
muscle—tendon junction site. J Cell Biol 143: 1259-1270.

5. Koulish S (1973) Microtubules and muscle attachment in the integument of the

balanidae. ] Morphol 140: 1-13.

Melotte V, Qu X, Ongenaert M, van Criekinge W, de Bruine AP, et al. (2010)
The N-myc downstream regulated gene (NDRG) family: diverse functions,
multiple applications. The FASEB Journal 24: 4153-4166.

Schlaepfer DD, Haigler HT (1990) Expression of annexins as a function of
cellular growth state. J Cell Biol 111: 229-238.

Kaneko Y, Takaki K, Iwami M, Sakurai S (2006) Developmental profile of
annexin IX and its possible role in programmed cell death of the Bombyx mori
anterior silk gland. Zool Sci 23: 533-542.

59. Yamamoto H, Kawaii S, Yoshimura E, Tachibana A, Fusetani N (1997) 20-

Hydroxyecdysone regulates larval metamorphosis of the barnacle, Balanus
amphitrite. Z.ool Sci 14: 887-892.

. Costlow JD (1959) Effect of carbonic anhydrase inhibitors on shell development

and growth of Balanus improvisus Darwin. Physiol Zool 3: 177-184.

February 2014 | Volume 9 | Issue 2 | 88744



76.

77.

. Giraud M-M (1981) Carbonic anhydrase activity in the integument of the crab

Carcinus maenas during the intermolt cycle. Comp Biochem Physiol A Mol Integr
Physiol 69: 381-387.

. He L-S, Zhang G, Qian P-Y (2013) Characterization of two 20kDa-cement

protein (cp20k) homologues in Amphibalanus amphitrite. PLoS One 8: ¢64130.

. Kamino K, Inoue K, Maruyama T, Takamatsu N, Harayama S, et al. (2000)

Barnacle cement proteins. Importance of disulfide bonds in their insolubility.
J Biol Chem 275: 27360-27365.

. Ritossa I (1996) Discovery of the heat shock response. Cell Stress Chapersones

1: 97-98.

. Heikkila JJ, Ohan N, Tam Y, Ali A (1997) Heat shock protein gene expression

during Xenopus development. Cell Mol Life Sci 53: 114-121.

Mahroof R, Yan Zhu K, Neven L, Subramanyam B, Bai J (2005) Expression
patterns of three heat shock protein 70 genes among developmental stages of the
red flour beetle, Tribolium castaneum (Coleoptera: Tenebrionidae). Comp Biochem
Physiol A Mol Integr Physiol 141: 247-256.

Bishop CD, Brandhorst BP (2001) No/Cgmp signaling and Hsp90 activity
represses metamorphosis in the sea urchin Lytechinus Pictus. Biol Bull 201: 394
404.

PLOS ONE | www.plosone.org

19

78.

79.

80.

81.

82.

Gel-Free Proteomics for Barnacle Larval Settlement

Arbeitman MN, Hogness DS (2000) Molecular chaperones activate the
Drosophila ecdysone receptor, an RXR heterodimer. Cell 101: 67-77.

Gunter H, Degnan B (2007) Developmental expression of Hsp90, Hsp70 and
HSF during morphogenesis in the vetigastropod Haliotis asinina. Dev Genes Evol
217: 603-612.

Zhang Y, Sun J, Xiao K, Arellano SM, Thiyagarajan V, et al. (2010) 2D gel-
based multiplexed proteomic analysis during larval development and metamor-
phosis of the biofouling polychaete tubeworm Hydroides elegans. J Proteome Res 9:
4851-4860.

Chandramouli KH, Sun J, Mok FS, Liu L, Qiu J-W, et al. (2013) Transcriptome
and quantitative proteome analysis reveals molecular processes associated with
larval metamorphosis in the polychaete Pseudopolydora vexillosa. J Proteome Res
12: 1344-1358.

Chandramouli KH, Soo L, Qian P-Y (2011) Differential expression of proteins
and phosphoproteins during larval metamorphosis of the polychaete Capitella sp.
1. Proteome Sci 9: 51.

. Woollacott RM, Zimmer RL (1971) Attachment and metamorphosis of the

cheilo-ctenostome bryozoan Bugula neritina (Linné). J] Morphol 134: 351-382.

February 2014 | Volume 9 | Issue 2 | 88744



