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Morphological basis for the evolution of
acoustic diversity in oscine songbirds

Tobias Riede and Franz Goller

Department of Biology, University of Utah, Salt Lake City, Utah 257 S 1400 E, USA

Acoustic properties of vocalizations arise through the interplay of neural con-

trol with the morphology and biomechanics of the sound generating organ,

but in songbirds it is assumed that the main driver of acoustic diversity is vari-

ation in telencephalic motor control. Here we show, however, that variation in

the composition of the vibrating tissues, the labia, underlies diversity in one

acoustic parameter, fundamental frequency (F0) range. Lateral asymmetry

and arrangement of fibrous proteins in the labia into distinct layers is corre-

lated with expanded F0 range of species. The composition of the vibrating

tissues thus represents an important morphological foundation for the gener-

ation of a broad F0 range, indicating that morphological specialization lays the

foundation for the evolution of complex acoustic repertoires.
1. Introduction
The relationship between structure and function plays an important role in the

evolution of behaviour. For vocal behaviour, the structure of the vibrating tissue

is critical for determining a range of acoustic features [1–3], but this relationship

has only been investigated in detail in humans [4,5]. One of the most important

acoustic features of animal vocalizations is fundamental frequency (F0). The

large range of F0 across species or within the vocal repertoire of individual

species may carry important information about the sender and therefore play

a major signalling role in the context of natural and sexual selection [6]. How-

ever, little specific information is available about the various factors involved in

variation of frequency range both within and between species.

In avian interspecifc comparisons, F0 is correlated with body size, but a sub-

stantial portion of the variation is not explained by this relationship [7]. However,

explaining the F0 range is important because it defines the boundaries for sound

frequency of a vocal repertoire and thus poses limits on spectral diversity. Because

vocal diversification has played an important role in speciation and the ecologi-

cal success of birds, it is important to gain a thorough understanding of how

frequency range is determined in birds and thus contributes to these processes.

Airflow-driven vibration of tissue is the main mechanism of sound produc-

tion in birds and mammals, including humans. The vibrating tissues of the

mammalian larynx and the avian syrinx are composed of extracellular matrix

[8,9]. Its composition of collagen and elastin fibres and hyaluronan ensures

that the tissue can engage in self-sustained vibrations and, at the same time,

can withstand the physical forces of vibration [10]. The mechanical properties

of these vibrating tissues influence the oscillation frequency and, thus, F0 of

the generated sound [11]. The tension of the vibrating tissue can be adjusted

by muscle action and is therefore controlled by the vocal motor areas in the

brain [12,13]. However, neural control can only adjust F0 within the physical

limits, which are determined by the morphology and composition of the vibrat-

ing tissue. Previous work in songbirds [14] and mammals [15] showed that

mechanical differences of labia are associated with vocal differences between

species. In vivo experiments demonstrated the role of labia in F0 determina-

tion and the role of muscles in labia adjustment [16–19], and computational

modelling illustrated how muscle control and labial dynamics contribute to

generate diverse features of sound [20]. Despite this progress, we still lack a

thorough understanding of how morphology and neural control interact

during the evolution of acoustic signals [21,22].
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To address this gap in our knowledge, a more detailed

understanding of the extracellular matrix composition of the syr-

ingeal labia is required [7]. The goal of this study was therefore to

investigate the relationship between microstructure of the vocal

organ and F0 in oscine songbirds. The oscine syrinx contains two

independently controlled sound sources whose F0 ranges do not

overlap fully [16–20]. Oscines acquire song, the most complex

vocalizations of their acoustic repertoire, through vocal learning.

It is thought that the forebrain control circuits associated with

learned vocal behaviour enabled the evolution of increased

acoustic diversity [23]. Neural control of the dual sound source

undoubtedly plays a major role in acoustic versatility. However,

the morphology of these two sound sources must present a

mechanical basis for generating diverse sound features. Mor-

phological complexity was investigated in two complementary

ways to address the question of how design of the vibrating

tissue (labia) is related to the vocal repertoire of a species. First,

we expect that an increased morphological asymmetry between

the two sound sources is associated with a large F0 range. In a

second approach, we investigate the morphology of the labia,

because data from human vocal folds indicate that the evolution

of a layered structure increases versatility of vocal folds as a

sound source [8]. Acoustic energy conversion is tightly linked

to how labia oscillate inside the syrinx [19]. We therefore

expect that species with a wider frequency range demonstrate

more complex labial morphology.
2. Material and methods
(a) Study animals
Eight songbird species were selected to maximize variation in body

size, and to maximize variation in song F0. All sound recordings

were made in the same populations from which specimens for mor-

phological investigations were collected. Zebra finches (Taeniopygia
guttata) were bred at the University of Utah. Other species (see elec-

tronic supplementary material, table S1) were captured in the

Salt Lake Area, Utah, USA between March and July 2008–2011.

Data from zebra finches, white-crowned sparrows (Zonotrichia leu-
cophrys) and European starlings (Sturnus vulgaris) were in part

collected for previous studies [9,24,25]. The birds were deeply

anaesthetized with a Ketamine/Xylazine mixture (Sigma-Aldrich

K-113; 2 ml g21 body mass) and perfused intracardially with PBS.

Only males were used in this study.

(b) Tissue preparation
The syrinx was excised and fixed for 3 days in 10% neutral-

buffered formalin, decalcified for 8 h, processed and embedded

for coronal sections in paraffin [9,23]. Adjacent 5 mm sections

were exposed to one of the following stains: haemotoxylin and

eosin (H&E); elastica van Gieson stain (EVG); Masson’s trichrome

stain (TRI). Micrographs were taken with a digital camera

(AxioCam HRc, Carl Zeiss, Germany) combined with an Axioplan

Zeiss microscope (Axioplan, Carl Zeiss, Germany) and computer

software (AXIOVISION v. 40, v. 4.6.3.0., Carl Zeiss, Germany).

(c) Labial morphology
Labial composition and morphology of eight songbird species

(see electronic supplementary material, table S1) were examined

with established histological techniques. Individual fibrous

protein components were visualized and quantified. Based on

stained tissue, we constructed a schematic cross-section through

the medial labium, showing the abundance of collagen and elas-

tin fibres as well as the most prominent orientation of the two
fibre types (figure 1a,b). Five basic extracellular matrix designs

were found and described as layers (layer numbers are arbitrary;

electronic supplementary material, table S2). Percentages for

fibrillar proteins refer to positively stained areas in EVG and

TRI stains, respectively, analysed with IMAGEJ (1.41o; NIH, USA):

layer 1: less than 10% collagen, more than 60% elastic fibres, elas-

tic fibres in cranio-caudal orientation;

layer 2: less than 5% elastic fibres, more than 60% collagen fibres,

collagen fibres randomly oriented;

layer 3: less than 5% elastic fibres, more than 60% collagen fibres,

collagen fibres dorsoventrally oriented;

layer 4: less than 5% elastic fibres, more than 60% collagen fibres,

collagen fibres cranio-caudally oriented; and

layer 5: less than 5% elastic fibres, 30–60% collagen fibres, colla-

gen fibres randomly oriented.

Labial cross-sectional areas were measured at five different

levels of equal distance along the ventral to dorsal axis. The

volume of labia was estimated from labial cross-sectional area

and total length of labia using equation (2.1):

Volðmm3Þ ¼
X5

i¼1

ðareaðmm2Þ � lengthðmmÞÞ; ð2:1Þ

where Vol is the volume of a labium, estimated from the sum of

products of cross-sectional areas and the distance (length)

between two sections of the syrinx.

(d) Analysis of the vocal repertoire
F0 was quantified every 20 ms for songs and calls using a pitch-

tracking module (PRAAT software, v. 5.2.12). Results were

visually confirmed (figure 2a,b). The F0 data were represented

as histograms (0–9 kHz, 100 Hz resolution). Mean F0 (F0-mean)

was calculated by averaging all 100-Hz frequency bins in the

histogram, thus weighting different frequency bins according to

the rate of their occurrence. The F0 limits within the song of a

species were calculated in two ways. First, F0-range-A was calcu-

lated as the sum of the 100-Hz-bins. Second, F0-range-B was

estimated from the F0 limits by calculating the difference

between the minimum and maximum F0. While F0-range-B con-

siders the upper and lower boundaries within which sound is

produced, F0-range-A captures the actually used spectral range

covered by a vocal organ.

For each species, one song from between three to six individuals

was submitted to F0 tracking. The sample size of audio recordings

was limited to these relatively small numbers for two reasons. First,

the relationship between syrinx morphology and song F0 must

be explored with samples from the same population to account

for potential differences in the learned aspects of song. Second,

averaging across many individuals can obstruct view of certain

characteristics of a vocal repertoire. For example, in a species

whose song is composed of two non-overlapping distinct frequen-

cies within the total range, the gap between these frequencies will

disappear if individuals vary in the respective distinct frequencies.
3. Results
Marked differences between species were found in the distri-

bution and orientation of individual fibre components within

the labia (figure 1). For each species, we categorized and

quantified the number of different layers according to fibre

orientation and density (figure 1b) and established a sche-

matic representation (figure 1c). For example, the labia of

golden-crowned kinglets and white-crowned sparrows dis-

play a deep layer with prominent presence of elastic fibres

(layer 1), followed by a layer of loose connective tissue with
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lower elastin content (layer 2). The zebra finch labia consist of

a homogeneous single layer (layer 2), while the labia in ruby-

crowned kinglets, European starlings and yellow-headed

blackbirds exhibit multiple layers (figure 1c). Although the

left medial labia tend to be larger than the right medial labia,

the layer structure was identical on the two sides with one

exception. In European starlings, we found four layers on the

left side (layers 2, 3, 4, 5) and two layers (layers 4, 5) in

the much smaller labia of the right syrinx.

We estimated labial size by measuring labial cross-sectional

area in serial sections of the syrinx from anterior to posterior to

assess asymmetry between the left and right sound sources for

each species. In all investigated species, the area of the left labia

was at least somewhat larger than that of the right labia, but

this lateral asymmetry varied strongly between species,

especially for the medial labia. The difference in medial labia

ranged from 0% in the zebra finch to a more than fourfold
larger left medial labium in the European starling (electronic

supplementary material, table S3).

F0 for song and calls are plotted as histograms in figure 2.

The F0-range-B of different species varies substantially. For

example, zebra finch song spans the range from 0.5 to 6 kHz

with the vast majority of sounds below 3 kHz, whereas Euro-

pean starlings span a range from 0.25 to 9 kHz. An interesting

difference in F0 limits occurs in the two kinglet species. Song

in the ruby-crowned kinglet consists of many syllables with

much lower F0 than is found in the song of the golden-crowned

kinglet. Furthermore, ruby-crowned kinglets generate a call

with F0 well below 1 kHz, which is highly surprising for such

a small bird.

We then explored these two datasets for correlations

between morphology, F0 and F0 limits. We tested whether

body mass can explain the F0-range-A, F0-range-B or F0-mean
of songs in these eight species. Body size should be a good
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predictor for F0 since labial size scaled with body size

(figure 3a), and absolute size of the labia explained F0-mean

(figure 3b). However, body mass differences explain only

35% of the variance in F0-mean (figure 3c), which falls within

the range of earlier analyses of larger datasets [26,27]. More

importantly, body mass variations appear neither related to

the F0-range-A calculated by weighing all frequencies in the

song repertoire of a species, nor the F0-range-B (figure 3d,e).

Two features of the labia show a significant correlation with

F0-range-A. First, the degree of asymmetry of labial cross-

sectional area at mid-organ level is positively correlated with

the F0-range-A (figure 3f,g). This relationship is particularly

strong for the medial labia, which show more variation in lateral

asymmetry than the lateral labia in these eight species (see elec-

tronic supplementary material, table S4). For F0-range-B only

the relationship for the medial labia was significant (see elec-

tronic supplementary material, table S4). Asymmetry should

lead to different F0 limits of the two sound generators with

minimal overlap and, thus, expand the combined F0 range

that can be produced by the dual sound source. This inter-

pretation is supported by physiological data, which show that

the two sound generators contribute different frequency

ranges in a number of species [16–18]. The European starling,
with the largest asymmetry in this dataset, also generates the

largest F0-range.

Second, the number of different layers within the labia is

positively correlated with the F0-range-A but not F0-range-B
(figure 3h and electronic supplementary material, table S4).

F0-mean is not significantly correlated with labial asymmetry

or the number of layers (see electronic supplementary material,

table S4). A layer structure provides a morphological basis for

anisotropic behaviour. Wave propagation in the soft tissue of

the labia is one essential component of self-sustained vibratory

behaviour during sound generation [2,20], and these waves

propagate differently in the soft material depending on the

direction, magnitude and rate of deformation. Effectively, the

inhomogeneous structure can enlarge the frequency range or

support specific frequency ranges by the potential for engaging

different portions of the tissue into vibration or beneficially

influence the vibration characteristics [4].

4. Discussion
The combination of two morphological adaptations in the labia

of songbirds lays the foundation for extending F0-range and for

generating the potential to produce all frequencies within this
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range and shifting F0-mean presumably with the potential

of greater specialization. First, the asymmetry in labial size

defines the lower and upper frequency boundaries as well as

the wider range of actually produced frequencies within these

boundaries. Second, the inhomogeneous composition of the

labia (layer structure) permits production of all frequencies

throughout the range, and thus also the potential for conti-

nuous frequency modulation across the entire range. These

specializations of the extracellular matrix of the vibrating

tissue are therefore essential for the production of acoustic diver-

sity and lay the foundation for neural control of sophisticated

vocal repertoires.

The relationship between labial composition and used fre-

quency range (F0-range-A) is stronger than that found for the

simple lower and upper boundaries of the frequency range

(F0-range-B). These results indicate that the mechanism for con-

tinuous frequency modulation and generation of frequencies

within a broad range rests on the degree of inhomogeneity

within the labial extracellular matrix. The data also show that

quantifying used frequencies within the lower and upper
frequency boundaries is a meaningful and functionally

relevant acoustic descriptor of a vocal repertoire.

It remains to be tested how variability in labia design contrib-

utes to acoustic variability within species, particularly between

singing males. Studies in songbirds demonstrate mixed results

[28–30] for the relationship between body size and song fre-

quency (‘dominant’ or ‘peak’ frequency was measured as

frequency with the highest amplitude in spectrum). A lack of a

close relationship could be explained by an uncoupling between

labial size and F0, which might be more dependent on

species-specific labia design. Available data do not permit

predictions on the relationship between F0 and body size

within species. Although the labia show species-specific charac-

teristics, individual-specific factors (e.g. hormones, stress,

nutrition and hydration) are likely to influence their morphology

and mechanical properties and may do so more readily than

changes in body mass or skeletal body size.

The nonlinear relationship between stress and strain (figure 4)

presents a complex target for frequency control for two main

reasons. First, the active movements required for regulating
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tissue stress are different for different frequencies, and these

movements may involve other biomechanical nonlinearities

[7,31,32]. Second, relaxation of the tissue requires adjustment in

motor control of sustained constant frequency vibrations, and

relaxation is not uniform across the range of experienced strains

(more detailed explanation in figure 4). Neural control of sound

frequency therefore has to navigate these changing relationships

across the frequency range. The inhomogeneous composition

provides a basis for anisotropic behaviour of labia, i.e. the labial

layers cause a direction-dependent stress response to defor-

mation, which is likely to facilitate the production of

frequencies within the range in stereotyped fashion [33]. Stereo-

typy of song may constitute an important sexually selected

feature [34,35], and the make-up of the labia influences the poten-

tial for maintaining a given frequency and for generating precise

continuous sweeps of a wide frequency range.

In the light of the extensive research on variation in the

cartilage structure and muscular apparatus of the oscine

syrinx [23,36–45], it is notable that the strongest correlation

with acoustic behaviour is found in the variation in the com-

position of the labia. The pronounced behavioural effect of

small changes in the make-up of the extracellular matrix

arises from the remarkable biomechanical properties of extra-

cellular matrix and joins its many other important functions

[46,47]. The detailed morphological composition of vibrating

tissues can therefore serve as a predictor of the possible range

of acoustic features in a vocal repertoire. Importantly, the
suggested role of how labial make-up can affect acoustic

features agrees well with the limited observations on labial

shape and position during oscillatory behaviour associated

with acoustic changes of the sound output [14,19].

The composition of extracellular matrix is not static but can

be modified in response to systemic, hormonal and environ-

mental influences [48]. Vibrating tissues are therefore also

subjected to dynamic changes arising from specific use, such

as vibration frequencies, and hormonal and developmental

changes that all may have effects on spectral features of vocali-

zations. Although extracellular matrix proteins are universally

found in viscoelastic tissues of animals, their easily quantifiable

expression in spectral features of sound, arising from changes

in the fibre composition and orientation within vibrating tis-

sues, provides a unique window for studying the evolution

of its biomechanical properties and dynamic remodelling.

In conclusion, the comparative data of this study show that

the evolution of complex vocal behaviour does not only require

increased sophistication in neural control. Adaptations in

the biomechanical properties of the sound generating organ

lay the foundation for the diversity of acoustic features. The

remarkable similarity between the vibrating tissues of the

avian syrinx and the larynx of other tetrapods, including

humans, suggests that the same mechanism can drive diversity

in vocal repertoires in all these groups.
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