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ABSTRACT Closed circular DNA molecules in aqueous
solution take the form of interwound superhelices over a wide
range of superhelix densities. We describe a very simple model
of such a superhelix in which twisting and bending forces are
in balance, subject both to topological constraints and to a
limitation on the distance of closest approach of the interwound
duplexes of the superhelix. The model is consistent with some
of the observed physical properties of closed circular DNA, and
suggests that there may be severe limits to the range of allowable
geometries for the superhelix structure of minimum energy.

The effect of supercoiling on the shape of covalently closed
circular DNA molecules has been studied extensively by
physicochemical methods and by electron microscopy. The data
suggest that circular DNA molecules such as those isolated from
simian virus 40 (SV40) take the form of interwound superhelices
over a considerable range of variation in the topological winding
or linking number (1-3). These interwound superhelices are
probably not perfectly rodlike, but form a somewhat more
compact structure either by branching (4, 5) or by generation
of higher orders of supercoiling (6-8). Some experimental data
(3, 9) are available concerning the dependence of the shape of
supercoils on their linking number. However, as Upholt et al.
(3) point out, no theoretical analysis of the shape as a function
of linking number is possible "in the absence of some way of
specifying the variation of the pitch and the radius of the in-
terwound superhelix with superhelix density."

In this paper, we investigate methods of specifying this
variation for a very simple rodlike interwound helical structure.
We assume, following the suggestion of Fuller (10), that the free
energy of supercoiling contains contributions from bending and
twisting forces of the DNA double helix, and that the equilib-
rium conformation is determined by the balance of these forces,
subject to constraints on the minimum diameter of the sup-
erhelix. Given these assumptions, we are able to show that there
are severe restrictions on the possible values of the number of
superhelical turns, the twist and the pitch angle. The model also
leads to the prediction that the sedimentation behavior should
be nearly independent of the superhelical density. This is
consistent with the experimental observation that in the range
of linking number values near those found for SV40DNA iso-
lated from virions, the measured values of the sedimentation
coefficient are practically invariant.

RESULTS
The topological properties o'f covalently closed circular DNA
molecules have been the subject of numerous studies (10-13).
It is well known that such structures can be described in terms
of their topological winding number, also termed the linking
number, Lk. This number is an integer, and is invariant with

respect to all distortions that do not break covalent bonds of the
DNA chain. Methods for calculating the linking number of a
structure have been described (12,- 13).

In this discussion we will follow the approach of Fuller (10),
further elaborated by Crick (13). The method permits direct
introduction of helix geometry into the calculation. Fuller has
pointed out that Lk can be expressed as the sum of the twist, Tw,
and the writhing number, Wr:

Lk= Tw + Wr. [1]
The writhing number is determined only by the shape of the
space curve formed by the axis of the double helix. Because the
twist of a simple ribbon structure is easily calculated,t it is also
easy to deduce (10, 13) the writhing number of such a structure
from the values of Lk and Tw by using Eq. 1. The value of Wr
thus calculated will be correct for all structures based on the
same space curve, i.e., all structures in which the axis of the
double helix follows the same path. As Fuller has pointed out,
the writhing number is not the same as the superhelix winding
number defined in other analyses of this problem. In the fol-
lowing analysis of superhelical DNA, it is also important to re-
member that in general neither Lk nor Wr will equal N, the
number of superhelical turns.

Interwound Superhelix. For illustrative purposes, we will
use SV40 DNA, which has an average value of ALk of about
-26 when isolated from virions (14). Hydrodynamic and
electron microscopic studies show that SV40 molecules with
values of ALk in the approximate range -18 to -40 exist in
solution as interwound superhelices, rather than in more open
(e.g., toroidal) forms. Furthermore, there is very little depen-
dence of the sedimentation coefficient of SV40 on ALk in this
range: S20ow (measured in 1 M NaCl) has the value 21.8 + 0.6
S.
We have calculated the energy of formation of various in-

terwound superhelical structures. The free energy of such a
structure, neglecting all other sources and ignoring cross terms,
is comprised of a contribution from DNA bending, and another
from twisting:

AG = AGB + AGT [2a]

Abbreviation: SV40, simian virus 40.
* Present address: Section on Human Biochemical Genetics, National
Institute of Arthritis, Metabolism and Digestive Diseases, National
Institutes of Health, Bethesda, MD 20014.

t We refer the reader to the paper by Crick (13) for definitions and
methods of calculating the twist and linking number. In this paper
we consider deviations from the fully relaxed closed circular form
of DNA. The actual value of Tw for the relaxed structure depends
upon temperature and solvent conditions. The value of Wr for the
relaxed structure is close to zero, and we set it equal to zero. Devia-
tions from the relaxed form can thus be expressed as
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ALk = ATw + Wr. [la]

ATw is assumed positive when right-handed, i.e., when the duplex
is overwound.
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AG is assumed to be negligible for the relaxed closed circular
form. The value of AG has been estimated experimentally, both
from the details of the Boltzmann distribution of linking
numbers about the relaxed state (15, 16) and from ethidium
bromide titration data (17). We can approximate the data by
the equation

AGe = A (ALk)2, [2b]
in which AGe is the experimental value of AG, and we have
used 0.1154 kcal/mol (1 cal = 4.184 J) as the value ofA for SV40
DNA. Although a more exact equation would contain a cubic
term as well (17), the inclusion of such a term has a negligible
effect on our results. The free energy of bending can be ex-
pressed (18-20) as

AGB = BK2S [3]

in which B is one-half the force constant for bending, K is the
curvature (reciprocal of the radius of curvature), and S is 18,270
A, the total contour length of SV40 DNA [assuming a molecular
weight of 3.6 X 106 (16)]. All the structures we consider are
uniformly bent, i.e., we assume that the superhelix has a uni-
form pitch, and that negligible contributions are made by the
loops at the ends, where the superhelix reverses direction. [We
have considered the effect of such loops in detail (unpublished
calculations). They have little influence on the results.] The
experimental value of B can be estimated either from the
persistence length of DNA (18) or from the temperature de-
pendence of the persistence length (20). The methods respec-
tively give about 180 and 128 kcal-A/rad2-mol at 200 as values
of B. We choose the latter value, but the results below do not
depend strongly on the choice.
We will assume that the free energy of twisting can also be

expressed (10) in quadratic form:
ACT = CS(ATw/S)2 = C(ATw)2/S.

in terms of the number of superhelical turns, N, and x, which
is the product of N and the pitch of the superhelix.
We point out again that the value ofN is not necessarily equal

to the absolute value of ALk, or to the writhing number. The
actual values of N and p must be determined by the balance
between the forces of bending and twisting. We might naively
expect to determine the equilibrium point by minimizing AG
with respect to variation in N and x. As Fuller (10) has pointed
out, however, this minimization has only a trivial solution. The
idealized interwound superhelix can always find a lower energy
by increasing a and decreasing r, thus reducing both curvature
and twist simultaneously. Fuller has also suggested the solution
to this anomaly: The backbone of the superhelix occupies space,
and unfavorable contacts provide a limit to distances of ap-
proach between its elements, so that we need only consider those
structures in which this limit is achieved. Under such con-
straints, a minimum in the free energy does exist.
A very simple way to approximate this constraint is to require

that the radius of the superhelix be fixed at some minimum
value r0. Given the dimensions of the structures to be discussed
below, 2ro can be thought of as a distance of closest approach
of the ascending and descending arms of the superhelix (in this
model we assume that the two arms are related by a 180°
rotation axis along the cylinder axis). Using the method of
Lagrange multipliers, we can minimize AG (Eq. 6) with respect
to variation in N and x; subject to this constraint. The solution
to this problem exists, and can be shown to be a minimum (see
Appendix).
A surprising amount of information can be extracted from

these results. We first note that the solution requires (Appendix,
Eq. i)

J
[4]

ACT is proportional to the square of the twist per unit length
and the first power of the length; C is a force constant for which
no independent experimental estimates exist.

For any given value of ALk, ATw and Wr are related by Eq.
1. Because the curvature of the superhelix is related to the
writhing number, not all the parameters in Eqs. 3 and 4 are
independent variables. To calculate the writhing number of a
right-handed interwound helix, we consider a ribbon wrapped
smoothly on the surface of a cylinder (13) to make N complete
interwound right-handed superhelical turns (N/2 up the cyl-
inder, and N/2 down again). Assuming that the ascending and
descending sections are joined by negligible, twist-free seg-
ments, the linking number of this structure is 0 and the twist
isN sin a, in which a is the pitch angle of the helix (10, 13). The
writhing number, from Eq. 1, is -N sin a (note thatN is always
positive), and this will be the value of Wr for all right-handed
interwound superhelices with N superhelical turns of pitch
angle a, regardless of the values of Lk and Tw. Thus, for an
interwound DNA superhelix,

ATw = ALk+ N sin a. [5]
Let us suppose that our interwound helix has pitch p and

superhelical radius r. The curvature of a regular helix (10) is
given by K = 47r2r/(4ir2r2 + p2), and sin a = Np/S. We note
further that S2 = 47r2N2r2 + N2p2. Substituting these values
in Eqs. 2-5, we find

ACG 4r2BNS (S2 -x2) + J (ALk + ). [6]

in which J = C/S and x - Np. The free energy of the inter-
wound superhelix with linking number ALk is thus expressed

ENx(S2 - x2)

(ALk + Nx ) (S2 - 2x2)
[7]

in which E is a positive constant. Because J by its nature must
be positive, solutions are restricted* to the range x > S/x/d and
N < IALk I V2. Furthermore, ATw (given by Eq. 5) must be
negative (i.e., the duplex is underwound).
What is the upper limit to N? We have already shown that

N is certainly no larger than I ALk X/', but another consid-
eration intervenes. From the preceding argument, we know
that both terms in the denominator of Eq. 7 are negative. Be-
cause ALk is negative, the term (ALk + Nx/S) can be negative
only if Nx/S < ALk |. The maximum value of Nx/S thus oc-
curs at ALk + Nx/S = 0, i.e., when ATw = 0. At that point,
characterized by some value of x which we call xO, the free
energy is entirely due to bending, so that

AG = AGB = A(ALk)2 = 47r2BN2(S2 - X02)/S3. [8]
* Because S > x, the numerator of Eq. 7 is positive; because J is positive,
the denominator must also be positive. The two factors in the de-
nominator are therefore either both positive or both negative. For
negative values of ALk this condition is met in two regions: either
x <S/VandN > IALkUI/, or x > S/ andN < IALkIV.
It is also evident that the bending free energy AGB, given by the first
right-hand term of Eq. 6, cannot exceed the total experimental en-
ergy of supercoiling (Eq. 2b). This means that A(ALk)2 > 47r2BN2(S2
-x2)/S3; substituting appropriate numerical values for SV40 DNA,
we find that when x = S/V2, N < 0.9141ALk 1. Ifx < S/V, N has
a still smaller upper limit. Because we showed above that for x <
SV2-, N must exceed I ALkUV, it follows that no solutions exist in
this range of x values. We have thus shown that x has a lower limit
at S/V2. This lower limit arises from the fact that we have consid-
ered only positive values of N, corresponding to right-hand inter-
wound supercoils. Experimental evidence (17) supports the as-
sumption that in aqueous solution N > 0 when ALk < 0.

Proc. Natl. Acad. Sci. USA 75 (1978) 1709
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Imagine that we now move to a new equilibrium configuration
(with a different assumed value of J) characterized by a value
of x less than x0. In that case,-the term (S2 - x2) in the expression
for AGB increases, and because AGB can never exceed
A(ALk)2, N must decrease. Similarly, if we choose x > x0, N
must also decrease, because Nx/S has its maximum value at x0.
Thus, the maximum allowed value ofN occurs when ATw =
0. It is easy to evaluate the upper limit of N using Eq. 8. We find
that N < 1.19 ALk j. There is no positive lower limit to N.
The energy minimization conditions also lead to the equation

(Appendix)

(x I [4X2 +AS S2-2x21 1/2

Because N is real, the term under the square root sign must be
> 0. Substituting the known values of the parameters, we find
that this is equivalent to requiring x K 0.857S. (Note that the
configuration with maximum value of x does not have the
maximum value of N.) We showed earlier that x > 0.707S; the
range of possible values of x is thus severely restricted. Because
the sine of a, the pitch angle, is x1S, we conclude that the pitch
angle is restricted to the range between 45° and 590 for inter-
wound superhelices satisfying the energy minimization con-
ditions, regardless of the values of any other parameters.

Within the limits we have described, the parameters are
unrestricted in value, because we have one more unknown than
we have equations. In principle, it is only necessary to specify
a value for r. or J to determine the shape of the minimum en-
ergy superhelix completely.
We first consider the class of solutions in which the value of

J is assumed to be constant. Solutions to the minimization
equations are shown in Fig. 1A, in which the value of ro is
plotted against the chosen value of J to which it corresponds,
for various values of ALk. Values of the parameters for the
minimum energy superhelices with J = 2 and with J = 10 are
given in Table 1A. Note that r0ALk and Np are constant for a
fixed J. Because Np (= x) is twice the length of the superhelical
"rod," the length of this rod is independent of ALk for a chosen
value of J.

If the superhelical radius ro represented a physically im-
penetrable barrier, we might expect that ro would be a constant,
independent of ALk. It is therefore of interest to explore a
second class of solutions, in which r. is fixed for all ALk and the
parameter J is allowed to vary.
The assumption of a variable J is physically reasonable; the

twist force "constant" might be a function of Tw or Wr. We
have no way at present of measuring or calculating the detailed
dependence of J on these parameters, but we can examine the
properties of a simple model in which ro is fixed and J is as-
sumed to be some function of ALk. The solutions to this prob-
lem are identical to those shown in Fig. 1A, and the limits on
N and x still exist. The data in Fig. 1B show the dependence of
J on ALk for various assumed values of ro. It should be noted
that the curves in Fig. 1B could have been obtained in principle
from the curves in Fig. 1A. For any given ro, there is a lower
limit to the value of I ALk 1.
The properties of the minimum energy superhelices at fixed

ro are given in Table 1B. There is very little variation in N or
x; most of the change in ALk is accommodated by a change in
ATw. Once again, the rod length is relatively constant. It can
be shown that this behavior is consistent with a free energy of
twist containing terms both quadratic and linear in ATw. It
should be noted that for ro = 150 (as well as for solutions at
larger values of ro), J is in fact nearly invariant with ALk.

Variation in AG with Conformation. How does the free

6

A

-ALk
-14

2 4 6 8 10
J

~18 20 22 24 26 28 30 32 34 36 38
-ALk

FIG. 1. (A) Dependence of r. on J for various values of ALk.
Adjacent curves correspond to an interval of 4 in the value of ALk. (B)
Dependence of ALk on J for various values of ro.

energy vary with excursions about the equilibrium configura-
tion? We have chosen a "typical" equilibrium configuration
of SV40 DNA (ALk = -26, J = 1.98, r = 57.9 A, N = 26.1) and
calculated the variation in AG with N (Eq. 6) about this con-
figuration, with r held constant. We find that the dependence
of AG on N is quadratic in the range AN = +1 around the
equilibrium value, and that AN = ±1 corresponds to a free
energy increase of about 2RT per mol of SV40 DNA. The range
of predicted excursions about the equilibrium configuration
is thus quite limited.

Physical Studies. It was noted by Upholt et al. (3) that the
sedimentation coefficient of SV40 DNA varies only slowly with
linking number over a considerable range of values of ALk (-
-18 to -40). The dependence of sedimentation coefficient on
ALk can be calculated for our simple model. The parameters
presented in Table 1 define a family of long, relatively thin rods
The sedimentation properties of such rods depend principally
upon their length, which has the value x/2. Because x is in-
variant with ALk for the set of solutions in Table 1A (corre-
sponding to J constant), and varies very little for the solutions
in Table 1B (r. constant), we expect that the predicted values
of s2ow will be nearly invariant with Ak for either set of so-
lutions.

This conclusion is substantiated by direct calculation of the
frictional coefficient of our model structures. The frictional
coefficient of an interwound superhelix has been calculated by
Gray (1), using the Kirkwood-Riseman equations (21), and
replacing the DNA double strand by an equivalent string of
contiguous spherical beads. The bead diameter is taken as 27.2
A, approximately the effective hydrodynamic diameter of a

Froc. Nati. Acad. Sci. USA 75 (1978)
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Table 1. Calculated parameters of SV40 DNA superhelix of minimum energy

(A) Constant J

J=2 J=10

-ALk N r, A p,A S20,wS N r, A p,A S20,w* S

18 18.1 83.5 861 17.3 20.5 75.6 752 17.6 (22.0)
22 22.1 68.3 705 17.7 25.1 61.9 615 18.0 (22.3)
26 26.2 57.8 596 18.1 29.7 52.4 521 18.4 (22.0)
30 30.2 50.1 517 18.4 34.2 45.4 451 18.7 (21.8)
34 34.2 44.2 456 18.6 38.8 40.0 398 18.9 (21.6)
38 38.2 39.6 408 18.8 43.4 35.8 356 19.2 (21.4)
40 40.3 37.6 388 19.0 45.6 34.0 338 19.3 (21.2)

(B) Constant radius

r= 5A ro=80 A
-ALk N x,A Wr ATw N x,A Wr ATw
18 10.30 15,475 -8.73 -9.27 19.07 15,554 -16.2 -1.77
22 10.55 15,329 -8.85 -13.2 18.85 15,646 -16.1 -5.86
26 10.77 15,191 -8.96 -17.1 18.87 15,616 -16.1 -9.87
30 10.97 15,066 -9.04 -21.0 19.09 15,548 -16.2 -13.8
34 11.14 14,952 -9.12 -24.9 19.34 15,470 -16.4 -17.6
38 11.29 14,849 -9.18 -28.8 19.58 15,391 -16.5 -21.5
40 11.36 14,802 -9.21 -30.8 19.70 15,353 -16.6 -23.4

* Values in parentheses are experimentally observed values for the given linking number (3).

double-stranded DNA; the results presented below do not de-
pend critically on this value. To calculate the frictional coef-
ficient, it is necessary to evaluate (21, 22) the sum 22(R,,)-1,
in which Rij is the distance between beads i and j, and the sum
extends over all pairs of beads.
The terms Ri1 are calculated for all pairs directly from the

coordinates of the beads. Values of the calculated sedimentation
coefficients are shown in Table 1A. It is evident that regardless
of the value of J chosen, the sedimentation coefficient varies
only slowly with linking number, a result consistent with ex-
perimental observation (3). The predicted value of s2o,, for ALk
=-26 and J = 2 or 10 is about 17% lower than the experi-
mental value. Similar calculations could be carried out for the
data in Fig. 1B; S20,w would be somewhat smaller, but it would
also be invariant with ALk.

Although the simple model we are analyzing leads to rea-
sonable predictions of the behavior of the sedimentation coef-
ficient, the model is not sufficient to account for other known
properties of superhelical molecules in solution. For example,
the radius of gyration (5) of supercoiled SV40 DNA isolated
from virions is about 930 A, while a rodlike interwound su-
percoil of the dimensions we are considering would have a ra-
dius of gyration a little more than twice as large. Real super-
coiled molecules are thus somewhat more compact than our
rodlike ideal.

It has been suggested that this compaction can be accounted
for either by branching of the interwound superhelix (4, 5), or
by the presence in the interwound superhelix of a second order
of supercoiling (6-8). Either model can be made reasonably
consistent with all of the data (unpublished calculations) because
each of these perturbations of the simple rodlike structure has
a larger effect on the radius of gyration than on the frictional
coefficient.

DISCUSSION
We have considered a simple model of the forces governing
superhelix shape. Following Fuller's suggestion (10), we have

assumed that the structure is interwound and rodlike, and
minimized the free energy contributions from twisting and
bending, subject to a constraint on the radius of the superhelix.
We are aware of limitations in this approach, even within the
restrictions of this simple model.
We have calculated conformations of minimum energy

subject to the constraint that there is a constant superhelix ra-
dius, ro, for each value of ALk. If J is fixed and completely
independent of ALk, ro is determined, and varies with ALk
(Table 1A). As we have pointed out above, this does not seem
physically reasonable if ro is thought of as a constant distance
of closest approach.

There are various ways of resolving this difficulty. For ex-
ample, we can fix ro and allow J to vary with ALk, with the
results shown in Table 1B. Among these solutions there is a
limiting set for large r. (e.g., ro = 150 A; Fig. 1B), for which J
varies only slowly with ALk. For larger values of ro, the varia-
tion is even smaller. Thus, in this region, all of the original as-
sumptions of the model are nearly satisfied. It should be noted
that the solutions in this range compare favorably with estimates
of the dimensions of first-order interwound superhelices ob-
tained from low-angle x-ray scattering measurements in solu-
tion (6, 7). The data for phage PM2 DNA are most consistent
with a superhelical radius of 180-200 A, and a pitch of
1400-1000 A. We find that the minimum energy interwound
superhelix with ro = 180 A and ALk = -26 has a pitch of 1640
A.

Another possibility is to introduce in the equation for AG an
explicit dependence upon the superhelical radius. We find that
if an energy term proportional to 1/r2 is added to AG, and AG
is minimized with respect to r as well as N and x, the resulting
equation for AG is of a general form similar to Eq. ii of the
Appendix, with a solution of the form N = ALk f(x). The so-
lution for J (Eq. 7) is unchanged, so that x is invariant with
respect to ALk. The general properties of the solutions given
in Table 1A are thus preserved without assuming that r has a
fixed value.

Proc. Natl. Acad. Sci. USA 75 (1978) 1711
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Benham (8) has pointed out that the most general solution
to the problem of a uniform flexible rod undergoing defor-
mation involves two orders of supercoiling, and low-angle x-ray
scattering data alluded to above provide some evidence for such
a structure (6, 7). It should be possible to extend the analysis
presented here to include second-order superhelical pertur-
bations.

Alternatively, it has been proposed (4, 5) that there may be
distinct points in the supercoil at which local denaturation is
favored, leading to the formation of a fixed number of inter-
wound superhelical branches (three in the case of SV40 DNA)
of fixed length. The extension of our analysis to such a structure
is straightforward, because each interwound superhelical arm
can be treated as a simple rod, independent of the other
arms.
The most general conclusions that can be derived from our

model concern restrictions on the parameters N and x. When
the value of ALk of a closed circular DNA molecule is known,
there is not enough information to determine the number of
superhelical turns, the pitch of the superhelix, or the twist. To
the extent that our assumptions are correct, limits can be placed
on these parameters. The simplest model leads to the prediction
that interwound superhelices at equilibrium and with ALk <
o have-the following properties: (i) The number of superhelical
turns cannot be greater than 1.2 times ALk. (ii) ATw must be
negative or zero. (iii) The number of superhelical turns times
-the pitch is restricted to values between 0.707 S and 0.86 S, in
which S is the DNA contour length. (iv) The pitch angle is be-
tween 45° and 59°.

It is known that certain combinations of histones induce su-
percoiling when bound to closed circular DNA (23-25), but,
as we have pointed out elsewhere (24), the detailed geometry
of DNA packing in nucleosomes must be quite different from
the geometry of closed circular SV40 DNA described here.

All of our conclisions about superhelix geometry can be
reached assuming only that AG is composed of quadratic
contributions from twisting and bending, that these are in
balance under conditions of a fixed minimum superhelix radius,
and that AG must equal its measured experimental value. Some
of the above restrictions do not depend on the exact experi-
mental value of AG. Although our model is simple, it permits
us to think of the equilibrium form of a superhelix as arising
from a balance of forces, and it can serve as a starting point for
more elaborate analyses of the energetics of supercoiling.
Appendix: Free energy minimization with constraints
The free energy AG is assumed to have the form given in Eq.
6 of the text. We now assume that the superhelix is wrapped
around a cylinder of radius ro, and that all deformations are
subject to this constraint. This restriction has the form: g(N,x)
= 4ir2N2rO2 + x2 S2 = 0. We define a function V = AG +
Xg, in which X is a Lagrange multiplier. The minimization
conditions are: (bV/ N)X = (OV/?X)N = 0. The equations are
solved, after differentiation, by eliminating X. Identical results
are of course obtained by direct substitution of the expression
for g(N,x) in AG to eliminate either x or N before taking the

derivative with respect to the remaining variable.
We find

J [ALk + Nx] = 82BNx [S2
-

] [i

Substituting the expression on the left-hand side into Eq. 6 of
the text, we obtain a quadratic equation for AG in terms of N
and x, which holds true only for the minimum-energy values
of N and x,

S2 -2 iDS2 D&x.AUkAG=[ ] .N2 + *NI, [ii]
LS2-2X2JL4r2 2ir2 J

in which D = 167r4B/S3.
We now make use of text Eq. 2b, AGe = A(ALk)2, set AG

= AGe, and solve the quadratic equation for N in terms of x.
The solution is Eq. 9. By the use of second derivatives, it is
possible to show that the solution is a relative minimum.
We thank Drs. Kiyoshi Mizuuchi and Yi-Der Chen for many helpful
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of the manuscript.
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