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Spatial evolution game has traditionally assumed that players interact with direct neighbors on a single
network, which is isolated and not influenced by other systems. However, this is not fully consistent with
recent research identification that interactions between networks play a crucial rule for the outcome of
evolutionary games taking place on them. In this work, we introduce the simple game model into the
interdependent networks composed of two networks. By means of imitation dynamics, we display that when
the interdependent factor a is smaller than a threshold value aC, the symmetry of cooperation can be
guaranteed. Interestingly, as interdependent factor exceeds aC, spontaneous symmetry breaking of fraction
of cooperators presents itself between different networks. With respect to the breakage of symmetry, it is
induced by asynchronous expansion between heterogeneous strategy couples of both networks, which
further enriches the content of spatial reciprocity. Moreover, our results can be well predicted by the
strategy-couple pair approximation method.

I
t is widely recognized that cooperation is a key force for the social and natural evolution1,2. To support this
issue, social dilemma game plays a significant role in understanding the emergence of cooperation via intro-
ducing spatial structures3–5. However, most of these studies are implemented on a single network, which

neglects the fact that other related systems also possess a certain influence on the evolution of cooperation,
and vice versa6–29. Similar cases are ubiquitous in realistic life: for instance, when a global financial crisis breaks
out, the future development of a country not only depends on its own stimulation policy, but also relies on the
recovery status of other countries that build close economic connection with it30,31. In order to explore how
cooperation evolves within different yet correlative systems, some more sophisticated paradigms that are close to
realistic situations and can capture the interdependency between these systems need to be introduced32–34.

Recently, the study of interdependent networks, especially their property and function, becomes an active
topic. One typical example is that Buldyrev et al. investigated the catastrophic cascade of failures on the inter-
dependent networks, where the status of nodes on one network also lay on the nodes of other network35. They
found that these networks were more vulnerable to random failures if they had broader degree distributions,
which was contrary to the situation of one single network36. Inspired by these innovations, the model of inter-
dependent networks becomes an appropriate candidate to explore the question about the evolution of coopera-
tion within different yet correlative systems. However, how to construct interdependency between these networks
seems immediately important37. Since the evolution of strategies is directly determined by individual fitness, the
point-to-point interdependency (i.e., each node has a corresponding partner on the other network) through re-
scaling individual fitness becomes a potential approach. In this sense, a player’s decision is not simply dependent
on his own payoff during the game but also relevant to his companion’s situation38–41. Looking at some examples
more specifically, in a recent research paper42, where the biased utility function on interdependent networks was
implemented, it was shown that the stronger the bias in the utility function, the higher the level of public
cooperation. While in43, if individuals were allowed to engage in several layers of networks of interactions
simultaneously, the multiplex structure enhancing the resilience of cooperative behaviors for extremely large
values of the temptation was reported. In the line with these efforts, an interesting question poses itself, which we
aim to address in what follows. Namely, if the fitness of individuals (who just engage in the interaction on their
own network) is evaluated in a symmetric way, is this beneficial for the evolution of cooperation or not?
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In the present work, we will perform the Prisoner’s Dilemma
Game (PDG), one of the most powerful models in studying coopera-
tion phenomenon, on the interdependent networks (which are com-
posed of Network Up and Network Down, see Figure 1 for schematic
representation). To characterize the mutual influence between two
networks, an interdependent factor a (0 # a # 1) is proposed: during
the evaluation of fitness of focal individual, his own payoff occupies
a; while the remainder (namely, 1 2 a) comes from the payoff of his
partner on another network, which is similar to the other-regarding
trait44. Evidently, for a 5 0 the most frequently adopted situation is
recovered where two networks are completely independent. In the
limit a R 0 two network are referred as weak interdependency; while
in the limit a R 1 strong interdependency between networks will
occur. We show that, when a is smaller than a threshold value aC,
cooperation is highly promoted by setting a larger a and the fraction
of cooperators on each network is symmetric (equal). On the con-
trary, if a exceeds aC, the spontaneous symmetry breaking between
the fraction of cooperators on different networks can be observed. It
is worth emphasizing that when the coupled-variable-replicator
dynamics is allowed to regulate the evolution of different games in
interdependent populations, the observation of spontaneous sym-
metry breaking also takes place39. In order to analyze and explain
these phenomena, we also extend the traditional pair approximation
and give out the strategy-couple pair approximation (SCPA, see the
Supporting Information).

Results
We start by exploring the impact of interdependent factor a on the
evolution of cooperation. Figure 2 shows the simulation and analysis
results about how fraction of cooperators r varies as a function of b
for different values of interdependent factor a. To give a clear illus-
tration, the value of r is also provided when b is smaller than 1. As
evidenced in the figure, we can observe two behaviors within the
system: symmetry breaking phenomenon and phase transition.
When a is smaller than a threshold value aC (aC < 0.5 in the present
model), the fraction of cooperators is symmetric on both networks
(i.e., equal). At the same time, it is worth emphasizing that with
increasing interdependent factor a cooperation can be better
enhanced, which, to large extent, attributes to the self-organization
of C-C coupled clusters, as we will discuss in what follows. However,
when a exceeds aC the spontaneous symmetry breaking will emerge,
namely, fraction of cooperators on two networks is different, whereat
its supporting condition is distinguished from the factor related with
updating dynamics in previous literature39. In some particular
regions (where b is slightly larger than 1), all the players on one of
the networks will uniformly choose the strategy C. With further

raising the temptation to defection, the symmetry of the system will
be gradually regained. Moreover, Fig. 2(b) features the results of our
SCPA approach (see the Supporting Information for more details),
which can perfectly predict the enhancement of cooperation when
the larger a is considered, and more importantly shows us the emer-
gence of the spontaneous symmetry breaking phenomenon45–47. We
restrict the value of b between 0.95 and 1.10 in Fig. 2(b) to scrutinize
the symmetry breaking phenomenon, since the pair approximation
method is less reliable in dealing with the threshold value of coopera-
tion (where the phase transition between mixed C 1 D phase and
pure D phase occurs).

In order to study the phase transition in the system, now we turn to
some typical cross sections of phase diagrams under different cases.
Fig. 3(a) is the case of a 5 0.4, which displays the existence of three
sections: pure cooperators section (PC), mixed strategies section
(MS) and pure defectors section (PD), which is resonant with pre-
vious report of PDG study23,28,47. However, in Fig. 3(b), where a is set
as 0.9 (larger than aC), a novel section emerges: the symmetry break-
ing section (SB). In this section, usually with one of the networks
showing a pure-cooperation behavior, two networks do not share the
same fraction of cooperators. Notably, this interesting discovery (the
coexistence of pure-cooperation and quasi-cooperation in both sys-
tems) can also be interpreted using the realistic instances. Take the
maintenance of biological species as an example. Collective (pure)
cooperation behavior is greatly beneficial for resisting the invasion of
predators and further expanding the populations. On the other hand,
individual survival is also faced with the temptation of obtaining high
benefit yet no contribution, which thus leads to the existence of free-
riders1–3. We need to argue that if no additional rule is introduced,
this pure-cooperation phenomenon goes beyond what can be sup-
ported by the traditional spatial reciprocity5. Moreover, it will be
instructive to check the universality of this interesting behavior on
other networks. From the presented results in Fig. 3(a) and Fig. 3(b),
we find that the interdependent regular lattices and small-world
(SW) networks actually share the same phase transition, implying
that this behavior is robust to different coupled networks. It is worth
mentioning that when the fraction of rewired links is very small, the
transition details of cooperation behavior on the small-world net-
work are identical with those of regular lattice. However, with the
fraction of rewired links increasing, the extinction value of coopera-
tors will also boost.

Importantly, the intriguing symmetry breaking phenomenon can
also be obtained by applying the SCPA approach (see Fig. 3(c)).
Instead of the second order phase transition in the simulation results
(Fig. 3(b)), SCPA shows a first order phase transition, namely, it
cannot provide the exact type of phase transition. The reason of this
shortage is that SCPA only considers two couples’ interaction within
the system, while neglects the long-range interaction among players
on the networks, which actually plays an important role in impacting
the phase transition. This point is also good agreement with its
prediction on traditionally single network, where the neglected role
of loops in connectivity structure could cause more relevant devi-
ation for most of networks (also see26 for more details). However, the
flaw would not affect the prediction of SCPA about the existence of
the symmetry breaking phenomenon. We also need to mention that
there exists an unstable solution of the SCPA equations in the sym-
metry breaking phase (denoted by the dashed line), the details and
equations of SCPA will be stated in the Supporting Information.

In order to explain the phenomenon of symmetry breaking, we
subsequently proceed with examining the time evolution for four
types of strategy couples: C-C, C-D, D-C and D-D couples.
Figure 4 features the results obtained for a 5 0.4 (a) and a 5 0.9
(b), and the relevant evolution patterns are illustrated in Fig. 5. In the
very early stages of evolution process (note that fractions are
recorded in between full steps), D-D couples thrive. Quite surpris-
ingly though, the tide changes fast, namely, D-D couples become the

Figure 1 | Illustration of two interdependent networks, Network Up and
Network Down. On each network, the nodes not only interact with their

nearest neighbors, denoted by the black solid lines, but their situations

also depend on the corresponding nodes on the other network, represented

by the red dashed lines. Here, we only consider the case of one-one

correspondence (i.e., point-to-point interdependency) between nodes on

both networks.

www.nature.com/scientificreports
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rarest ones, and their dominant space is replaced by C-C couples.
However, in the next thousands of steps, the situations will become
different within two systems (see Fig. 4). For a 5 0.4 the system will
reach the equilibrium state very quickly with equal numbers of D-C
and C-D couples. For a 5 0.9, however, the system needs a longer
time to gain equilibrium, and at last only two types of couples (here
C-C and D-C) survive with the extinction of other couples (here C-D
and D-D). In order to visually inspect this behavior, let us focus on
the evolution patterns (see the bottom panel of Fig. 5). Initially,

several sporadic clusters of C-C, C-D and D-C couples exist in the
system, but soon they will combine to form larger clusters. Informed
from the SCPA results (see Fig. 3(c)), we see that the present pattern
is probably unstable, which means that until now the system merely
reaches a metastable state and it can not survive from little perturba-
tions. Interestingly, this prediction comes true in the next steps: two
type of the clusters dies out at last and only two kinds of them survive,
which results in the spontaneous symmetry breaking of the networks
since the fractions of C-D and D-C are not equal any more. The C-C

Figure 2 | Fraction of cooperators r as a function b for different values of a when Monte Carlo simulations (a) are implemented. Note that if b is larger

than 1 (marked by the red arrows), faction of cooperators will enhance with the increment of a. When a exceeds a threshold value aC (aC < 0.5), the

symmetry breaking phenomenon will appear. In addition, our strategy-couple pair approximation approach (b) correctly predicts the trend (note that

the range of both figures is different, since the analysis method is only for predicting the evolution trend).

www.nature.com/scientificreports
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couples will remain in the system while the survival of C-D or D-C
couples depends on the perturbations. Hence, we argue that when the
interdependent networks can not strongly support the effective
expansion of heterogeneous strategy couples on both networks, the
breakage of symmetry becomes an inevitable outcome (namely, the
asynchronous expansion between C-D and D-C couples is the hall-
mark signature indicating the emergence of spontaneous symmetry
breaking).

Finally, it remains of interest to elucidate why cooperation can be
improved with the increment of a. To provide answers, we study the
fraction distributions of strategy couples in Fig. 6. What firstly
attracts our attention is the fact that the larger the value of a is, the
more C-C couples exist. Actually, as increasing a, there will be more
C-D, D-C and D-D couples switching to C-C couples (in the process,
D-D couples will first transform to C-D or D-C couples, then to C-C
couples). In addition, Fig. 5(c) shows the spatial patterns for different
a, whereby for a 5 0 only a few sporadic C-C couple clusters exist,
which come from the occasional superposition of cooperators’ clus-
ters on both networks, because the networks are non-relevant in such
a situation. However, when a larger a is considered (a 5 0.2), more C-
C couples will be connected to each other in order to build solid
clusters protecting themselves against the exploitation by defectors.
When a equals to 0.4 (close to the symmetry breaking value aC), C-C
couples strongly bond to each other, thereby much larger C-C
coupled clusters will be constructed in the system, which shows us
a C-C couples’ ocean. At the same time, the C-D and D-C couples

sporadically exist through forming small clusters and D-D couples
can only survive along the edges of these small mixture strategy
coupled clusters.

Discussion
In conclusion, we have introduced the interdependent networks into
spatial game study. Through systematic simulations, we have
demonstrated that the interdependency between different networks
has a great influence on the cooperative behavior. When the inter-
dependent factor a exceeds a threshold value aC, the spontaneous
symmetry breaking between the fraction of cooperators will appear,
which can be regarded as a natural outcome of asynchronous expan-
sion of heterogeneous strategy couples between networks. If it is
smaller than aC, homogeneous fraction is able to be observed in
the system and the fraction will increase with the increment of a.
Besides, these phenomena can be well predicted and analyzed by our
strategy-couple pair approximation method.

Since the investigation of interdependent networks is a promising
research topic, especially for the evolutionary games that can help
to provide more comprehensive understanding of cooperative
behavior, we hope that it will inspire further studies, such as, the
effect of fitness asymmetry between entangled networks, coevolution
of interdependent way and strategy updating. Moreover, it is also
worth mentioning that the present model can be mapped onto a four-
strategy model (as reflected by the pair approximation method in

Figure 3 | Typical cross sections of phase diagrams for a 5 0.4 (a) and a 5 0.9 (b) on the interdependent regular lattices (green squares) and small-world

(SW) networks (red triangles) with fraction of rewired links equalling 0.05. The colored regions represent different sections: yellow is pure cooperators

section (PC), cyan is mixed strategies section (MS), gray is pure defectors section (PD) and purple is symmetry breaking section (SB). Additionally,

the lines in (c) denote the results of strategy-couple pair approximation (SCPA) for a 5 0.9, which is qualitatively similar to the case of (b). The

dashed line is an unstable solution of SCPA approach (note that the range of figures is different, since the analysis method is only for predicting the

evolution trend).

Figure 4 | Time evolution of different strategy couples for a 5 0.4 (a) and a 5 0.9 (b). About the meanings of couples, we can give a simple example. For

instance, C-D means that the player on Network Up chooses C and the interdependent player on Network Down chooses D (parameter: b 5 1.005).

www.nature.com/scientificreports
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Supporting Information) by a suitable dynamical rule, which will
enrich the context of spatial reciprocity.

Methods
Evolutionary games on interdependent networks. As for the game, we will follow
the Nowak-May framework, the so-called weak prisoner’s dilemma game5. Two
players have a choice between two pure strategies, cooperate (C) and defect (D). The
payoffs are given by the following matrix:

C D

C

D

R S

T P

 !
ð1Þ

R 5 1 is the reward for mutual cooperation, T 5 b temptation to defect, S 5 0 sucker’s
payoff and P 5 0 the punishment for mutual defection, whereby 1 # b # 2 ensures a
proper payoff ranking. In order to better estimate direct influences from the
interdependency of networks, we choose the regular lattice where each node is
connected to its four nearest neighbors and the small-world (SW) network with an
average degree of four generated via the Watts-Strogatz algorithm48, since it is well-
known that heterogeneous networks, such as scale-free network49, would highly
enhance cooperation in PDG8,17,18. Moreover, it is also worth mentioning that
the interdependency between both networks is point-to-point, which means
that every node in one network will have only one companion on the other
network35.

The game is staged on two L 3 L square lattices (or small-world networks) with
periodic boundary conditions. Each player i is initially designated either as a coop-
erator or defector with equal probability and acquires the payoff by playing the game
with all his neighbors (here player interacts with itself is not considered).

Figure 5 | Evolution patterns of different couples for a 5 0.4 (upper panel) and a 5 0.9 (bottom panel). The color code of strategy couples is the same as

Fig. 4, namely, C-C blue, C-D green, D-C yellow and D-D red. From left to right the specific steps are 0, 10, 200, 2000, and 30000 for both panels

(parameter: b 5 1.005).

Figure 6 | Fraction distributions of strategy couples for different value of a by using simulation (a) and SCPA approach (b). While (c) depicts the

evolution patterns of stable status for different values of a. From left to right a 5 0, 0.2 and 4.0, respectively. The color code of spatial patterns in (c) is the

same as Fig. 4: C-C blue, C-D green, D-C yellow and D-D red (parameter: b 5 1.005).

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 4095 | DOI: 10.1038/srep04095 5



Subsequently, player i randomly selects one of his neighbors j on the same network,
and adopts his strategy based on the imitation dynamics50 (here the strategy invasion
between different networks is not allowed):

W i?jð Þ~f Gj{Gi
� �

~
1

1zexp { Gj{Gi
� ��

K
� �� � , ð2Þ

where K represents the amplitude of noise (we simply fix K to be 0.1 in this work), and
Gi denotes the fitness of player i, considering both his own payoff Pi and the payoff of
his partner P0i . Of particular interest, the fitness Gi can be quantitatively evaluated in
the following way Gi~ 1{að Þ � Piza � P0i . Here 0 # a # 1 represents the inter-
dependent factor. If a 5 0, then the player’s fitness is equal to his own payoff, and the
model gets back to the original spatial PDG that have been extensively studied53–64.
With the increment of a (i.e., a . 0), the fitness of one network depends on the status
of another system. In particular, for a 5 1, the fitness of a node will become fully
determined by his companion’s situation on the other network, and the strategies are
adopted by means of a toss coin, which, herein, is distinguished from the research of
voter model (that is closely related with topological features of networks)51,52. Notably,
this model can be interpreted rather effectively. From the purely biological viewpoint,
the survival and propagation of an agent is not only decided by his ability, but also
depends on the quantity of his prey and predator. On other hand, especially in
economic systems, the development of a company needs its own asset, but also
involves the financial situation of his opponent and client.

Monte Carlo simulations results are obtained on the network with the size L 5 100
to 400, yet when dealing with the phase transition points, a large size (L 5 1000) is
adopted to assure the accuracy of the simulation. In a full Monte Carlo step (MCS)
each player has a chance to adopt the strategy from one of its neighbors once on
average. Moreover, the key quantity fraction of cooperators r is determined with the
last 104 full steps of overall 5 3 105 MCS, and the final data results from an average
over 50 independent realizations.
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