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Abstract
Synthetic biology offers novel opportunities for elucidating transcriptional regulatory mechanisms
and enhancer logic. Complex cis-regulatory sequences—like the ones driving expression of the
Drosophila even-skipped gene—have proven difficult to design from existing knowledge,
presumably due to the large number of protein-protein interactions needed to drive the correct
expression patterns of genes in multicellular organisms. This work discusses two novel
computational methods for the custom design of enhancers that employ a sophisticated,
empirically validated transcriptional model, optimization algorithms, and synthetic biology. These
synthetic elements have both utilitarian and academic value, including improving existing
regulatory models as well as evolutionary questions. The first method involves the use of
simulated annealing to explore the sequence space for synthetic enhancers whose expression
output fit a given search criterion. The second method uses a novel optimization algorithm to find
functionally accessible pathways between two enhancer sequences. These paths describe a set of
mutations wherein the predicted expression pattern does not significantly vary at any point along
the path. Both methods rely on a predictive mathematical framework that maps the enhancer
sequence space to functional output.
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1. Introduction
The discovery that a large fraction of the genome, previously classified as “junk DNA”, is
responsible for the precise patterning of gene expression, has led to the development of
sequenced-based models seeking to predict how and when a gene will express. These efforts
have been aided by an ever increasing collection of cis-regulatory elements (commonly
called enhancers), revealed through computational, empirical, and comparative approaches.
A wealth of data for transcriptional modeling has also become available from initiatives to
map the binding of all known transcription factors (TFs) in model organisms [1, 2, 3]. At the
biochemical level, steady progress has been made in elucidating mechanisms involved in
transcriptional regulation, chromatin dynamics, and transcription initiation and elongation
[4, 5, 6]. As our understanding of gene regulation grows so to does the predictive capability
of transcriptional models. The methods we describe here now dramatically expand the use of
synthetic biology to create artificial enhancers [7, 8].

Eukaryotic regulatory modules are complex, finely tuned molecular machines, with multiple
protein-protein, protein-DNA and protein-promoter interactions that are best understood
using a quantitative model-based approach [9, 10]. Employing a quantitatively
transcriptional model to design novel enhancers offers the opportunity to significantly
increase the rate by which our understanding of transcription regulation grows. By using the
predictive capability of a transcriptional regulatory model to design DNA sequences with a
target expression pattern, these synthetic sequences create empirically testable challenges to
the model, i.e. the sufficiency of the model’s regulatory mechanisms. Instances where the
observed expression deviates from prediction are of special importance because they provide
opportunities to improve upon the model’s regulatory mechanisms. Newly acquired data can
be used to refit an improved model in an iterative cycle where new synthetic constructs
generated using the new model are synthesized and tested (Fig. 1). Such an approach
changes the nature of transcriptional regulatory research by providing a principled, model-
based method for investigating regulatory interactions in their native context rather then
relying on simpler component-based methods. In non-model based approaches, emergent
properties of systems that rely on multiple interactions cannot be formulated as a testable
hypothesis.

The application of synthetic biology to the problem of eukaryotic enhancer design has
proven to be more challenging then for bacteria where the design and synthesis of cis-
regulatory elements has yielded valuable insights [7]. The multimerization of known
transcription factor binding sites (TFBSs) [8], for example failed to produce synthetic
enhancers that mimic the expression of four Drosophila regulatory elements. While small
(100–200 bp) synthetic cis-regulatory elements have been successfully used in the analysis
of short-range repression in the Drosophila embryo [11, 12], such elements lack the
complexity of wild type enhancers such as the even-skipped (eve) minimum stripe 2 element
(MSE2), which contain, to date, thirteen characterized regulatory sites bound by five
different transcription factors [13, 14].

The work presented here discusses two methods for generating synthetic regulatory
elements. Importantly, these methods are not limited to any particular model nor are they
wed to a particular transcriptional regulatory system. The first method uses simulated
annealing (SA) to rapidly search the DNA sequence space for novel sequences that express
in defined patterns. The second method utilizes a novel search algorithm called NEEA
(Neutral Enhancer Evolutionary Algorithm), for finding functionally accessible mutational
paths between enhancer sequences, defined as an ordered path for mutations transforming a
starting sequence to an ending sequence that does not significantly change the expression
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pattern at any given point along the path. The SA sequence search answers the question:
given available knowledge of a transcriptional system, what are the limits to the type of
expression patterns possible? The NEEA algorithm addresses the question: given a known
enhancer and expression pattern, at what point along a functionally accessible path does the
model prediction break down?

2. Description of methods
Here we illustrate the two methods using a previously described transcriptional model and
the well-characterized eve MSE2 enhancer as a test case [15]. The MSE2 enhancer drives
transcription in a narrow traverse stripe placed along the anterior-posterior (A P) axis of
Drosophila blastoderm embryos between 35% and 45% egg length (EL, 0% at the anterior
pole) [13] (Fig. 1, step 7). The activity of the MSE2 is regulated mainly by four TFs: Bicoid
(Bcd), Hunchback (Hb), Giant (Gt), and Krüppel (Kr). The domain of expression is set by
broad transcriptional activation provided by Bcd and Hb, while Giant and Krüppel set the
anterior and posterior boundaries by transcriptional repression respectively [13]. Previously,
we had shown that a transcriptional model could successfully predict the effects of
mutations in the 1.7 kb upstream eve promoter sequence which contains the MSE2 enhancer
[15]. We have built on this work by implementing an automatic TFBS prediction step in the
model, thus allowing functional predictions to be made directly from the cis-regulatory
sequence. TFBSs were predicted using position weight matrices (PWMs) to calculate the
log-odd score of the DNA sequence as in [16]. PWMs for Bcd, Hb, Gt, and Kr were derived
from SELEX data obtained from the Berkeley Drosophila Transcription Network Project
(BDNTP). Because our previous analysis of the 1.7 kb eve promoter sequence suggested that
the TFs Caudal (Cad), Tailless (Tll), and Knirps (Kni) also play a role in refining the eve
stripe 2 pattern, the model includes PWMs for these factors (PWMs for Knirps and Tailles
were obtained from [17] while SELEX data was used for Cad). Only those sequences with
log-odd scores above a previously determined threshold were considered binding sites (Fig.
1, step 2). Threshold values were set such that they recovered all of the previously
footprinted binding sites for each TF.

Our modeling approach is based on the assumption that transcription is an enzymatic
reaction wherein the RNA Pol II holoenzyme must overcome an energy barrier for
transcription to initiate. The binding of an activator to its binding site is postulated to reduce
the energy barrier by an amount proportional to the fractional occupancy of the site. In
contrast, transcriptional repressors are postulated to quench nearby activator binding sites by
reducing their fractional occupancy. Previous work in this system has shown that the
quenching efficiency starts to decrease linearly at distances of 50 bp from the repressor, with
no measurable quenching effect at distances over 150 bp [12]. A detailed description of the
mathematical framework describing the transcriptional model is given in the Supplementary
Information (S1).

A crucial requirement of both methods is the existence of a previously fitted transcriptional
model that can be used to give an initial prediction of enhancer output. To this end, division
cycle 14A (C14A) embryos carrying a P-element eve-lacZ reporter driven by the MSE2
enhancer (line 1511B, gift from M. Levine) were collected, fixed and stained for eve-lacZ
mRNA by in situ hybridization as in [15]. Embryos were then classified as belonging to time
classes 2 to 6 (T2–T6) of C14A as in [18]. Quantitative eve-lacZ expression profiles along
the A–P axis for each time class were obtained as previously described [15] and used as a
reference pattern for the initial model fit. The model parameters describing the regulatory
interactions were determined by minimizing the summed squared difference between the
model output and the observed data. TF concentration profiles of Bcd, Hb, Gt, Kr, Cad, Kni,
and Tll along the A–P axis of C14A embryos were obtained from the FlyEx database (http://
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flyex.uchicago). Because the concentration of ligand factors important for the transcriptional
regulation at the terminal pole regions of the embryos have not been determined, model fits
and calculations are carried out only from 35% to 92% EL along the embryo A–P axis.
Optimization was performed using the Lam simulated annealing schedule [19, 20, 21]. The
C source code for the model, SA sequence search, and the NEEA algorithm can be
downloaded from http://flyex.uchicago.edu/newlab/download.shtml.

2.1. Simulated annealing sequence search
The problem of finding novel enhancer sequences with a desired functional output
represents an enormously difficult task. The difficulty lies both in the large size of the search
space, as well as in the complexity of the cost function, defined here as the sum of the
squared differences between the target gene expression and the model prediction across the
set of all observed data points and their associated TF concentrations. For example, the size
of the search space for finding a 480 bp sequence that is functionally equivalent to the
MSE2 enhancer is of approximately 10288 sequences! Likewise, the large number of
possible protein-DNA and protein-protein interactions result in a highly nonlinear cost
function with a complex landscape of peaks and valleys that make optimization difficult.
The complexity of the cis-regulatory logic of wild type enhancers is readily apparent in a
diagrammatic representation of all quenching and DNA-protein interactions in the MSE2
enhancer (Fig. 1, step 3). In order to solve this problem, a previously described method of
simulated annealing [19, 20] was adapted to efficiently search the sequence space for
enhancers that minimize the cost function.

2.1.1. Overview of simulated annealing (SA)—The SA optimization method is a
global optimization method that can be used without any restrictions on the search space. It
is based on making an analogy between the real physical annealing processes and the
problem of optimization in a high dimensional search space [22]. In metallurgy, annealing
involves heating a metal to a starting temperature T0 such that it glows red hot. As the metal
reaches T0, the bonds between the atoms of the metal break allowing them to randomly
diffuse until they reach an equilibrium energy configuration determined by the Boltzmann
distribution of the ensemble at T0. If the temperature is then cooled very slowly, the system
maintains a quasi-equilibrium such that at any given temperature T, the system remains in a
Boltzmann distribution. As the temperature decreases to 0, the energy configuration of the
ensemble converges to the global minimum. Analogously, SA introduces an artificial
temperature parameter T, which determines the probability of accepting or rejecting moves
along the search space according to the Metropolis criterion [23]. In SA, the last evaluation
of the cost function E is regarded as the “energy” of the system while the current parameter
values x⃗ correspond to the state or “energy configuration”. Starting from an initial random
state  and a starting temperature T0, the algorithm samples the search space in an iterative
cycle consisting of:

1. from current state  propose a move to state 

2. calculate the energy increment 

3. accept the move to state  with probability p(ΔE) = min(1, exp(−ΔE/T))

4. repeat until the system is frozen

After each iteration, the temperature is decreased according to a specific cooling schedule.
The system is considered frozen when it has reached a pre-determined temperature, or when
no more moves can be accepted at the current temperature. If the temperature is cooled
slowly, the iterative sampling of the search space according to the Metropolis criteria results
in a time-averaged energy of the system that approaches that of an ensemble of states
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distributed according to the Boltzmann distribution. Thus like in the physical system, as T
goes to 0, the energy configuration of the system approaches that of the global minimum.

2.1.2. Implementation—In what follows, we describe the specifics of the SA sequence
search method, and show through in silico experiments that it can efficiently search the
sequence space.

Let n be the total number of data points (i.e. the total number of conditions, spatial, or
temporal coordinates) for which we are evaluating the cost function, and let m be the total

number of different TFs in the model. We define  as the vector composed of the input TF
concentrations {v1(j),…, vm(j)} associated with the data point j. Without loss of generality,
we can then write the cost function as

(1)

where E(Si) is the value of the cost function for the candidate sequence Si, (j) is the target

gene expression at data point j, (Si, ) is the model output given sequence Si and the

vector of input TF concentrations  at data point j.

In the case where we are using the previously fitted transcriptional model in order to find
480 bp sequences that are functionally equivalent to the MSE2 enhancer, the cost function
E(Si) (Eq. 1) is summed over 290 data points consisting of 58 nuclei (35% to 92% EL) and 5
time classes (T2–T6). Each of the 290 data points is associated with a set of measured
concentration values for Bcd, Hb, Gt, Kr, Cad, Kni, and Tll.

The SA sequence search is an implementation of the Lam adaptive SA method [19, 20]. An
important characteristic of adaptive SA is that it draws upon the statistical record the SA
process in order to dynamically determine the rate of temperature decrease and the average
proposed move size. In the case of SA sequence search, we define a move as a set of k
random point substitution that takes the system state from sequence Sn to sequence Sn+1 and
where k corresponds to the move size. The process is initiated with a random sequence S0 of
length l. During each iteration, we select a move size k from an exponential distribution with
a mean of Θ. A proposed move of k random point substitutions is made, and the new
sequence Sn+1 is accepted or rejected according to the Metropolis criterion as previously
described. Statistics on the number of accepted and rejected moves are collected for 100
iterations, after which the algorithm adjusts the size of Θ such that the acceptance ratio
(moves accepted/total number of moves) is maintained at approximately 0.44; a value
chosen on the basis of previous theoretical analysis [19, 20]. In addition, statistics that allow
for the estimation of the energy variance are collected and used in conjunction with the
acceptance ratio in order to determine the size of the temperature decrease.

Previous work had suggested that the efficiency of the parameter search, is maximized when
the variance of the distribution of energies of proposed moves is as large as possible.
Moreover, it has been claimed that this occurs when the acceptance ratio is maintained at
0.44 [19, 20]. However, this result had not been previously verified in our system. We
decided to check the validity of this claim to test whether the SA sequence search method
was searching the sequence space with maximum efficiency. In addition, we also decided to
check whether our move size controller was capable of maintaining the proper acceptance
ratio. Statistical data on the move size, acceptance ratio, and the variance of the ΔE of
proposed moves was collected at four different temperatures during an SA sequence search
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for 480 bp sequences that are functionally equivalent to MSE2. Plotting the acceptance ratio
as a function of move size shows that the acceptance ratio decreases monotonically with
increasing move size (Fig. 2), indicating that it is possible to adaptively regulate the
acceptance ratio by increasing or decreasing the average number of mutations per move.
Likewise, a scatter plot of the variance of the ΔE of proposed moves with respect to the
acceptance ratio, shows that the maximum variance occurs at 0.44 (Fig. 3). This result is in
perfect agreement with the result previously derived by Lam [19, 20].

2.2. Neutral Evolutionary Enhancer Algorithm (NEEA)
A well established principle in evolution is that all transitional states between two adaptive
phenotypes must themselves be adaptive. Borrowing from this evolutionary principle, we
imagine that between any two functionally equivalent sequences (i.e. with a conserved
expression pattern) S and S′, there exists a minimum ordered set of single point mutations
transforming sequence S to S′ along a functionally accessible path. We define a functional
accessible path as one wherein for any given sequence Si along the path, E(Si) (Eq. 1) is
below a user-defined viability threshold t, and where the target gene expression 
corresponds to the conserved reference pattern. The sequences could be for example,
homologous sequences from two related species or the sequence from an extant species and
from an ancestral node inferred from a phylogeny. Alternatively, we might ask the question
of whether it is possible to find a functionally accessible path that connects a wildtype
enhancer with a functionally equivalent synthetic sequence, or between two synthetic
enhancers with a conserved functional output. In this section we describe the NEEA
algorithm, its requirements, and the different optimization methods it uses during each step.

2.2.1. Sequence alignment—The NEEA algorithm requires an alignment between a
starting and ending sequence. The alignment can be produced in several ways; we use the
Wagner-Fischer algorithm for minimizing the Levenshtein or minimum edit distance
between two sequences [24]. The Levenshtein distance is defined as the minimum number
of edits (single nucleotide substitutions, insertions, and deletions) linking the starting and
ending sequences. The minimum edit distance provides a measure of the degree of
separation of two sequences, and is a commonly used metric in maximum parsimony
methods that seek to reconstruct phylogenetic trees [24]. Once an alignment has been
established, the algorithm determines the initial minimal set of mutations as differences
between the two sequences. Consecutive deletions can be treated either as a single
mutational event or as independent point deletions. Each point substitution, insertion, or
deletion is considered a single mutation.

Since the sequence alignment determines the set of inferred mutations between sequences,
the code is able to exhaustively evaluate alternative Wagner-Fischer alignments and trace
different evolutionary trajectories for each. However, since the number of alignments tends
to grows factorially with the edit distance, it is only possible to evaluate all of them
exhaustively when the edit distance is small. For those cases where there is a large edit
distance between the two sequences, one approach might be to use a constrained alignment
algorithms such as the Morphalign software, that uses PWMs and phylogenetic information
for improved alignments of homologous enhancer sequences [25].

2.2.2. Optimization of mutation order—Using the mutational set derived from the
alignment, the next step is to order the set to find an functional accessible path linking the
sequences. Let {S1, …, Sn} be the set all n sequence in a path. We define the path cost
function P as
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(2)

where P is the path cost function, and E(Si) is the model cost function (Eq. 1 evaluated at
sequence Si of the path. Eq. 2 seeks to minimize the maximum value of E along the path. In
order to speed up the code, each possible intermediate sequence is kept in memory along
with the calculated cost function.

Minimization of the path cost P is achieved by using two separate optimization procedures.
The first optimization uses an adaptation of a dynamic hill descent algorithm which quickly
finds regions of local minima [26]. The procedure involves applying a transformation to the
permutations so that the optimization can occur in a vector space; once a move occurs in the
vector space a reverse transformation is applied to calculate P [27]. The transformation
function is defined as

(3)

where {a1, a2, …, an} is a permutation of n integers from the ordered set {1, 2, …, n}, and
{b1, b2, …, bn} is the resulting vector, with 0 <= bj <= n − j.

This function (Eq. 3) transforms the permutation space into a vector space of dimension n-1,
where n is the number of elements to permute. A search for local minima is carried out by
evaluating different possible directions in the vector space to find path cost decreases. Once
a direction is selected, the search vector magnitude is doubled in order to more rapidly find
the local minima. If a direction that decreases P is not found, the search vector is decreased
in magnitude by half. The search ends when the magnitude of the search vector drops below
a threshold such that the current best permutation order cannot be improved upon. By
starting out at multiple random positions in the vector space, different local minima can be
found. The local minimum with the lowest path cost is then chosen for further optimization.
Algorithm 1 in the Supplementary Information (S1) shows the pseudocode describing the
dynamic hill climbing method.

The second optimization step is carried out in its entirety in the permutation space. After
finding a local minimum, the mutations along the path are indexed in descending order of
their calculated E. The optimization procedure involves testing out all the possible n-1
swaps of the highest scoring mutation until P is reduced. If no swaps are found to reduce P,
the next highest scoring mutation is swapped. This algorithm is repeated until P is reduced
or all possible pairwise permutations are tested. Once a swap has reduced the score, the
mutations are re-indexed in descending score value and the swapping starts again from the
highest scoring mutation. The procedure ends when no further path cost reducing swaps are
found. Alternatively, the algorithm can also be stopped after the index of the mutation to be
swapped exceeds a previously defined threshold. This can be useful in cases where the total
number of pair-wise swaps becomes too large to compute. By starting from a region close to
a local optimum, the second optimization procedure allows for a deeper exploration of the
search space in this region to obtain better results.

2.2.3. Path fragmentation—After the optimization of the path cost function is complete,
the maximum score value of the evolutionary trajectory is compared to the viability
threshold. A maximum score lower then the viability threshold indicates that it has found a
viable evolutionary trajectory. If the maximum score is higher, the algorithm will seek to
find a new trajectory by breaking up the path into smaller segments. This is achieved by
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searching for an intermediate sequence in the immediate vicinity of the maximum scoring
sequence that has a score lower than the viability threshold. A new path optimization
procedure is then carried out between the starting point and the intermediate sequence, as
well as between the intermediate sequence and the ending point. The search for an
intermediate sequence employs simulated annealing to find the lowest scoring sequence
within a small edit distance radius of the maximum scoring sequence. In order to carry out
the search, random point mutations are applied to the maximum scoring sequence and the
new sequence score value is calculated (Eq. 1). If the resulting sequence has a higher score
then the viability threshold, the search is restarted with a larger search space. The search
space is increased by enlarging the edit distance radius by small increments. The procedure
is repeated until a new sequence is found that falls within the viability threshold. In this way,
a viable scoring sequence is found which adds the smallest possible number of additional
mutations to the mutation set and trajectory.

Once an intermediate point is found, a new alignment is determined between the starting
point and the intermediate sequence as well as the ending point sequence. A new
evolutionary trajectory is then calculated by applying the optimization procedure outlined
above on both segments separately. If there are still points outside the viability threshold, the
path fragmentation procedure is applied recursively until a viable path is found. The
intermediate points along the path represent can be thought of as representing “hidden”
states that are not observable when comparing the starting and ending points alone. Parallel
and convergent evolution are two well known mechanisms that create hidden states in DNA
sequences.

2.3. Application
One challenge in modeling is to distinguish among competing models that “explain” the
data. The use of artificially designed enhancers can be a powerful tool to achieve this aim.
By using simulated annealing to design enhancers, it is possible to find sequences that are
predicted to express differently under competing models. These sequences can then be
synthesized and tested in vivo. In other words, rather than using the algorithm to find a
sequence that minimizes Eq. 1, it is possible to find a sequence such that given model A and
model B, the sequence maximizes the cost function

(4)

where (Si, ) and (Si, ) are the predicted expression pattern of sequence Si at data

point j of models A and B respectively, and  is the set of TF concentrations at data point j.

Maximizing Eq. 4 typically results in a sequence S where the expression pattern predicted by
model A over-expresses with respect to that predicted by model B. By switching the

positions of (Si, ) and (Si, ) in Eq. 4, it is possible to select which model over-
expresses. As an example, Fig. 4A shows the result of using simulated annealing to search
for sequences that differentiate between two models both of which correctly predict eve
stripe 2 expression. Importantly, the search for sequences that maximize Eq. 4 provides a
systematic way to determine the true value of model parameters where the two models
differ. The rational design of test sequences by this approach is expected to pinpoint short-
comings in models and should lead to more rapid improvement in models of enhancer
structure/function.
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Another important application of simulated annealing on sequence is the ability to create
arbitrary expression patterns. Once a model has been developed that shows a good
predictive ability, it is possible to use simulated annealing to generate custom-made
synthetic enhancers within the natural limits of the system. Because TFs can act
combinatorially to produce a vast array of expression patterns, it is possible possible to
create sequences that drive a wide array of different patterns of gene expression. This
capacity can be of use in both basic research as well as in applied settings. In research,
synthetic enhancers predicted to express in novel patterns can be a powerful tool for model
validation. It is also possible to use custom-made enhancers in experiments that require the
expression of a particular gene in a pattern that does not currently exist in nature.
Alternatively, synthetic enhancers can be used in biomedical applications such as tissue or
genetic engineering. A major limitation in gene therapy is the small DNA carrying capacity
of many viral vectors (5–8 kb) used to transfer therapeutic genes to the patient [28]. Thus,
the ability to create a minimal length synthetic enhancer capable of driving expression in the
proper cells could provide a significant advancement in this area. Fig. 4B shows the use of
simulated annealing, in conjunction with a model of eve stripe 2, to create artificial
enhancers expressing in arbitrary patterns. It is important to note however, that the ability to
create novel patterns is limited by the nature and expression profiles of the interacting
transcription factors acting on the system. Thus, as more transcriptional regulatory systems
fall under study, a wider range of expression patterns will be possible.

A recurring question in transcriptional regulation is, what are the design principles guiding
the construction of enhancers? SA sequence search is expected to shed light on this problem
as well. During the annealing process, as the temperature parameter is progressively
lowered, the solution to the optimization problem gets closer and closer to the global
minimum. By stopping the annealing process at a particular temperature and allowing the
optimization algorithm to equilibrate (i.e. maintaining the temperature constant while
continuing to make moves according to the Metropolis criterion), it is possible to generate
an ensemble of an arbitrary large number of synthetic constructs that fit a particular pattern
by sampling the annealer at periodic intervals. The creation of a large ensemble allows for
the discovery of common design elements among multiple enhancers. In addition, novel
insights regarding robustness can be gleaned by a comparative analysis among the different
synthetic enhancers as well as between the synthetic enhancers and wild type constructs.
Fig. 4C shows an ensemble of approximately 105 non-homologous synthetic enhancers
predicted to express in an eve stripe 2 pattern.

The NEEA algorithm allows for the discovery of functionally accessible paths between cis-
regulatory elements. A direct application of this method is the use of NEEA to determine the
most likely order of the mutational events along the branches of a phylogenetic tree. Under
the assumption of a strong functional constraint, the root mean squared (rms) difference
between the reference and predicted expression pattern can be used as a proxy for the fitness
conferred by a given sequence. Given the current lack of information on how subtle changes
in expression patterns translate to changes in fitness, the algorithm does not try to calculate a
fitness value from the rms score. Rather, the algorithm seeks to find an evolutionary
pathway where the predicted rms score at each point is below a given rms threshold. This
threshold value, called the viability threshold, can be determined a priori by selecting the
maximum predicted rms value observed among extant homologous sequences assumed to
have evolved under a functional constraint. An example of functionally accessible
evolutionary paths between closely related species can be seen in Fig. 5A.

The final application discussed here is the use of the NEEA algorithm as a tool for
determining the limits of model predictability. The methodology involves first using
simulated annealing to create a synthetic enhancer predicted to express in a similar pattern to
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a given wild type sequence. The second step is to use NEEA to trace a functionally
accessible pathway from the wild type to the synthetic enhancer. The functionally accessible
path provides a set of sequences, all predicted to give approximately the same expression
pattern, but which become progressively diverged from the starting wild type enhancer
sequence. Sequences along the path can then be sampled along regular intervals, synthesized
and their expression measured, to determine if there is a point along the path where the
model predictions break down. The sequence at which the predictions deviate from the
observations can be compared to the sequence at a previous step in order to isolate the key
mutational changes responsible for the loss of predictability. This approach can then be used
systematically to improve the accuracy of the model and has the potential to yield insight
into novel regulatory mechanisms and transcription factors involved in the regulation of the
system under study. Using NEEA a functionally accessible mutational path was traced
between the eve MSE2 and a synthetic sequence of the same length also predicted to express
in a stripe 2 pattern (Fig. 5B).

Data-driven modeling approaches, which are becoming the norm in studies of regulatory
elements, place a premium on tools that can take advantage of systems biology techniques.
The work presented here is a step in this direction, providing a systematic and clear
methodology for the validation and improvement of current regulatory models. The use of
de novo synthesized elements in combination with optimization algorithms, maximizes the
information content of data-driven approaches by rapidly localizing the current limits of
model predictability. Through multiple iterative cycles of predictions, synthesis, evaluation,
and fitting, it is possible to create models with progressively greater predictive power (Fig.
1). These models can in turn be of great importance in tissue engineering or experimental
applications where expression patterns not currently available in nature might be required.
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Figure 1. Iteration cycle for the systematic improvement of a transcriptional model
The NEEA algorithm and the SA sequence search methodology can be used to increase both
the scope and precision of a transcriptional model. The numbers label the separate steps in
the cycle and the arrows describe the flow of information between the steps. 1) The cycle
starts with a set of known enhancer sequences and their corresponding quantitative
expression patterns. 2) Each sequence is scored for the presence of binding sites using
PWMs. Open and blacked-filled shapes represent activators (+ effect) and repressors (−
effect) respectively. As an illustration, binding site prediction of the 4 main regulators of
MSE2 are shown. 3) The known regulatory mechanisms by which TFs influence
transcription, along with the predicted TFBSs, binding affinity, and TF concentrations are
used to determine the set of all protein-protein and protein-DNA interactions. The diagram
shows both competitive binding and quenching interactions for MSE2. Binding sites are
colored coded for relative binding affinity. Activators and repressor are shown over and
below the line respectively. The quenching efficiency is shown along the horizontal axis by
a symmetrical gradient centered on each repressor. Quenching of activator binding sites
within the range of a repressor will result in decreased occupancy of the site. 4) The
parameters describing the intensity, range, and effect of all interactions are fitted by
minimizing the sum of the squared differences between the observed and predicted
expression across all constructs and data points. The optimization procedure can produce
multiple functional models. 5) SA is used in conjunction with a functional model to search
the sequence space for novel enhancers predicted to express in the same pattern to that of an
enhancer in the previous iteration. SA can also be used to find enhancers predicted to
express in a target expression pattern or that allow discrimination between alternative
models. 6) NEEA can be used to find a functionally accessible path between an enhancer in
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a previous iteration and a novel, functionally equivalent sequence. Sequences sampled at
intervals along the path are then synthesized for empirical analysis. 7) Synthesized
sequences predicted to express in either conserved or divergent patterns are cloned into an
expression vector and their activity assayed in vivo. Shown is a fluorescent in situ
hybridization of a Drosophila embryo expressing lacZ driven by the MSE2 enhancer.
Confocal images of multiple embryos are analyzed in order to derive the quantitative
expression pattern. The new set of enhancers and their corresponding functional output are
then added to the previous set for the next round of the iteration.
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Figure 2. Increasing the average move size results in a decrease in the acceptance ratio of
proposed moves
Each point in the graph corresponds to the average acceptance ratio of 105 proposed moves.
Acceptance ratio was calculated as the number of accepted moves over the total number of
proposed moves from a fixed point in the annealing run. Average move size corresponds to
the average number of substitutions per annealing step. Data were collected at four different
temperatures during the annealing process (104, 103, 550, and 100). Simulated annealing
was carried out with an initial temperature of 106 and allowed to cool according to the Lam
adaptive schedule. Once the annealer reached the specified equilibrating temperature, the
temperature was kept constant and statistics on acceptance ratios were recorded. Average
move size at each equilibrating temperature was increased from zero to two hundred in
increments of one.
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Figure 3. The maximum standard deviation of the delta energies of proposed moves occurs at
0.44 acceptance ratio
Data were collected under the same conditions as in Fig. 2, where each point represents the
standard deviation of the ΔE of 105 proposed moves. ΔE’s were calculated as the energy
differentials between the current states and those of the proposed moves. The dashed lines
corresponds to an acceptance ratio of 0.44 and occurs at approximately the maximum
standard deviation at all four temperatures.
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Figure 4. Applications of simulated annealing on sequence
(A) Method for distinguishing between two alternative models of transcriptional regulation.
Simulated annealing was used to find a DNA sequence that maximizes the differences
between model predictions. Dashed line corresponds to sequence A/B that is predicted to
express strongly throughout most of the embryo by model A, but would have no expression
under model B. Solid line represents sequence B/A predicted to express in an anterior-
posterior gradient under model B, but is predicted not to express under model A. Top and
bottom panels show predictions by model A and B respectively. (B) Method for generating
arbitrary expression patterns. Simulated annealing was used to design enhancers predicted to
express in target expression patterns. Top panel shows a collection of predicted 480 bp
synthetic enhancers that would drive expression in a stripe pattern at different A–P positions
along the embryo. Bottom panel shows a 4 kb synthetic enhancer predicted to express in an
arbitrary target pattern. Model prediction is in red while target expression pattern is in black.
Horizontal axis for panels A and B show A–P embryo position in percent egg length length.
Vertical axis for panels A and B shows relative mRNA concentration. Dashed line in panel
B depicts the no-expression reference point for mRNA expression. (C) Method for creating
an ensemble of functionally equivalent enhancers. Simulated annealing was used to generate
a collection of 105 480 bp enhancer sequences predicted to express in a D. mel eve stripe 2
expression pattern. Each dot represents a synthetic enhancer sequence. Sequences were
generated by sampling the annealing process every 105 moves at three different equilibrating
temperatures. Red, blue, and green dots represent sequences sampled at annealing
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temperatures of 100, 10, and 1 respectively. Horizontal axis shows the minimum edit
distance between the synthetic sequence and the D. mel MSE2. Vertical axis shows the
calculated root mean squared difference between the model prediction and the observed D.
mel MSE2 pattern used as reference. Figure inserts show predicted expression patterns of
representative sequences sampled at different temperatures. Red line corresponds to model
prediction while dashed line corresponds to the reference MSE2 expression pattern.
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Figure 5. Applications of the Neutral Enhancer Evolutionary Algorithm (NEEA)
(A) Method for finding functionally accessible evolutionary paths between ancestral and
extant enhancer sequences. The ancestral mel-sim-sec eve stripe 2 enhancer sequence was
predicted using Bayesian inference. Functionally accessible evolutionary paths between the
ancestral stripe 2 sequence and the corresponding sequence in sim, sec, and mel were
generated using the NEEA algorithm. Dashed line corresponds to the viability threshold
wherein sequences with a calculated cost function above the line are non-viable. Paths were
generated such that at all points the calculated cost function E were below the viability
threshold. In addition, a penalty of 0.01 was used in Eq. 2 in order to minimize the variance
of E along the path. Vertical axis shows the value of E at that each point along the path.
Horizontal axis depicts the number of mutations separating the D. mel stripe 2 enhancer
from the current point along the path. (B) Method for creating a collection of functionally
equivalent enhancers with decreasing homology. First, simulated annealing was used to
generate a synthetic DNA sequence expressing in a D. mel MSE2 pattern. To maximize the
probability of generating a functional enhancer, the sum of the squared differences between
the predicted and the reference pattern of seven separate models were added together. A
functionally accessible path was generated between the wild type mel MSE2 sequence and
the synthetic enhancer using the NEEA algorithm. In this case the objective was to give
greater weight to the shape of the pattern then to the amplitude. For this purpose both the
predicted and observed expression patterns were normalized on a scale of 0 to 1. Cost
functions were calculated as the sum of the squared differences between the normalized
patterns. To prevent under-expression, the value of E was multiplied by the fold under-
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expression between the reference and observed patterns prior to normalization. Fold under-
expression was calculated as the ratio between the maxima of the reference and predicted
patterns. As in the case of simulated annealing, the cost function evaluations of seven
separate models were added together to provide a new cost function used in the NEEA
optimization algorithm. The vertical axis shows the total added score of seven models while
the horizontal depicts the number of mutations separating the wild type MSE2 from the
synthetic sequence. A total added score of 12 was used as the viability threshold in the
optimization.
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