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Abstract
Accurately computing the free energy for biological processes like protein folding or protein-
ligand association remains a challenging problem. Both describing the complex intermolecular
forces involved and sampling the requisite configuration space make understanding these
processes innately difficult. Herein, we address the sampling problem using a novel methodology
we term “movable type”. Conceptually it can be understood by analogy with the evolution of
printing and, hence, the name movable type. For example, a common approach to the study of
protein-ligand complexation involves taking a database of intact drug-like molecules and
exhaustively docking them into a binding pocket. This is reminiscent of early woodblock printing
where each page had to be laboriously created prior to printing a book. However, printing evolved
to an approach where a database of symbols (letters, numerals, etc.) was created and then
assembled using a movable type system, which allowed for the creation of all possible
combinations of symbols on a given page, thereby, revolutionizing the dissemination of
knowledge. Our movable type (MT) method involves the identification of all atom pairs seen in
protein-ligand complexes and then creating two databases: one with their associated pairwise
distant dependent energies and another associated with the probability of how these pairs can
combine in terms of bonds, angles, dihedrals and non-bonded interactions. Combining these two
databases coupled with the principles of statistical mechanics allows us to accurately estimate
binding free energies as well as the pose of a ligand in a receptor. This method, by its
mathematical construction, samples all of configuration space of a selected region (the protein
active site here) in one shot without resorting to brute force sampling schemes involving Monte
Carlo, genetic algorithms or molecular dynamics simulations making the methodology extremely
efficient. Importantly, this method explores the free energy surface eliminating the need to
estimate the enthalpy and entropy components individually. Finally, low free energy structures can
be obtained via a free energy minimization procedure yielding all low free energy poses on a
given free energy surface. Besides revolutionizing the protein-ligand docking and scoring problem
this approach can be utilized in a wide range of applications in computational biology which
involve the computation of free energies for systems with extensive phase spaces including protein
folding, protein-protein docking and protein design.

Keywords
Knowledge-based scoring function; protein-ligand binding free energy calculation; exhaustive
sampling; drug design; protein ligand docking

Supporting Information
Supporting Information is available including (1) a description of a methane-butane system as an example that illustrates, in detail, the
binding free energy calculation using the MT method with the KECSA energy function. (2) An introduction to a fast approximate
algorithm for matrix multiplication in MT computation. As well as (3) the predicted pKd or pKi vs. experimental pKd or pKi for our
test set and the heatmap docking RMSD result against the same test set. This information is available free of charge via the Internet at
http://pubs.acs.org/.

NIH Public Access
Author Manuscript
J Chem Theory Comput. Author manuscript; available in PMC 2014 December 10.

Published in final edited form as:
J Chem Theory Comput. 2013 December 10; 9(12): 5526–5538. doi:10.1021/ct4005992.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://pubs.acs.org/


Introduction
Sampling the configuration space of complex biomolecules is a major hurdle impeding our
ability to advance the understanding of a diverse range of processes including protein
folding and the accurate prediction of ligand binding to a biological receptor.1–10 Major
advances have been made in computer hardware, which has allowed molecular dynamics
(MD) simulations to reach the millisecond barrier, but this method is brute force in nature
and requires highly sophisticated hardware and software.2,10,11–14 Moreover, a major hurdle
in the modeling of biological systems is associated with how the inter and intra-molecular
energies are modeled. Modern force fields are highly evolved, but still need to be further
refined to reach chemical accuracy in many applications.9,14,15–17

Predicting how a ligand (drug) binds its receptor and predicting its associated binding
affinity is a highly challenging problem, which if solved, would singularly advance modern
structure-based drug design.8,15,17–31 This approach has largely employed so-called end-
point methods that dock (place) a candidate molecule into a receptor and compute the
binding free energy using a range of physics-based or empirical “scoring” functions. From
an analysis of the error propagation properties in the statistical mechanics based prediction
of protein-ligand binding affinities it was shown that the end-point class of approaches
maximizes energy function uncertainties.32–34 This can be alleviated through the use of
sampling approaches including MD methods or methods that exhaustively sample the
configuration space associated with protein-ligand binding.1–3,5–7,9,11–14 These methods
have shown that they can be successful, but are brute force in nature, which lead us to
consider ways in which we can use ideas more akin to the endpoint methods, but
incorporating sampling at the same time. The concept being that this approach would give us
the best of both worlds, while mitigating the effects of energy function deficiencies.

Using MD or exhaustive sampling procedures to evaluate protein-ligand binding is
conceptually similar to woodblock printing technology where all the words (molecules) are
carefully placed on a board (receptor site) and the whole book can be printed (binding free
energy determined). While a more advanced printing technology, movable type printing,
(which was invented in China in the 11th century and introduced by Gutenberg into the
alphabetic language system) uses a “database” of letters that is pre-constructed and then the
printing of any word involves a database search followed by the appropriate combination
from the movable type system. Using a typical pairwise potential the molecular energy of a
system can be decomposed into atom pairwise interaction energies including bond, angle,
torsion, and long-range non-covalent forces (van der Waals and electrostatic forces), which
by analogy to the MT systems is our database of “letters”. Each interaction has a different
intensity and probability of occurrence along an atom pairwise coordinate axis. Herein, we
develop the mathematics necessary to bring end-point methods up to the “movable type
printing level”, via building a database of energy intensities and probabilities for all atom
type pair interactions found in protein-ligand complexes. Using this information we then
demonstrate that the MT approach enhances our ability to predict protein-ligand binding free
energies and also allows us to extract the associated low energy poses all at a fraction of the
cost associated with “brute” force sampling methods. Moreover, the docking and scoring
problem is an example of a broad class of problems in computational biology that involve
both the computation of the free energy and structure of a biological system, which includes
challenges like the prediction of protein folds, protein-protein interactions and protein
design all of which the MT method can address.
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Methodology
The Movable Type Method Applied to Protein-Ligand Binding

A thermodynamic cycle modeling the binding free energy ΔGb
s in solution (shown in Figure

1) is typically employed in end-point methods:

(1)

where P and L indicate the protein and ligand, s and g represent the behavior in solution and
the gas-phase, respectively, ΔGsolv is the solvation free energy, and ΔGb is the binding free
energy in gas (g) and solution (s), respectively.

Using , Equation 1 becomes:

(2)

The binding free energy in solution is now separated into two terms: The binding free
energy in the gas-phase and the change in the solvation free energy during the complexation
process. At this point we introduce the moveable type algorithm to model both terms each
with its own design.

The binding free energy in the gas-phase is the most important term to evaluate in order to
predict the protein-ligand binding affinity because it contains all interactions between the
protein and ligand. When approximated as the Helmholtz free energy (NVT), the Gibbs (we
use the canonical ensemble throughout, but will predominantly use the ΔG notation) binding
free energy in the gas-phase can be generated using the ratio of the partition functions
describing the protein-ligand complex, the protein, and the ligand.

(3)

where Z represents the canonical ensemble partition function, and β is the reciprocal of the
thermodynamic temperature kBT. Partition functions are integrals over all possible
coordinates of the protein-ligand complex, the protein, and the ligand. Equation 3 can be
manipulated into the following form:

(4)

where the partition functions are expressed as the Boltzmann-weighted average of the pose
energies (shown in brackets) multiplied the volume of configuration space available to each
state, shown as F in Equation 4. FPL is approximated as the product of the external degrees
of freedom (DoFs) of the bound protein and ligand (including the rotational and translational
DoFs), and the internal DoFs of the bound protein and ligand (including the relative-
positional and vibrational DoFs), given as:

(5)
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Similarly, the DoFs of the free protein and ligand molecules are also separated into the
external and internal components. Internal DoFs are identical for bound and free protein/
ligand structures and the bound and free proteins are also assumed to share the same internal
and external DoFs. Only the external DoFs of the ligand are differentiated between the
bound and free systems. The rotational DoF of a free ligand is 8π2 on a normalized unit
sphere. However, because of the inaccessible volume present in protein-ligand systems, the
rotational DoFs of bound ligands are designated as aπ2 with a to-be-determined average
volume factor a less than 8. The translational DoFs are treated as a constant C, which is
assumed to be identical for all free ligands, while the translational DoF for bound ligands is
the volume of the binding pocket Vpocket in which the ligands’ center of mass can translate.
Thereby, in the protein-ligand binding process, changes in the DoFs can be modeled as a
constant with respect to the different volumes of the binding pockets. Applying these
approximations we obtain:

(6)

The gas-phase protein-ligand binding free energy can then be further manipulated into the
following form:

(7)

Again using the Helmholtz free energy approximation (Equation 3), the solvation free
energy can be correlated to the partition function of the solute (protein, ligand or protein-
ligand complex) and solute-solvent bulk interactions. In this way, the solvation free energy,

using  as an example, is modeled as in Equation 8, and the DoFs are approximated as
being the same for the solute and the solute-solvent bulk terms.

(8)

Finally, the remaining solvation terms given in Equation 1 (  and ) can be
modeled in an analogous manner yielding the change in the solvation free energy as ligand
binding occurs which then can be used to evaluate the overall free energy of ligand binding
in aqueous solution.

Construction of the “Movable Type” System: Atom Pairwise Interaction Energy and
Probability Databases

With pose energies sampled over all possible DoFs for the bound and free protein/ligand
system, the gas-phase protein-ligand binding free energy can be generated using molecular
dynamics, Monte Carlo, genetic algorithms, etc. by sampling over a large number of poses
of the protein, ligand and protein-ligand complex. Using the canonical ensemble the
Helmholtz free energy can be obtained as the arithmetic mean (sum of the energies of all
ligand poses divided by the total number of all poses along with an estimate of integration
volume) of Boltzmann factors:
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(9)

However, the problem of pose-based energy sampling lies in the fact that pose selection and
sample size significantly affect the final result, not to mention that calculating many unique
poses is very time-consuming. Different ligand poses have different energy preferences for
the binding site, which leads to a range of binding probabilities. When calculating the
averaged partition functions in Equation 7, one can assign probabilities (Q) as weights to
different Boltzmann factors in order to differentiate the binding pocket preferences against
ligand poses, rather than just simply using an arithmetic mean of all Boltzmann factors.

(10)

(11)

The challenge in deriving the canonical partition function (as the denominator in Equation
10) for a protein-ligand system is that it is difficult to include all relevant ligand pose
energies within the binding pocket using brute force sampling schemes. However, the task
becomes much easier when a protein-ligand system is reduced to the atom-pair level. In this
way the “pose” sampling problem can then can be cast as a 1-D rather than a 3-D problem
by deriving the canonical partition function as a sum of the Boltzmann factor products of all
atom pairwise energies included in the system over all atom pairwise separation distance
ranges.

(12)

The canonical partition function can be derived following Equation 12, where the index “i”
refers to each ligand pose (microstate) in a “traditional” brute force sampling scheme. When
the protein-ligand system is broken down to the atom-pair level, “q” indicates all atom pairs
in the molecular system, and “p” indicates each possible combination of all atom pairs each
of which is at a pre-chosen distance. a, b, c and d refer to each atom pair as a bond, angle,
torsion or long-range (van der Waals or electrostatic) interaction in the canonical system,
respectively, and α, β, γ and δ refers to each sampled separation distance between the
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corresponding atom pair. Probabilities of all the atom pairwise distributions on the right

hand side of Equation 12 are normalized as ( ):

(13)

Hence our MT method is designed to decompose the molecular energy into atom pairwise
energies, which then simplifies the energy sampling problem to the atom-pair level. The
advantage of this idea lies in that (1) atom pairs can be categorized based on atom types and
interaction types, e.g. bond, angle, torsion, and long-range non-covalent interactions; (2)
Calculation of atom pairwise energies is extremely cheap. Thereby, it is easy to build an
atomic pairwise interaction matrix of energy vs. distance for each interaction type and atom
pair type i, j. Hence, the energy calculation for each molecule is no more than a combination
of elements from different energy matrices. In addition, the MT method is a template by
which any pairwise decomposable energy function can be used. In the current work, the
energy for each interaction type between a certain atom type pair i, j is calculated using the
Knowledge-based and Empirical Combined Scoring Algorithm (KECSA) potential
function.35 In KECSA, the protein-ligand statistical potential is modified and equated to an
atom pairwise energy in order to generate force field parameters for bond stretching, angle
bending, dihedral torsion angles and long-range non-covalent interactions. Please see the
detailed rationale and justification for KECSA and its parameterization in the Supporting
Information and the relevant literature.35

Along with the distance-based energy, each atom pair type also has a distance preference
encoded in its distribution, resulting in different probabilities associated with Boltzmann
factors for each sampled atom pairwise distance. Atom-pair radial distributions were
collected from a protein-ligand structure training set (i.e., the PDBbind v2011 data set with
6019 protein-ligand structures)36,37 and utilized in the current model. The atom pairwise
radial distribution function is modeled as:

(14)

where nij(r) is the number of protein-ligand pairwise interactions between a certain atom
pair type i and j in the bin (r, r+ Δr), with the volume 4πraΔr collected from the training set.

in the denominator mimics the number of protein-ligand atom type pairs i and j in the
same distance bin in an ideal gas state. This removes the “non-interacting” background
distribution from the protein-ligand system. Δr is defined as 0.005Å. Nij is the total number
of atom pairs of type i and j. The average volume V of the protein-ligand binding sites is

given as , with the same to-be-determined parameter a as described above
(Equations 7 and 14). A cutoff distance R is assigned to each atom type pair defining the
distance at which the atom pairwise interaction energy can be regarded as zero. Both a and R
can be derived using a previously introduced method.35 The radial distribution frequency is
then normalized by dividing the sum of radial distributions of all the atom pairs in the
system (Equation 15).
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(15)

In this way, the energy and distribution frequency vs. distance is calculated for any
interaction type, and atom pair type, thereby, forming our MT database for later use.

Binding Free Energies from the “Movable Type” Method
Based on Equation 4, the binding free energy is defined as a ratio of partition functions of
the different molecules involved in the binding process, i.e., the protein, ligand and the
protein-ligand complex. Instead of sampling over poses of one molecule, the MT method
simplifies the partition function of each system into a collection of partition functions (c)
over each observed atom pair, which are equal to the normalized distribution probability of
the atom type pair along the distance (q), multiplied by the corresponding atom pairwise
partition function (z):

(16)

By combining the partition functions c over all atom pairs in one molecule the partition
function of one molecule averaged over all possible conformations is derived (Equation 17).

(17)

where the averaged molecular partition function is given as a sum of atom pairwise partition
functions c sampled over distance intervals (M) of all combination of N atom pairs at all
possible distances.

Starting from the protein-ligand complex database, we constructed the partition function
matrices for the MT algorithm. When converted into a partition function matrix, the atom
pairwise energy multiplier sampled as a function of distance is the basic element needed to
assemble the total energy, as shown in Equation 18, using the protein bond energy as an
example.

(18)

where subscript k indicates a bonded atom pair i and j, and each distance increment between
any ra and ra+1 is 0.005Å. Using this scheme the distance sampling size is given by:

, where r1 and rn are the lower and upper bounds for distance sampling, which
varies depending on the each atom pair and interaction type. The product over all bond-
linked atom pairs derives the total bond partition function in the protein:
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(19)

(20)

In Equations 19 and 20, m indicates the total number of atom pairs that need to have their
bond stretch term computed (i.e., number of covalent bonds), and n is the distance sampling

size. T indicates the transpose. Thus, the matrix  has a total of nm elements, and
includes all combinations of the sampled atom pairwise distances and atom pairs (see
Equation 20). Energy matrices for other kinds of atom pairwise interactions are assembled in
the same way (i.e., bond, angle, torsion, and long-range interactions). A simple example is
given in Supplementary Information (butane-methane interaction), which illustrates the
method in more detail. Products over these matrices generate the entire protein partition
function matrix (Equation 21), representing all possible combinations of the protein internal
energies with different atom pairwise distances.

(21)

(22)

The KECSA van der Waals-electrostatic interaction models and hydrogen bond models35

are applied to the protein, ligand and protein-ligand complex systems. Similarly, the ligand
energy (Equation 23) and protein-ligand interaction energy matrices (Equation 24) can be
obtained.

(23)

(24)

The distribution frequency matrix is built in the same way, with the qij (r) derived from
Equation 15 as elements in each multiplier (also using the protein bond term as an example):

(25)

(26)
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(27)

(28)

The distribution frequency matrix for the protein is derived using Equations 26 through 28,
and the distribution frequency matrices of the ligand and protein-ligand intermolecular
interactions are analogously derived as in Equations 29 and 30.

(29)

(30)

We chose the same range and distance increment in both the energy and distribution
frequency calculations, which means that any rx (x=1, 2, 3…) in Equation 18 is the same as
corresponding rx in Equation 25. Thus, the corresponding elements in all energy and
distribution frequency matrices correlate with each other. The pointwise product over all
matrices ensures that the energies and distribution frequencies with the same range and
distance increment are combined into one element in the final matrix of the probability-
weighted partition function of the protein-ligand complex (  in Equation 31).

(31)

In the final matrix each element of  is a value of the partition function of the protein-
ligand complex multiplied by its probability based on its radial distribution forming the
ensemble average. Finally, the sum of all elements of the matrix  gives us the averaged
partition function of the protein-ligand complex:

(32)

where the first equation is the normalization statement for the probabilities. In this manner,
the normalized averaged partition function of the protein-ligand complex is derived in
Equation 32. Following the same procedure, the averaged partition functions for the protein
and ligand are generated as well:

(33)

(34)

Expanding the matrices, the protein-ligand binding free energy in the gas-phase is defined as
in Equation 35, using the averaged partition functions of all three systems (protein, ligand,
protein-ligand complex) derived above.
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(35)

In Equation 35, Q is the radial distribution frequency and E is the energy. i, j, k are the
indices of the protein, ligand and protein-ligand complex, while I, J, K are the total number
of protein, ligand and protein-ligand complex samples, respectively.

, and  are standard distribution frequency matrices

normalized over all three systems, in order to satisfy . In this way the
protein-ligand binding free energy in the gas-phase is derived using our MT algorithm.

Determination of the change in the solvation energy as a function of the binding process is
computed in a similar manner. To illustrate this we describe how we obtain the solvation
free energy of the ligand, which is one component of ΔΔGsolv and by extension the other
terms can be derived.

The ligand solvation free energy is obtained by decomposing the ligand-solvent bulk energy
into the free ligand energy EL (r), the ligand-solvent polar interaction energy Epsol (r), and
the ligand-solvent non-polar interaction energy Epsol (r) :

(36)

Solvent was approximated as a shell of even thickness around the ligand, in which the water
molecules were evenly distributed. The solvent shell thickness was 6Å, and the inner surface
of the shell was 1.6Å away from the ligand surface, which approximates the radius of a
water molecule. Herein, for simplicity, the ligand-solvent polar interaction was considered
as a surface (solvent accessible polar surface of the ligand)–surface (solvent bulk layer
surface at a certain distance away from ligand) interaction, instead of a point-point
interaction, i.e. atom pairwise interaction. Using this model the ligand polar atom–solvent
interaction energy was modeled as a solvent accessible buried area (SABA) of the ligand
polar atoms multiplied by the polar atom–oxygen interaction energy terms taken from
KECSA,35 to simulate the ligand-solvent surface interaction energy. All SABA-weighted
interaction energies along the solvent shell thickness, with a 0.005Å increment were
collected and stored. The ligand-solvent polar interaction Boltzmann factor multiplier was
modeled using Equation 37, with k indicating each polar atom in the ligand, r1=1.6Å, which
is the inner layer of the solvent shell and rn=6Å +1.6Å =7.6Å, which is the outer boundary
layer of the solvent shell.
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(37)

The ligand-solvent polar interaction Boltzmann factor matrix is then derived using Equation
38, covering all ligand polar atoms up to m. The distribution frequency matrices were not
included in ligand-solvent energy calculation because the radial distribution function is
approximated as being identical along all ligand-solvent distances (i.e. a featureless
continuum). Figure 2 further illustrates the modeling of the ligand-solvent polar interaction.

(38)

The non-polar atom buried area (NABA) is used to simulate the interactions between the
non-polar atoms and aqueous solvent, because the interaction energy between non-polar
atoms and water molecules has a weaker response to changes in distance.

(39)

The ligand energy is the same as was introduced in the gas-phase protein-ligand binding free
energy calculation. So, the matrix for the ligand-solvent interaction energy is:

(40)

(41)

The solvation free energy was not fit to experimental solvation free energies and was found
to have a small influence of the final binding free energies for the protein-ligand complexes.
Nonetheless, future work will fit these models to small molecule solvation free energies, but
for the present application the solvation model was used as formulated above.

With all necessary components constructed, the binding free energy in solution can be
generated using:
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(42)

Performance of MT KECSA as a Scoring Function for Protein-Ligand
Binding Affinity Prediction

Using the MT method we performed binding free energy calculations with the KECSA
model and its associated parameters. This validation study was performed to illustrate (1)
the general performance of MT method when used to predict protein-ligand binding
affinities and (2) whether sampling along atom pairwise distance improves scoring
performance, as done in MT KECSA, improves the prediction over the original KECSA
method.

A test set containing 795 protein-ligand complexes was chosen from the PDBbind v2011
refined dataset based on the following criteria:

1. Crystal structures of all selected complexes had X-ray resolutions of < 2.5 Å.

2. Complexes with molecular weights (MWs) distributed from 100 to 900 were
selected, to avoid ligand size-dependent prediction results.

3. Complexes with ligands who have more than 20 hydrogen donors and acceptors,
more than one phosphorus atom, and complexes with metalloproteins were
excluded.

MT KECSA calculations show improvements in Pearson’s r, Kendall τ and RMSE (Root-
Mean-Square Error) when compared to the original KECSA model (Table 1). Importantly,
judging from the slope and intercept of both calculations versus experimental data, MT
KECSA (with slope of 0.85 and intercept of 0.14) better reproduces the binding affinities in
the low and high affinity regions than the original KECSA model (with slope of 0.27 and
intercept of 3.57). In the original KECSA approach, the entropy terms were empirically
trained, thus, its test results demonstrate training-set dependence to some degree. Because
complexes with medium binding affinities are more commonly seen in the PDB database
when compared to complexes with high or low binding affinities, they become the majority
in a large training set (1982 protein-ligand complexes were used to fit the original KECSA
entropy terms). This causes the trained scoring functions to overestimate the binding affinity
of the low-binding complexes while underestimating that of the high-binding complexes. On
the other hand, MT KECSA, using canonical partition functions to compute the binding free
energies, bypasses the difficulty of empirically building the entropy term, and, thereby,
better reproduces the binding affinity in low and high binding free energy regions.

Zheng et al. Page 12

J Chem Theory Comput. Author manuscript; available in PMC 2014 December 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Extracting Heat Maps from the Movable Type Method
Grid based methods and their graphical representation have had a long tradition in
computer-aided drug design.4,38–41 For example COMFA42 creates a field describing the
chemical nature of the active site pocket and the GRID algorithm43 uses a grid based
approach to aid in molecular docking and has been adopted by other docking programs (e.g.,
GLIDE44,45).

By the very nature of the MT method we can readily generate “heat maps” describing the
chemical nature of the grid points created in the MT method. These can be used to describe
pairwise interactions between the grid-point and the protein environment (e.g., amide
hydrogen with a carbonyl oxygen) or interactions can be lumped into nonpolar or polar
interactions describing the aggregate collection of polar and non-polar pairwise interactions.
Not only does this describe the nature of the grid points it also indicates regions where
specific atoms should be placed to optimize binding affinity.

In contrast to energy heat maps, the MT heat maps represent the probability-weighted
interaction energy on each grid point. Knowledge-based data (i.e., the probability
distribution along the interacting distance) will affect the location of both unfavorable and
favorable interactions depending on the nature of the system. Moreover, energy gradient
maps can be generated based on heat map energy calculations, which facilitates ligand
docking as described below.

Extracting Structure from the “Movable Type” Method
The advantage of the MT method is that the energy and the free energy (when introducing
the partition function) can be derived using only atomic linkage information coupled with
the databases of atom pairwise distance distributions along with their corresponding
energies. This offers us a new approach for protein-ligand docking without resorting to
exhaustive pose sampling. Our initial efforts utilized the frozen receptor model, but the
incorporation of receptor flexibility is, in principle, straightforward and will be explored in
the future.

In a docking exercise, the best-docked pose for the ligand is usually obtained based on the
highest binding affinity, which can be regarded as an optimization problem. With the frozen
binding pocket approximation, generation of the “best” docking pose is a gradient
optimization of the ligand atoms within the binding pocket, subject to the constraints of the
ligand topology.

Molecular internal linkages including bond lengths and angles only slightly deviate from
their optimized values, making them constraints in the ligand energy optimization within the
binding pocket. These ligand atom connectivities reduce the dimensionality of the problem
in that atomic collections that do not have the correct connectivity are eliminated from
further consideration. On the other hand, energies of the torsions and long-range interactions
between ligands and proteins vary over comparatively large distance ranges and, thereby,
are regarded as the objective functions. Hence, in order to do the optimization we need to
obtain the first and second derivatives of the ligand torsion and the protein-ligand long-range
interaction partition functions (shown in Equation 43 and 44), which can be readily seen in
the gradient maps of the individual atom type pairs.

(43)
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(44)

Optimum ligand atom locations are obtained when the calculation satisfies the minimum
values for all the objective functions (ligand torsions and protein-ligand long range
interactions) and all ligand bonds and angle constraints.

In our optimization algorithm we obtain numerical derivatives of the probability distribution
and analytical derivatives for the energy expression via pairwise partial derivatives of the
modified Lennard-Jones potentials used in KECSA.35 With the ligand topology and first and
second derivatives we used a Newton-Raphson algorithm to optimize the ligand in the
pocket. A nice feature of this method is we can identify both the lowest free energy binding
mode along with all other possible local minima with higher free energies. Moreover, we
can extract saddle-point and higher-order transitions describing the connectivity between the
local minima, but these are quite numerous and, hence, complicated and won’t be discussed
here in detail.

Figure 3 introduces the process of the heatmap docking. To illustrate the method in detail we
will touch on just one example whose structure is 1LI2. We have also carried out heatmap
docking against the previously introduced test set of 795 protein ligand complexes, which
will be summarized below.

The protein-ligand complex with PDB ID 1LI2 is used as an example to illustrate in detail
the process of heatmap docking. 1LI2 is a T4 Lysozyme mutant bound to phenol with a
modest binding affinity of 4.04 (pKd). The binding pocket region is larger than the small
phenol ligand structure (see Figure 4), potentially allowing several ligand poses that
represent local minima. On the other hand, phenol, as the ligand, has a simple enough
structure to clearly show the differences in protein-ligand contacts between low energy
poses.

Judging from the crystal structure, phenol forms a hydrogen bond with GLN102A, and
several hydrophobic contacts with VAL87A, TYR88A, ALA99A, VAL111A and LEU118A
in the binding pocket (shown in Figure 4).

There are two atom types (sp3 oxygen and aromatic carbon atoms) in phenol. Based on the
MT KECSA calculation, heat maps for both of the atom types within the binding pocket can
be generated (Figure 5).

The heatmap docking program then generated one sp3 oxygen and six aromatic carbons to
their optimized position following the gradients on their corresponding energy heatmaps
while satisfying the linkage constraints of phenol. As a result, together with the energetic
global minimum ligand pose (GM), three more local minimum poses (pose a, b and c) were
generated using the heatmap docking method. RMSD values (Å) and binding scores (pKd)
are shown in Table 2.

As can be seen in Figure 6, the GM pose slightly deviates from the crystal structure (CS)
because of the adjustment of the hydrogen bond distance between the phenol oxygen and the
sp2 oxygen on GLN102A in the MT KECSA calculation. The phenol benzene ring balances
the contacts with ALA99A and TYR88A on one side and the contacts with LEU118A,
VAL87A and LEU84A on the other. The local minimum pose c and b have close binding
scores when compared to the GM pose. They form hydrogen bonds with different hydrogen
acceptors (ALA99A backbone oxygen for pose c and LEU84A backbone oxygen for pose b)
while maintaining very similar benzene ring locations. The local minimum pose a is trying
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to form a hydrogen bond with ALA99A backbone oxygen. However, the benzene ring of
local minimum pose a is tilted towards the LEU118A, VAL87A and LEU84A side chain
carbons, weakening the hydrogen bond with the ALA99A backbone oxygen with the net
result being a reduction in binding affinity.

Further Validation of the “Movable Type” Method
Using the MT method a further docking study was carried out on the test set of 795 protein-
ligand complexes. In addition, in order to better evaluate the performance of MT scoring and
heatmap docking, we also carried out a Glide scoring and docking study for
comparison. 44, 45, 46

For the Glide docking and scoring study, protein structures were prepared with the Protein
Preparation Wizard utility of the Schrodinger 2013–2 Suite using Epik state penalties.44,47

Protonation states were assigned using PROPKA at pH 7.0.48,49 Hydrogen positions were
optimized with OPLS 2005.50,51 All the crystal waters were removed. Docking runs using
the Glide version 5.9 Standard Precision (SP) and Extra Precision (XP) algorithms followed
the preparation step.

The MT heatmap docking generated an average RMSD of 1.97Å with a 1.27Å standard
deviation when compared to the protein-ligand crystal structure while Glide SP docking
generated an average RMSD of 2.07Å with a 2.72Å standard deviation, Glide XP docking
generated an average RMSD of 1.87Å with a 2.01Å standard deviation against the same set
(Table 3.). The result for each individual system studied herein is given in the
supplementary information. Based on this test result, MT heatmap docking showed a
comparable performance to Glide results, all of which have ~2.0Å RMSD results. However,
the standard deviation of the pose RMSD generated using heatmap docking is in a more
narrow range than what is seen using SP and XP Glide.

We also compared the binding affinity computed by the MT method (actually pKd/pKi
values) with the Glide SP and XP scores. We show the Glide scores vs. the experimental
pKd or pKi values across the 795 protein-ligand complexes in the test set in Figure 7,
together with the calculated pKd or pKi values from MT KECSA and the original KECSA
model vs. the experimental pKd or pKi values of the same test set for comparison. Due to the
different scales used by MT KECSA and the Glide scores, the comparison only includes
Pearson’s r and Kendall τ values. MT KECSA and the original KECSA, as discussed above,
generated Pearson’s r’s of 0.72 and 0.62, Kendall τ’s of 0.53 and 0.46. Glide SP yields a
Pearson’s r of 0.46 and a Kendall τ of 0.52, while Glide XP yields a Pearson’s r of 0.42 and
a Kendall τ of 0.29. Overall, we conclude that MT KECSA shows advantages over scoring
with Glide.

Conclusions
The prediction of the free energies associated with a wide range of biological problems
remains a very daunting task. Balancing the sampling of the relevant degrees of freedom
with accurate energy computation makes this a very difficult problem. Herein we describe a
new approach that in one-shot samples all the relevant degrees of freedom in a defined
region directly affording a free energy without resorting to ad hoc modeling of the entropy
associated with a given process. This is accomplished by converting ensemble assembly
from a 3-D to a 1-D problem by using pairwise energies of all relevant interactions in a
system coupled with their probabilities. We call this approach the moveable type (MT)
method and in conjunction with Knowledge-based and Empirical Combined Scoring
Algorithm (KECSA) potential function we demonstrated the application of this approach to
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protein ligand pose and binding free energy prediction. The resultant MT-KECSA model
out-performs the original KECSA model showing the power of this approach. Importantly,
the present MT model can be applied to any pairwise decomposable potential which will
allow us to attack a wide range of problems in biology including the validation of potential
functions.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
The thermodynamic cycle used to formulate the free energy of protein-ligand binding in
solution.
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Figure 2.
Modeling of ligand-solvent polar interaction using a Boltzmann factor multiplier. A
carbonyl oxygen atom is used and an example here. 1) The green surface shows the solvent
accessible surface of the ligand (inner layer of the solvent shell). The surface consisting of
blue dots represents the outer boundary surface of the solvent shell. 2) A close-up view of a
selected polar atom (carbonyl oxygen) with its solvent shell. 3) Monte Carlo sampling along
carbonyl oxygen–solvent shell layer distance.
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Figure 3.
The MT energy maps optimization mechanism to derive the final docking pose in one
protein ligand complex.
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Figure 4.
Contact map of the 1LI2 protein-ligand complex binding region. Hydrophobic contacts are
shown as green dashed lines and the one hydrogen bond is shown as a pink dashed line. The
binding pocket cavity is shown in dark yellow.
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Figure 5.
Heat maps for sp3 oxygen (left) and aromatic carbon (right). Grid points with lighter color
indicate energetically favorable locations for certain atom types within the binding pocket.
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Figure 6.
In the binding pocket of protein-ligand complex 1LI2, ligand crystal structure (marked as
CS) is shown as a stick & ball, the global minimum pose (marked as GM) is shown as a stick
along with the three other identified local minimum (marked as a, b, and c). Red bubbles on
the protein atoms indicate potential contacts with the ligand sp3 oxygen. Grey bubbles on
the protein atoms indicate potential contacts with aromatic carbons.
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Figure 7.
Plot of MT KECSA (A), the original KECSA model (B) calculated pKd or pKi values, Glide
SP score (C) and Glide XP score (D) vs. Experimental pKd or pKi values.
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Table 1

Statistical results for MT KECSA and original KECSA correlated with experimental binding affinities.

Pearson’s r RMSE(pKd) Kendall τ

MT KECSA 0.72 1.88 0.53

original KECSA 0.62 2.03 0.46
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Table 2

RMSD values (Å) and binding scores (pKd) of the global and local minima.

RMSD (Å) Binding Affinity (pKd)

Global Minimum 0.937 3.329

Local Minimum a 2.667 2.255

Local Minimum b 2.839 2.975

Local Minimum c 2.342 3.299
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Table 3

RMSD values (Å) and standard deviations of RMSD (Å) from the MT heatmap docking results, compared
with Glide SP and Glide XP results.

RMSD (Å) RMSD standard deviation (Å)

MT KECSA 1.97 1.27

Glide SP 2.07 2.72

Glide XP 1.87 2.01
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